
Manual | EN

TX1200
TwinCAT 2 | PLC Library: TcPlcUtilitiesBC

2022-11-10 | Version: 1.1

Table of contents

TX1200 3Version: 1.1

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 Safety instructions... 6
1.3 Notes on information security.. 7

2 Overview .. 8

3 Function blocks... 10
3.1 RTC... 10
3.2 RTC_EX .. 11
3.3 DCF77_TIME .. 13
3.4 ReadWriteTerminalReg... 16
3.5 DRAND.. 18
3.6 FB_BasicPID... 19

4 Functions ... 22
4.1 DT_TO_SYSTEMTIME ... 22
4.2 SYSTEMTIME_TO_DT ... 22
4.3 TIME_TO_OTSTRUCT ... 23
4.4 OTSTRUCT_TO_TIME ... 24
4.5 SETBIT32.. 25
4.6 CSETBIT32 ... 26
4.7 GETBIT32 ... 26
4.8 CLEARBIT32... 27
4.9 F_SwapReal.. 28
4.10 IsFinite... 29
4.11 F_REAL... 31
4.12 F_LREAL... 31

5 Data structures.. 32
5.1 TYPE TIMESTRUCT... 32
5.2 TYPE OTSTRUCT .. 32
5.3 TYPE T_Arg .. 32
5.4 TYPE E_ArgType.. 33

Table of contents

TX12004 Version: 1.1

Foreword

TX1200 5Version: 1.1

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TX12006 Version: 1.1

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Foreword

TX1200 7Version: 1.1

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TX12008 Version: 1.1

2 Overview
The library contains useful function blocks for the PLC controller (BCxxxx controller). In addition to the RTC
blocks, the library contains a function block for decoding the DCF-77 time signal, along with a number of
conversion functions. Internally, PLC Controller system functions are called.

Requirements

Some of the functions are only supported by PLC controllers with a newer firmware version. The required
firmware versions are listed in the PlcSystemBC library documentation.

Content of the library

Function blocks

Name Description
RTC [} 10] Real Time Clock

RTC_EX [} 11] Real Time Clock with an additional millisecond output

DCF77_TIME [} 13] Read the DCF77 radio time

ReadWriteTerminalReg [} 16] Access to the registers of the terminals

DRAND [} 18] Random number generator

FB_BasicPID [} 19] Simple PID controller

Functions

Name Description
DT_TO_SYSTEMTIME [} 22] Converting DATE_AND_TIME to Windows system

time structure
SYSTEMTIME_TO_DT [} 22] Converting Windows system time structure to

DATE_AND_TIME
TIME_TO_OTSTRUCT [} 23] Convert TIME to a structure with milliseconds,

seconds, minutes, hours, days and weeks
OTSTRUCT_TO_TIME [} 24] Convert a structure with milliseconds, seconds,

minutes, hours, days and weeks to a TIME variable
SETBIT32 [} 25] Sets a bit in a 32-bit variable to 1

CSETBIT32 [} 26] Sets / resets a bit in a 32-bit variable

GETBIT32 [} 26] Determines the value of a bit of a 32-bit variable

CLEARBIT32 [} 27] Sets a bit in a 32-bit variable to zero

F_SwapReal [} 28] Converts bus controller REAL numbers into the 4Byte
REAL Intel format.

IsFinite [} 29] Verifies the formatting of a floating-point number in
accordance with the IEEE

Data structures

Name Description
TYPE TIMESTRUCT [} 32] Windows system time structure

TYPE OTSTRUCT [} 32] Operating time structure

https://infosys.beckhoff.com/content/1033/tcplclibsystembc/html/note.htm?id=1839311615672514998

Overview

TX1200 9Version: 1.1

Function blocks

TX120010 Version: 1.1

3 Function blocks

3.1 RTC

The "RTC" (Real Time Clock) function block allows an internal clock to be implemented within a PLC
controller (BCxxxx). The clock must be initialized with a starting date and time. After initialization, the time
and date are updated cyclically each time the function block is called. A controller system clock is used to
calculate the current time and date. The system clock has a resolution of one millisecond. The function block
should be called in every PLC cycle, so that the current time can be calculated. The RTC has a potential
error of about 1 minute in each 24 hours. In order to avoid large errors, the RTC can be cyclically
synchronized (e.g. with a radio clock or with a TwinCAT PC via the fieldbus). The current date and time are
available in the usual DATE_AND_TIME (DT) format at the function block's output. Multiple instances of the
RTC function block can be created within one PLC program.

VAR_INPUT
VAR_INPUT

 EN : BOOL;

 PDT : DATE_AND_TIME;

END_VAR

EN: on a rising edge at this input, the function block is reinitialized with a preset time and date.
PDT: (Preset Date and Time) the initialization values for the date and time of the function block. A rising
edge at the EN input will cause the function block to adopt this value.

VAR_OUTPUT
VAR_OUTPUT

 Q : BOOL;

 CDT: DATE_AND_TIME;

END_VAR

Q: this output is set if the function block has been initialized at least once. If this output is set, then the values
for the date and time at the PDT output are valid.
CDT: (Current Date and Time) current date and time from RTC. The CDT output is only updated when the
function block is called. For this reason, instances of the function block should be called once in each PLC
cycle.

Sample of a call in FBD:
PROGRAM MAIN
VAR
 RTC1 : RTC;
 Init_RTC : BOOL;
 RTC_DataValid : BOOL;
 RTC_DateAndTime: DT;
END_VAR

Function blocks

TX1200 11Version: 1.1

Requirements

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

3.2 RTC_EX

The "RTC_EX" function block allows an internal clock to be implemented within a PLC controller (BCxxxx).
The clock must be initialized with a starting date and time. After initialization, the time and date are updated
cyclically each time the function block is called. A controller system clock is used to calculate the current time
and date. The system clock has a resolution of one millisecond. So that the current time can be calculated,
the function block should be called once in each cycle of the PLC.
The RTC_EX function block has a deviation of approx. 1 minute per 24 hours. In order to avoid large errors,
the RTC_EX function block can be cyclically synchronized (e.g. with a radio clock or with a TwinCAT PC via
the fieldbus). The current date and time are available in the usual DATE_AND_TIME (DT) format at the
function block's output. In contrast to the RTC [} 10] function block, RTC_EX has a precision of one
millisecond. Since DATE_AND_TIME variables only have a precision of one second, the milliseconds are
output via the CMSEK output variable. Multiple instances of the RTC_EX function block can be created
within one PLC program.

VAR_INPUT
VAR_INPUT

EN : BOOL;

PDT : DATE_AND_TIME;

PMSEK: DWORD;

END_VAR

Function blocks

TX120012 Version: 1.1

EN: on a rising edge at this input, the RTC_EX function block is reinitialized with a preset time, date and
milliseconds.
PDT: (Preset Date and Time) the initialization values for the date and time of the function block. With a
rising edge at the EN input, this value is taken over by the function block.
PMSEK: (Preset Milliseconds) the initialization value for the milliseconds. A rising edge at the EN input will
cause the function block to adopt this value.

VAR_OUTPUT
VAR_OUTPUT

Q : BOOL;

CDT : DATE_AND_TIME;

CMSEK: DWORD;

END_VAR

Q: this output is set if the function block has been initialized at least once. If the output is set, the values for
the date, time and milliseconds at the PDT and CMSEK outputs are valid.
CDT: (Current Date and Time) current date and time from RTC. The CDT output is only updated when the
function block is called. Therefore the instances of the function block should be called once in each cycle of
the PLC.
CMSEK: (Current Milliseconds) the millisecond output.

Sample of a call in FBD:
PROGRAM MAIN
VAR
 RTC1 : RTC_EX;
 Init_RTC : BOOL;
 RTCDataValid : BOOL;
 RTC_DateAndTime : DT;
 RTC_Milliseconds : DWORD;
END_VAR

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

Function blocks

TX1200 13Version: 1.1

3.3 DCF77_TIME

The "DCF77_TIME" function block can be used to decode the DCF-77 radio clock signal. A rising edge at the
RUN input starts the decoding process, which continues as long as the RUN input remains set. In the worst
case, the function block requires a maximum of one minute to synchronize itself, plus a further minute to
decode the data for the following minute. During this time, the missing 59th second marker is waited for.
Internally the function block is sampling the DCF-77 signal. In order to be able to sample the edges without
error the function block should be called once in each PLC cycle. Satisfactory results can be obtained with a
cycle time of <= 25 ms. If the DCF-77 signal is absent or faulty, the ERR output is set TRUE, and a
corresponding error code is set at the ERRID output. The ERR and ERRID outputs are reset the next time a
correct signal is received. Some receivers provide an inverted DCF-77 signal. In such cases the signal must
first be inverted before being passed to the DCF_PULSE input. When operating without errors, the current
time is updated at the CDT output every minute. Thereby the READY output is set to TRUE for one cycle of
the PLC at the zeroth second. At this time the DCF-77 time at the CDT output is valid, and can be evaluated
by the PLC program. The READY output is only set if the data for the following minute has been detected.
The transferred parity bits are used for error detection. In the event of poor reception conditions, 100% error-
free detection cannot be guaranteed. I.e. with two faulty (inverted) bits, the function block cannot detect an
error and also sets the READY output to TRUE. In order to obtain reliable time information additional
safeguards have to be implemented, e.g. redundancy analysis of the time information in consecutive
minutes.

From TwinCAT v2.10 Build > 1340 and TwinCAT v2.11 Build > 1543 a simple plausibility check of two
consecutive telegrams was implemented in the DCF77_TIME function block. This functionality can be
activated via a global Boolean variable for all instances of the DCF77_TIME block. When the plausibility
check is activated the first synchronization is extended by a further minute to a maximum of 3 minutes.
GLOBAL_DCF77_SEQUENCE_CHECK : BOOL := FALSE;

TRUE = plausibility check is activated (two consecutive telegrams are checked)

FALSE = plausibility check is deactivated

Errors that occur during reception are registered by the function block. The ERRCNT output is an error
counter. This counter indicates the number of errors that have occurred since the last correctly received
signal. The counter is reset the next time a signal is correctly received.

Time code

During each minute, the numbers that encode the year, month, day, day of the week, hour and minute are
transmitted in BCD format through pulse modulation of the second marks. The transmitted information
always describes the subsequent minute. A second marker is transmitted each second. A second marker
with a duration of 0.1 s represents a binary zero, while a duration of 0.2 s represents binary one. The
information is extended with 3 check bits. At the 59th second, and a receiver can use this "gap" to
synchronize itself.

From TwinCAT v2.10 Build > 1340 and TwinCAT v2.11 Build > 1543 the length of the short and long
pulse signal can also be configured via a global variable. If the signal is poor the pulse widths are smaller.
The receiver specifications usually contain information about the minimum and maximum pulse for the two

Function blocks

TX120014 Version: 1.1

logic signals, with the higher value expected for higher field strengths and the lower value for low field
strengths or in the event of interference. Problems may also occur near the sender (where the field strength
is very large) if the pulse width of the logic zero becomes excessive. For this reason a fixed limit is set for
differentiating between zero and one, depending on the receiver specification. Check the specification of
the receiver used and configure the pulse length accordingly.
GLOBAL_DCF77_PULSE_SPLIT : TIME := T#140ms;

 0 == pulse < 140 ms, 1 == pulse > 140

E.g.: in the specification of Atmel T4227 (Time Code Receiver) the following pulse length is given:
100 ms pulse (zero): min: 70 ms, typical: 95 ms, max: 130 ms
200 ms pulse (one): min. 170 ms, typical 195 ms, max. 235 ms
For this IC a limit value of 150 ms would be optimal = 130 + ((170 ms - 130 ms) / 2).

Tip:

If the configured limit value for the pulse length is too small, short pulses are detected as long. Conversely, if
the configured limit value is too small, long pulses are detected as short. If the checksum is correct, the
receiver cannot detect these errors. In the first case the receiver may supply times that are in future range, in
the second case the times may be in the past.

VAR_INPUT
VAR_INPUT
 DCF_PULSE :BOOL;
 RUN :BOOL;
END_VAR

DCF_PULSE: the DCF-77 signal.
RUN: a rising edge at this input initializes the function block and starts decoding the DCF-77 signal. If this
input is reset, the decoding process is stopped

VAR_OUTPUT
VAR_OUTPUT
 BUSY :BOOL;
 ERR :BOOL;
 ERRID :UDINT;
 ERRCNT :UDINT;
 READY :BOOL;
 CDT :DATE_AND_TIME;
END_VAR

BUSY: when the function block is activated, this output is set.
ERR: if an error occurred during decoding, this output is set.
ERRID: supplies the error number when the ERR output is set.
ERRCNT: number of errors that have occurred since the last error-free reception.
READY: if this output is set, then the data at the CDT output are valid.
CDT: the DCF-77 time in DATE_AND_TIME format.

Error description:

Error Codes Error description
0 No error
0x100 Timeout error. Possibly no DCF-77 signal detected.
0x200 Parity error. Incorrect bits were detected in the

received data.
0x300 Incorrect data was received. Since the parity check

can only detect one incorrect bit, the received data
are checked again for validity (this error code will be
generated, for instance, if month = 13).

Function blocks

TX1200 15Version: 1.1

Error Codes Error description
0x400 The last decoding cycle was too long. This error can

occur when reception is poor (not enough second
markers were received).

0x500 The last decoding cycle was too short. This error can
occur when reception is poor (additional edges were
received).

Sample of a call in FBD

In the sample application the Real Time Clock is synchronized with the radio time signal as an error-free
signal is received.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

Function blocks

TX120016 Version: 1.1

3.4 ReadWriteTerminalReg

The "ReadWriteTerminalReg" function block permits convenient access to the registers of the terminal via
the terminal channel's status/control byte (register communication). In the standard operating mode, the data
inputs and outputs of the intelligent terminal (e.g. an analog output terminal) are used to exchange the
analog output data. A handshake via the status/control byte permits register access. The data input and
output variables are used here to transfer the register values. The terminal must be mapped as a complex
PLC terminal so that the status/control byte is visible in the process image. The terminal registers cannot be
accessed if the terminal has been mapped as a compact PLC terminal or as a fieldbus terminal (process
image of the terminal not visible to the bus controller).
A positive edge at the READ or WRITE input causes the register with number REGNO to be read or written
to. Write protection of the register is disabled by the function block for a write access and enabled once more
afterwards. When a register is written to, the new register value is read, and is available at the
CURRREGVALUE output. If changes made to the register values are to be stored permanently, the power
supply to the coupler must be interrupted or a software reset of the coupler must be executed.

VAR_INPUT
VAR_INPUT
 STATE : BYTE;
 DATAIN : WORD;
 REGNO : BYTE;
 READ : BOOL;
 WRITE : BOOL;
 TMOUT : TIME;
 NEWREGVALUE : WORD;
END_VAR

STATE: status byte of the terminal channel.
DATAIN: data input word of the terminal channel.
REGNO: number of the register to which a read or write access is to be made.
READ: a positive edge at this input activates the function block and reads the current register value. If
successful, the register value is available in the output variable CURRREGVALUE.
WRITE: a positive edge at this input activates the function block, and the value in the input variable
NEWREGVALUE is written into the register REGNO. Subsequently, the current value of the register is read
and is available in the output variable CURREGVALUE if successful.
TMOUT: specifies the timeout time that must not be exceeded when executing the function.
NEWREGVALUE: data word that is to be written to the register with the number REGNO during a write
access.

Function blocks

TX1200 17Version: 1.1

VAR_OUTPUT
VAR_OUTPUT
 CTRL :BYTE;
 DATAOUT :WORD;
 BUSY :BOOL;
 ERR :BOOL;
 ERRID :UDINT;
 CURREGVALUE :WORD;
END_VAR

CONTROL: control byte of the terminal channel.
DATAOUT: data output word of the terminal channel.
BUSY: when the function block is activated, this output is set and remains set until the execution of the
function has been completed.
ERR: if an error occurs during the execution of the function, then this output is set after the BUSY output has
been reset.
ERRID: returns the error number when the ERR output is set.
CURREGVALUE: in case of a successful read or write access, the current register value is output via the
variable.

Error description:

Error number Error description
0 No error
0x100 Timeout error. The time permitted for execution has

been exceeded.
0x200 Parameter error (e.g. an invalid register number).
0x300 The read value differs from the written value (write

access to this register may not be enabled or have
failed)

Samples of a call in FBD:
VAR
ReadWriteTerminalReg1 : ReadWriteTerminalReg;
State AT%IB0 : BYTE;
Control AT%QB0 : BYTE;
DataIn AT%IW2 : WORD;
DataOut AT%QW2 : WORD;
Start_ReadTerminalType : BOOL;
Start_WriteFeatureRegister: BOOL;
RWTerminalReg_Busy : BOOL;
RWTerminalReg_Err : BOOL;
RWTerminalReg_ErrId : UDINT;
TerminalType : WORD;
FeatureRegValue : WORD;
END_VAR

 Sample 1

Function blocks

TX120018 Version: 1.1

In Sample 1 the terminal name is read from register 8 of an analog output terminal. The variables State,
Control, DataIn and DataOut are linked to the terminal's corresponding I/O variables in the TwinCAT System
Manager. The terminal name is KL4002.

Sample 2

In Sample 2 the user-scaling is activated in the feature register (register 32) of a KL4002 analog output
terminal. The new value in the feature register is then read by the function block, and can be checked
through the output variable CURREGVALUE.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

3.5 DRAND

Instances of function blocks are created according to IEC61131-3, and then called, or otherwise accessed,
from with the PLC program using the instance names. The function block DRAND permits generation of a
(pseudo-) random number of type REAL.

VAR_INPUT
VAR_INPUT
 Seed : INT;
END_VAR

Seed: initial value to define the random number sequence.

VAR_OUTPUT
VAR_OUTPUT
 Num : REAL;
END_VAR

Num: this output returns a pseudo-random number in the range 0.0 ... 1.0 with single precision. The
generator here creates a number series with 1075 stochastic values per period.

Function blocks

TX1200 19Version: 1.1

Sample of calling the function block in FBD:

In the sample the REAL value 0.643412 is generated and returned. The input parameter ”Seed" affects the
initial value of the series. If, for instance, a deterministically reproducible random number series is desired in
different sessions, and identical ”Seed" value must be used.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

3.6 FB_BasicPID

The function block is a simple discretized PID element.

Function blocks

TX120020 Version: 1.1

Transfer function:

Functional diagram:

VAR_INPUT
VAR_INPUT
 fSetpointValue : REAL;
 fActualValue : REAL;
 bReset : BOOL;
 fCtrlCycleTime : REAL;
 fKp : REAL;
 fTn : REAL;
 fTv : REAL;
 fTd : REAL;
END_VAR

fSetpointValue: setpoint of the controlled variable.

fActualValue: actual value of the controlled variable.

bReset: TRUE at this input resets the internal state variables and the controller output.

fCtrlCycleTime: cycle time with which the function block is called and with which the control loop is
processed [s].

fKp : controller amplification / controller coefficient

fTn : integral action time [s]

fTv: derivative action time [s]

fTd : damping time [s]

VAR_OUTPUT
VAR_OUTPUT
 fCtrlOutput : REAL;
 nErrorStatus : UINT
END_VAR

fCtrlOutput : output of the PID element.

nErrorStatus : indicates the error number in the event of an error (nErrorStatus <> 0).

Function blocks

TX1200 21Version: 1.1

0 = nERR_NOERROR : no error.
1 = nERR_INVALIDPARAM : invalid parameters
2 = nERR_INVALIDCYCLETIME : invalid cycle time.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.8.0 Build > 747
TwinCAT v2.9.0 Build > 947

PC (i386) TcUtilities.Lib
(Standard.Lib; TcBase.Lib;
TcSystem.Lib are included
automatically)

TwinCAT v2.7.0 Build > 522
TwinCAT v2.8.0 Build > 747
TwinCAT v2.9.0 Build > 947

BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,
TcPlcUtilitiesBC.Lb6

Functions

TX120022 Version: 1.1

4 Functions

4.1 DT_TO_SYSTEMTIME

The "DT_TO_SYSTEMTIME" function allows a PLC variable in DATE_AND_TIME format (DT) to be
converted to a Windows system time structure. The system time has a resolution of 1ms, while the resolution
of DATE_AND_TIME is 1s. The "wMilliseconds" variable in the system time structure therefore always
returns the value zero.

FUNCTION DT_TO_SYSTEMTIME : TIMESTRUCT

TIMESTRUCT [} 32]
VAR_INPUT
 DTIN : DT;
END_VAR

DTIN:: the date and time to be converted, in DATE_AND_TIME format.

Sample of a call in FBD:
PROGRAM SystemTimeTest
VAR
 SystemTimeStruct :TIMESTRUCT;
END_VAR

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

4.2 SYSTEMTIME_TO_DT

The "SYSTEMTIME_TO_DT" function allows the Windows system time structure to be converted to the
DATE_AND_TIME format (DT) usual in a PLC. The system time has a resolution of 1ms, while the resolution
of DATE_AND_TIME is 1s. The milliseconds from the system time are used in the course of the conversion
to determine the direction of rounding for the returned DATE_AND_TIME value.

Functions

TX1200 23Version: 1.1

FUNCTION SYSTEMTIME_TO_DT : DT
VAR_INPUT
 TIMESTR :TIMESTRUCT;
END_VAR

TIMESTR: structure with the Windows system time to be converted.

Sample of a call in FBD:
PROGRAM SystemTimeTest
VAR
 SystemTimeStruct :TIMESTRUCT;
 DTFromSystemTime :DT;
END_VAR

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

Also see about this
2 TYPE TIMESTRUCT [} 32]

4.3 TIME_TO_OTSTRUCT

The function "TIME_TO_OTSTRUCT" can be used to convert a TIME constant or variable into a structure
with the resolved milliseconds, seconds, minutes, hours, days and weeks.

FUNCTION TIME_TO_OTSTRUCT : OTSTRUCT

OTSTRUCT [} 32]
VAR_INPUT
 TIN :TIME;
END_VAR

TIN: the TIME variable to be converted.

Functions

TX120024 Version: 1.1

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

4.4 OTSTRUCT_TO_TIME

The function "OTSTRUCT_TO_TIME" can be used to convert a structure with resolved milliseconds,
seconds, minutes, hours, days and weeks into a TIME variable.

FUNCTION OTSTRUCT_TO_TIME : TIME
VAR_INPUT
 OTIN : OTSTRUCT;
END_VAR

OTIN: the structure to be converted.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

Functions

TX1200 25Version: 1.1

Also see about this
2 TYPE OTSTRUCT [} 32]

4.5 SETBIT32

The function sets the bit specified by a bit number in the 32-bit value that is passed to it and returns the
resulting value.

FUNCTION SETBIT32 : DWORD

VAR_INPUT
VAR_INPUT
 inVal32 :DWORD;
 bitNo :SINT;
END_VAR

inVal32: the 32-bit value to be changed.

bitNo: the number of the bit to be set (0-31). This number is internally converted to a modulo 32 value prior
to execution.

Sample of calling the function in FBD:

Bit 31 is set to the input value '0'. The result is the (hex) value '80000000'.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

Functions

TX120026 Version: 1.1

4.6 CSETBIT32

The function sets/resets the bit specified by a bit number in the 32-bit value that is passed to it and returns
the resulting value.

FUNCTION CSETBIT32 : DWORD

VAR_INPUT
VAR_INPUT
 inVal32 :DWORD;
 bitNo :SINT;
 bitVal :BOOL;
END_VAR

inVal32: a 32-bit value;

bitNo: the number of the bit to be set or reset (0-31). This number is internally converted to a modulo 32
value prior to execution;

bitVal: value to which the bit is to be set or reset (TRUE = 1, FALSE = 0);

Sample of calling the function in FBD:

Bit 15 in the input value '16#80000000' is set to 1. The result (16#80008000) is assigned to the variable
CSetBitResultVal.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

4.7 GETBIT32

The function returns the status of the bit specified by a bit number in the 32-bit value that is passed to it as a
boolean resulting value. The input value is not altered.

Functions

TX1200 27Version: 1.1

FUNCTION GETBIT32 : BOOL

VAR_INPUT
VAR_INPUT
 inVal32 :DWORD;
 bitNo :SINT;
END_VAR

inVal32: the 32-bit value;

bitNo: the number of the bit to be read (0-31). This number is internally converted to a modulo 32 value prior
to execution;

Sample of calling the function in FBD:

Bit 2 in the input value '16#04' is queried and assigned to the boolean variable aGetBitResultVar. The query
returns TRUE in this sample.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

4.8 CLEARBIT32

The function resets the bit specified by a bit number in the 32-bit value that is passed to it to zero and returns
the resulting value.

FUNCTION CLEARBIT32 : DWORD

VAR_INPUT
VAR_INPUT
 inVal32 :DWORD;
 bitNo :SINT;
END_VAR

inVal32: the 32-bit value to be changed;

bitNo: the number of the bit to be set (0-31). This number is internally converted to a modulo 32 value prior
to execution;

Functions

TX120028 Version: 1.1

Sample of calling the function in FBD:

Bit 31 in the input value 'C0000000' is reset. The result is the (hex) value '40000000'.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

4.9 F_SwapReal

The way in which a REAL number is represented in the memory of a bus controller (165) is different from the
way a REAL number is represented in the memory of an Intel system (PC). In order to represent a bus
controller's REAL number correctly in a PC, it is necessary for the high and low words of the REAL number
to be swapped. Under the programming environment this is already done in online or simulation mode. To
be able to request the REAL data of a Bus Controller via the network (ADS protocol, ADSDLL, AdsOcx etc.)
and represent them properly on an Intel PC, the REAL data have to be converted into the correct format.
This can either be done in the bus controller or in the PC. The function F_SwapReal can be used to convert
the REAL variables (e.g. variables to be read by a VB application or recorded with TwinCAT Scope View)
into a suitable format on the PC side. The fVal parameter that is passed is not affected by the conversion.
The function returns a new REAL number with a modified representation in memory.

FUNCTION F_SwapReal : REAL

VAR_INPUT
VAR_INPUT
 fVal :REAL;
END_VAR

fVal: the REAL value to be converted.

Sample in ST:

Functions

TX1200 29Version: 1.1

PROGRAM MAIN
VAR
 Real_165 : REAL;
 Real_i386 AT%MB0: REAL;
END_VAR

(* ADSREAD(.... ADR(Real_165), SIZEOF(Real_165)...);
...
...
...
*)
Real_i386 := F_SwapReal(Real_165);
Real_i368 := Real_i368 + 0.001;

In the sample, a 4-byte REAL variable in the bus controller is converted into the 4-byte REAL Intel format.
The Real_i386 variable can, for instance, be correctly displayed on a VB form.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 Build > 518
TwinCAT v2.8.0 Build > 735

BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,
TcPlcUtilitiesBC.Lb6

4.10 IsFinite

Fig. 1: IsFinite

The function IsFinite() returns TRUE, if its argument has a finite value (INF < x < +INF). The function returns
FALSE, if the argument is infinite or NaN (NaN = Not a number). IsFinite() checks whether the formatting of
an LREAL or REAL variable complies with IEEE.

INF numbers may occur in a runtime system if the result of a mathematical operation falls outside the range
that can be represented. E.g.:
PROGRAM MAIN
VAR
 fSingle : REAL := 12.34;
END_VAR
(*Cyclic called program code*)
fSingle := fSingle*2;

NaN numbers may occur in the runtime system if their actual formatting (memory content) was overwritten
through illegal access (e.g. by using the MEMCPY of MEMSET functions). E.g.:
PROGRAM MAIN
VAR
 fSingle : REAL := 12.34;
END_VAR
(*Cyclic called program code*)
MEMSET(ADR(fSingle), 16#FF, SIZEOF(fSingle)); (* Invalid initialization of REAL variable *)

Functions

TX120030 Version: 1.1

Calling a conversion function with an NaN or INF number as parameter causes an FPU exception on a PC
system (i368). This exception subsequently leads to the PLC being stopped. The function IsFinite() enables
the value of the variables to be checked, and therefore the FPU exception to be avoided and program
execution to be continued.

FUNCTION IsFinite : BOOL
VAR_INPUT
 x :T_Arg;
END_VAR

x: an auxiliary structure with information about the REAL or LREAL variables to be checked. The structure
parameters have to be generated when IsFinite() is called from help functions F_REAL [} 31] or F_LREAL
[} 31] and transferred as parameters.

Sample of a call in ST:

In the following sample, the formatting of a REAL and an LREAL variable is checked, and an FPU exception
is avoided.
PROGRAM MAIN
VAR
 fSingle : REAL := 12.34;
 fDouble : LREAL := 56.78;
 singleAsString : STRING;
 doubleAsString : STRING;
END_VAR
fSingle := fSingle*2;
IF IsFinite(F_REAL(fSingle)) THEN
 singleAsString := REAL_TO_STRING(fSingle);
ELSE
 (* report error !*)
 fSingle := 12.34;
END_IF

fDouble := fDouble*2;
IF IsFinite(F_LREAL(fDouble)) THEN
 doubleAsString := LREAL_TO_STRING(fDouble);
ELSE
 (* report error !*)
 fDouble := 56.78;
END_IF

In the following case, an FPU exception cannot be avoided through checking with IsFinite():

PROGRAM MAIN
VAR
 bigFloat : LREAL := 3.0E100;
 smallDigit: INT;
END_VAR
IF IsFinite(F_LREAL(bigFloat)) THEN
 smallDigit := LREAL_TO_INT(bigFloat);
END_IF

While the bigFloat variable has the right formatting, the variable value is too large for conversion into an INT
type. An exception is triggered on a PC system (i368), and the runtime system is stopped.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 Build > 522 BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

Functions

TX1200 31Version: 1.1

Development environment Target platform PLC libraries to include
TwinCAT v2.8.0 Build > 747
TwinCAT v2.9.0 Build > 947

Also see about this
2 TYPE T_Arg [} 32]

4.11 F_REAL

Fig. 2: F_REAL

This is a help function that returns information about a REAL variable with a certain structure.

FUNCTION F_REAL : T_Arg

T_Arg [} 32]

VAR_IN_OUT
VAR_IN_OUT
 in :REAL;
END_VAR

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 Build > 522
TwinCAT v2.8.0 Build > 747
TwinCAT v2.9.0 Build > 947

BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,
TcPlcUtilitiesBC.Lb6

4.12 F_LREAL
Not present on the BCxxxx (165)

Data structures

TX120032 Version: 1.1

5 Data structures

5.1 TYPE TIMESTRUCT
TYPE TIMESTRUCT
STRUCT
 wYear : WORD;
 wMonth : WORD;
 wDayOfWeek : WORD;
 wDay : WORD;
 wHour : WORD;
 wMinute : WORD;
 wSecond : WORD;
 wMilliseconds: WORD;
END_STRUCT
END_TYPE

wYear: the year: 1970 ~ 2106;

wMonth : the month: 1 ~ 12 (January = 1, February = 2, etc.);

wDayOfWeek: the day of the week: 0 ~ 6 (Sunday = 0, Monday = 1 etc.);

wDay : the day of the month: 1 ~ 31;

wHour: hour: 0 ~ 23;

wMinute : minute: 0 ~ 59;

wSecond : second: 0 ~ 59;

wMilliseconds : millisecond: 0 ~ 999;

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

5.2 TYPE OTSTRUCT
TYPE OTSTRUCT
STRUCT
 wWeek : WORD;
 wDay : WORD;
 wHour : WORD;
 wMinute : WORD;
 wSecond : WORD;
 wMilliseconds: WORD;
END_STRUCT
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 and above BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,

TcPlcUtilitiesBC.Lb6

5.3 TYPE T_Arg
TYPE T_Arg :
STRUCT
 eType : E_ArgType := ARGTYPE_UNKNOWN

Data structures

TX1200 33Version: 1.1

 cbLen : UDINT := 0
 pData : UDINT := 0
END_STRUCT
END_TYPE

eType: data type identifier;

cbLen : number of bytes allocated in the memory;

pData : address pointer;

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 Build > 522
TwinCAT v2.8.0 Build > 747
TwinCAT v2.9.0 Build > 947

BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,
TcPlcUtilitiesBC.Lb6

Also see about this
2 TYPE E_ArgType [} 33]

5.4 TYPE E_ArgType
TYPE E_ArgType :(

 ARGTYPE_UNKNOWN := 0,
 ARGTYPE_BYTE,
 ARGTYPE_WORD,
 ARGTYPE_DWORD,
 ARGTYPE_REAL,
 ARGTYPE_LREAL,
 ARGTYPE_SINT,
 ARGTYPE_INT,
 ARGTYPE_DINT,
 ARGTYPE_USINT,
 ARGTYPE_UINT,
 ARGTYPE_UDINT,
 ARGTYPE_STRING,
 ARGTYPE_BOOL,
 ARGTYPE_BIGTYPE
);
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 Build > 522
TwinCAT v2.8.0 Build > 747
TwinCAT v2.9.0 Build > 947

BCxxxx (165) Standard.Lb6, PlcSystemBC.Lb6,
TcPlcUtilitiesBC.Lb6

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tx1200

mailto:info@beckhoff.de?subject=TX1200
https://www.beckhoff.com
https://www.beckhoff.com/tx1200

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Overview
	3 Function blocks
	3.1 RTC
	3.2 RTC_EX
	3.3 DCF77_TIME
	3.4 ReadWriteTerminalReg
	3.5 DRAND
	3.6 FB_BasicPID

	4 Functions
	4.1 DT_TO_SYSTEMTIME
	4.2 SYSTEMTIME_TO_DT
	4.3 TIME_TO_OTSTRUCT
	4.4 OTSTRUCT_TO_TIME
	4.5 SETBIT32
	4.6 CSETBIT32
	4.7 GETBIT32
	4.8 CLEARBIT32
	4.9 F_SwapReal
	4.10 IsFinite
	4.11 F_REAL
	4.12 F_LREAL

	5 Data structures
	5.1 TYPE TIMESTRUCT
	5.2 TYPE OTSTRUCT
	5.3 TYPE T_Arg
	5.4 TYPE E_ArgType

		documentation@beckhoff.com
	2022-11-10T12:23:30+0100
	Beckhoff Automation, Verl
	Documentation Publishing

