BECKHOFF

TF5100

TwinCAT 3 | NCI

File Edit View

-0|85-.
Build 40244 (Loadeq)

%] Solution ‘TwinCAT Project’ (1 project)

4 | TWinCAT Project
4 (] SYSTEM
¥ License
D Real-Time
& Tasks
52 Routes
25 Type System
[TcCOM Objects
] momoN
g ric
SAFETY
C++
|8 ANALYTICS
& vo

2024-01-12 | Version: 2.11.0

Project Builg

Debug
.(’H#%
LICERRC

TwinCAT TwinSAFE

Release

New Project
P Recent
4 Installed
TwinCAT Controller
b TwinCAT Measurement
TwinCAT CAD Interface Beta Version
TwinCAT Projects

TwinCATPLC
TeXaeShell Solution

Not finding what you are looking for?
Qpen Visual Studio nstaler

TwinCAT Project

Name:

Location:

Create new solution

lution:
5 jon name: TwinCAT Project
Solution -

PLC Team

*| TwinCATRT (64)
98 | TuinCAT Project

Scope Tools Window Help

* | <loaab

7. Default

|| TinCATXAE Project (XML forma

* | P Attach,, »

Browse

e o fr oL

BEGKHOFF Table of contents

Table of contents

I e =11 o Y P 7
1.1 Notes on the doCUMENTALION ... e e e e e 7
L o Yo TN T =Y |V USRS POPPPP 7
1.3 Notes on infOrmation SECUNITYcooi i 9

2 111X ¥ T2 1 T o 10

3 User interface in the TwinCAT 3 Engineering environment............cccccervreicrremnssseeesssssssseessssssssesensnas 1
N I O 1V 10T O TS P PP PRSP PP PR PP 11
3.2 Interpolation ChanNElo et e e e e e e e e e e s e e e e e e aaeens 12
3.3 INterpreter €IEMENTt —————————————————————————— 14

3.3.1 Interpreter ONlINE WINAOWui i 15
3.3.2 B 01T 0T (T =T o TS 17
3.3.3 "M-FUNCHONS" 18D ... 18
3.34 "Rparameters” 18o 19
3.35 "ZEr0 POINT" 1AD ... ———————— 20
3.3.6 B o T 3 - o PSPPSR 21
3.3.7 B =T 11 o]l = | o TSRS 21
3.3.8 15 = o TP 22
K 1 (o T8 o J=1 =10 T o | PSPPSR 23
3.41 B C =T L= = 1 = | o S 23
3.4.2 B) e = o SRR 24
3.4.3 S BtINGS” 18D .t 28
3.4.4 RO 01 TC = | o TSR 29
3.4.5 "BD-ONIINE" 18D ..o e e 30

4 GST Reference ManuUaleeiiiiii e s mmmn e e e e e s s e mnmmnnns 31
4.1 GENEIAI NOLES ...ttt h e ettt 31
I (=T o] (eTer =TT o PRI 31
4.3 Combining G-Code @nd STccuuiiiiiiiiiiiie ettt e e et e e e e et ee e e e et e e e e e annaeeeeeenreeeeeeannees 33
4.4 G-CodE (DIN BBO25)ueeeeieeieiieie et e e e et e ettt e e e e e e e e et e e e e et e e e e e snabeeaeeenabaeeeeeanres 35

4.4 1 Tool Radius Compensation (D, G40, G41, GA2) ... 35
442 (70T 0 0101 o1 £ RRRR 37
443 =T e1 U [T T o L= PSR 38
444 Mutual EXCIUSIVE G-COUES ettt e e e e aaaee s 39
445 Rapid Traverse (GOO)ccccuuuiiieiiiieee ettt e s e e eeeeeaaaaeaas 39
4.4.6 Linear INterpolation (GOT) ... 40
447 Circular Interpolation (G02, GO3, IJK, U) ...coiiiiiiiiieieeee e 40
448 DWEII TIME (GO4) ...ttt e et e e e st e e e s sttt e e e e anbaeeeeesaneeeeeeens 43
449 Accurate Stop (G09,G680)........ueeiiiiiiiiiee it 43
4410 Delete Distance t0 GO (G31)..ciiuiiiiie ittt e e et e e e st e e e s sneeeea e e 43
4411 Zero Offest Shifts (G53,G54...59)uuiiiiiiiiiiie e 44
4412 Working Plane and Feed Direction (G17, G18, G19, P) .. 45
4.413 Inch/metric dimensions (G70, G71, G700, G710).......cccoeiiiiiiiiiiiieeee e 46
4.414 Dimensional Notation (G0, GOT)uiiiiiiiiiiie e 48
4415 M-FUNCHONS (IM) .. .eiiiiieiiieie ettt ettt e e e ettt e e e e ast e e e e snte e e e e e antseeeessnnreeeaeens 49
TF5100 Version: 2.11.0 3

Table of contents BEGKHOFF

4.5

4.6

4.7

4.8

4416 General Codes (F, N, Q, X, Y, Z, A, B, C)rrriiiiiiiiiie et 50
ST - Structured TexXt (IEC B1131-3) ..ottt e e e et e e e s saraaee e e 52
451 107 0] 10141 o | €=U 52
452] (=T = PR PPPRP 53
45.3 NGLVE DAt TYPES .. eeieiiiiiii ettt e et e e et e e e sanneeeaeeas 55
454 USEIAEfINEA TYPES ..ttt ettt e e e e ettt e e e e et e e e e e et e e e e e nnbeeaeeennnees 56
4.5.5 CONIIOI STIUCKUIES ...ttt e e e e e e e e e e e e e e aeeeeeeaaennnrenneees 57
45.6 JUMP StatemMENt. e 58
45.7 Userdefined FUNCHONScoiuiiiiiiiiii et e e e 59
45.8 S =g To F=1 o [U T 1o o <SS 60
459 RPArameEters ... oot e e e e e e as 67
4510 H, S, and T par@meters........ccccuuiiiiiiiiiee ettt e e e e e e aaaae s 68
L0 N[O T T 1 o o -SSP 69
4.6.1 SHrNGS ANA MESSAGES.uueiiiieiiiiiiee ettt e e e et e e e st e e s st e e e s ae e e s anneeeens 69
4.6.2 LIz 10153 {0 0 = (oo - OO PPRERRR 70
46.3 CircUlar MOVEMENT ...ttt e nnneenneees 76
4.6.4 CenterpoiNt COMTECHIONoiii it e e e e e e e e e e aae s 77
4.6.5 1oL OO PERERRR 77
4.6.6 SYNCAIONIZALION. ...ttt e e e e e e e e e e 79
4.6.7 QUUETY OF AXES ettt ettt ettt ettt e e ettt e e e ettt e e e s sttt e e e e nss e e e e sanssteeeeannneeeas 80
4.6.8 L0 1=Y o1 B oo S 81
4.6.9 Tool Radius COMPENSALION...........coiiiiiiiteieeee e e e e e e e e eaans 81
4.6.10 Suppression of G-Code BIOCKSciiiiiiiiiiciiiieieie e aaaa e 82
4.6.11 Zero OffSet Shift.......cooiiiiiiiii e a e 83
G T U 1 1 £ UURPRRURSR 84
4.6.13 TrigonometriC (UNIt AWEAIE)eiiiiiiiiiiie ettt e e e e s ee e 85
T N == T Y/ o T [P 86
4.6.15 Feed INterpolationo ———————— 87
4.6.16 Streaming of Large G-Code Files ... 87
4.6.17 VerteX SMOOLNING......ccciiiiiiii ittt e et e e e s st e e e e st e e e e s antreeeessnneneeaeens 88
4.6.18 AULOMALIC ACCUrate STOP......cccueiiiiiiiiie et e e e e e e e e e et reeaaaae s 90
4.6.19 Spline INterpolationoooii i e e e e e as 91
4.6.20 DYNAMIC OVEITIAEooiiiiiiiiii ettt e e ettt e e e ettt e e e s ant e e e s stte e e e e s anteeeeesannteeeaeens 94
4.6.21 Programming refErENCeooueiiiiiiiiiiie et 95
4.6.22 Center Point Reference of CirCles.........oooi i 96
4.6.23 Change in axiS AYNAIMICSc..uuuiiiiiiiiiee e e e e e e e e e e e e e e e e e e rereeaaaaeeas 96
4.6.24 Change in path dyNamiCS........c.uuiiiiiiiii e ee e 97
L= 153 {2 = (o o <SSP PSP 97
4.7.1 Modification of the Effective Transformation T and its Effect...........cccccciiiiiiiniii s 98
4.7.2 Components of the Effective Transformation T...........coooiiiiie e, 99
4.7.3 Applying TransformMationsoooiiiii i 99
4.7.4 Revoking Transformationsoooiiiiii i 99
4.7.5 Restoration of StaCK..... ... 100
LYy o g =Y ooy 11 o [P PPPPPRPPPRUPPPRNS 100
4.8.1 o Y 1= = Lo = PRSP PUPRRP 101
4.8.2 Compile-Time Errors and RUNtiMme ErrOrs........cccooooiiiiiiiiiiiiieee e 101

Version: 2.11.0 TF5100

BEGKHOFF Table of contents

4.8.3 ErrOrS iN G-COdEcoo oot e e e e e aee e 102

48.4 L =To] foTeT=TTS] o T ISP 103

4.9 General Command OVEIVIEWcoouiiieeiiiiiiie e e eeiiee e e e ettt e e e s ettt e e e e s ssbereeesssreeaeesanbeeeeeasnreeeeaaannees 103
4.10 Comparative Command OVEIVIEWcccuuriiiiiiiiiieeeeee et e e e e e e e e e e s e e eaaaae e e s e e snsasseneeees 114
5 Classic Dialect Reference Manualccocccceimirinimernnesseressssssseessssssssre s s s s s ssnsessssssnsesssssssnsessssssnnsens 125
5.1 Basic Principles of NC Programmingcceeeeeiiiiiiiiiiiiiiiee e e e e ee st e e e e e e e e e s ssnenvnneeeeeaaaeeeas 125
5.1.1 Structure of an NC Program...........ooio it 125

51.2 = oTed QT 4] o] o] o TSSO 126

51.3 (o] 1Y T Lo RSP 126

51.4 Smoothing of Segment TranSitioNScooiiiiiiii e 128

51.5 Co-0rdiNAte SYSIEIMuuiiiiiiiiiiie et e e e e e e e e e e e e 128

5.1.6 Dimensional NOTatioNoeiii e e e 128

51.7 Working Plane and Feed DIireCtion ... 129

51.8 INCh/MELriC AIMENSIONS ...coiiiiiiiiie e et e e e e ereeeeeeaaes 130

51.9 Single BIOCK OPEratioN..........ciiiiiiiiiiiiiiii e 132
5110 ArithmetiCc Parameters. ... i 133

5.2 Programming Movement StatemeENntS...........uiiiiiiiiiii e 135
5.2.1 REFEIENCING ...ttt e e e e e 135

522 RAPIA TFAVEISE.....cceeeeieiieieiit ettt ettt ettt e e e s e s e e e e e e eaaaaaeaaeeeeeeenannens 135

523 Linear INterpOlationeeiiiiee e 136

524 Circular INterpolation ..o 137

5.2.5 [L= T PP PRSPPI 139

5.2.6 DWEI TIMIE 1.eeeiiee ettt ettt e et e e e et e e e e sttt e e e ssss e e e e s anssaeeesasssneeesannnseeens 140

5.2.7 A CCUIALE SHOP ittt e 140

5.2.8 Feed iNterpolationooo i aa e 140

5.2.9 Zer0 Offset SHiftS ..ot 141
5.210 Target Position MONITOIINGceeiiiiiiiiiiii e a e e 144

L0720 I B ©o 0 (o U e 1= 11 0T i o < SRR 146
L2 I o) - (o] [RRRT 147
L2 1 R |V 1 (o PP TP PP 150
5.2.14 Smoothing of segment tranSitioNSocuiiiiiiiii e 151
5.2.15 Circular SMOOTNINGcuuiiiie ittt e et e e e e st e e e s nnt e e e s araeaeeeaan 156
5216 Automatic ACCUIrate STOP.......uuiiiiiiiiiiei i e e e e e e e e e e e e e e e s 157
5217 Delete DistanCe 10 GOocieiiiiiiiiieiee et e e e e 158
5.218 MOAUIO MOVEMENTS ...ttt ettt e e e e e e e e eeeaaaee e s 158
5.2.19 AUXIIAIY @XES ...t e et e e e e abre e e e e an 160

5.3 Supplementary FUNCLONS ... e e e e e e e e e e e e e e e e s 163
5.31 M-FUNCHIONS <.ttt et ettt e e e e e e e e e e e e 163

5.3.2 H, T and S PArametersco oot e e e e e e e e e eeaaan 167

533 DBCOURT STOP ..ttt ettt e e et ————— 168

5.34 8101 0] o 1S USSP PPPPPPPN 169

5.3.5 0T o 1= S 171

5.3.6 SUbrouting tECHNIQUESoooiiiiiiiiee e 172

5.3.7 (DY 0= 10 (o @ YTy o [O RP 174

5.3.8 Altering the Motion DYNAMICSoouuiiiiiiiiiei e 174

5.3.9 Change of the Reduction Parameters.............ccoooiiiiiiiiiiiiiieiiec e 175

TF5100 Version: 2.11.0 5

Table of contents BEGKHOFF

5.3.10 Change of the Minimum VEIOCILYccoouiiiiiiiiiieeee e 177

5.3.11 Read ActUal AXiS VAIUE.........uuuiiiiiiieiee ettt e e e e e e e e e e e e e e e s 177

5.3.12 SKip Virtual MOVEMENESuuiiiiieieieeee e a e 178

5.3.13 Messages from NC PrOgramcicecccie ittt e e e e e e e e e e e ereeaaaaeeeas 179

L N o To | I @o g] o= g <=1 4o) o SRR 179
541 TOOI DALA. ...ttt ettt e e e e e e e e e e e e e e e e anan 179

5.4.2 Selecting and Deselecting the Length Compensationc.cccvieiiiiiiee e, 182

54.3 Cartesian Tool Translationoooo e e e 182

544 Cutter Radius Compensationcuuuuiiiiiiiiiie et e e e 185

54.5 Orthogonal Contour Approach/Departurecooeeieeeiiiiiiie et 190

5.4.6 Path VelOoCity N AICS ..ot e e e 190

54.7 Bottle NeCk DeteCHiON.........cooiiiiiiiie s 191

LR T @7 o1 4 F= T o o)V 7= T Y 1= SRR 192
551 General COMMEANG OVEIVIEWuuiiiiiiiiiiieeeiiieie e e e e e e e e e e eee e e e e snnbee e e e e enneeeaeeennees 192

5.5.2 @-COmMMANT OVEIVIEWcoiiiiiiiiiei ittt ettt ettt e ettt e e sttt e e s enee et e e s anbe e e e aanneeeeens 195

L o I O (0 I I - = 197
6.1 PLC LIDrary: TC2_INCI ...ttt ettt e e et e e e et e e e e e st e e e e e nnnees 197
6.1.1 CONFIGUIALION ... ettt e e 197

6.1.2 NCTPOUS .ttt ettt b bt et e st e e s b e e neeas 204

6.1.3 Parts program gENEIratoruiie i 260

6.1.4 Blocks for compatibility with existing programs.............oooe o 268

6.1.5 ODSOIEEE ...ttt 293

6.2 PLC Library: Tc2_PICINterpolationooo i 294
6.2.1 FB_NciFeedTablePreparation...........cccoooi oo 296

6.2.2 FB NCIFEEATADIE ...t e e e e e e e e e aaaaeeeas 297

6.2.3 TYPES @NA ENUMS ...t e e 298

7R - T 5 1+ [311
LIS V] 'o] o o] o =g o B T=Y VT - PSSR 312
LS N o o 7= T G 313
9.1 Display of the Parts Programocueiiiiiiiiiie e e e e e et e e e e snnbeee e e e nneees 313
9.2 Display of teChNOIOGY data.........coiiiiiiiiiii e 315
9.3 Displaying the remaining path 1engthoooi e 319
9.4 ParameteriSAtIONcoouiiiiiiiii e 320
9.4.1 Path override (interpreter override types)coou i 323

9.5 Cyclic Channel INTEITACEccueeiii et e e e e e e e e e e e enbee e e e e ennees 324

Version: 2.11.0 TF5100

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.

For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.

The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without notice.

No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.

If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

and similar applications and registrations in several other countries.

——
EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

TF5100 Version: 2.11.0 7

Foreword BECKHOFF

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:

recommendations for action, assistance or further information on the product.

Version: 2.11.0 TF5100

0]

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TF5100 Version: 2.11.0 9

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Introduction BEGKHOFF

2 Introduction

The TwinCAT NCI stands for 'numerical control interpolation' and is the NC system for interpolated path
movements.

TwinCAT NCI offers 3D interpolation (interpreter, setpoint generation, position controller), an integrated PLC
with an NC interface and an I/O connection for axes via the fieldbus.

NCI can be used to drive 3 path axes and up to 5 auxiliary axes per channel. In addition, master/slave
couplings can be formed. In combination with TwinCAT Kinematic Transformation (TF511x), complex
kinematic systems can be controlled via NCI.

Programming is done with a dedicated NC program, based on DIN 66025, with its own language extensions
(cf. Classic Dialect Reference Manual [»_125]) or directly from the PLC with the PLC Library:
Tc2 Picinterpolation [» 294].

Installation preconditions

TwinCAT NCl is integrated in the TwinCAT 3 installation.

Target system
Windows 7, Windows 10, Windows CE (only Classic Interpreter)

Minimum Plattform-Level: 40

Overview

Chapter Contents

XAE user interface [P 11] Description of the parameters and functionalities for
the interpreter in the TwinCAT 3 Engineering
environment (XAE)

Interpreter [P 125] Interpreter programming instructions.

PLC NCI Libraries [» 197] Description of the special NCI libraries

Samples [P 311 Samples for using TwinCAT NCI with PLC and parts
program, and for direct motion control from the PLC
with the Tc2_PlclInterpolation library

Appendix [P 320] Parameterization, cyclic channel interface

Further information
« ADS Return Codes
« ADS Specification of the NC

10 Version: 2.11.0 TF5100

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_ads_intro/374277003.html&id=4954945278371876402
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713061899.html?id=4266053388574064834

BEGKHOFF User interface in the TwinCAT 3 Engineering environment

3 User interface in the TwinCAT 3 Engineering
environment

3.1 Outline

In order to be able to use the interpolation, add an interpolation channel in the XAE . This applies to the
interpreter and the PLC Library: Tc2 Plcinterpolation [P 294].

1. Create an NC channel.

Mame; ML-1 a3k | DAk
fad Solution 'Te3_Mei' (1 praject)
- 5 Auto start
4 “a T3 Mci
b m SYSTEM [Auto Priority Management
Priarity: 4
& MC-T! ‘O Add Mew .., Ins
"3 Irnage "i:l Add Existing Iterm.. Shift +A]E -+
] Table; Remove Del
@ Ohjec|
(el Ctrl+C
BTt Awes il 3
I PLC \% Cut Ctrl +3
|43 SAFETY Paste Ctrl +4f
E C++ Paste with Links
[& amalvTics e
b 10 pgrade [0 Yariahles

Independent Project File

= Disahle

2. In the selection box select the NC channel for the interpolation.

-

Insert NC Channel ==
M ame: Charinel 2 Multiple: (0 5
Type: MEC Channel [far Interpalation)

MHC-Channel [far FIFD Axesz)
MC-Channel [for Kinematic Transformation]

HC Channel [far [nterpolation]
Comment: I

3. Assign PTP axes to it from the PLC via a function block.
= The created channel consists of the following elements:

Interpolation Channel [»_12] Description of the properties pages embedded in the
'interpolation’ element.

Interpreter Element [P 14] Description of the properties pages embedded in the
'Interpreter' element

Group element [» 23] Description of the properties pages embedded in the

'group’ element

TF5100 Version: 2.11.0 1

User interface in the TwinCAT 3 Engineering environment

BECKHOFF

fad Solution 'Te3_Mei' (1 project)
a ol Te3 M
bl SYSTEM
4 [MOTION
4 [B] MC-Task 154F
[Zr NC-Task 15WB
*8 Trage
7] Tahles
IE‘ Ohjects

b St Aues

Channel 2

3 PLC
[E] saFeTY
E C++
(& amaLyTICS
b o

M Axis-specific parameters for NCI can be found in the axis parameterization under subitem '‘NCI

parameters'.

3.2 Interpolation Channel

fa] Solution 'Tc3_Mei' (1 project)
a4 gl Te3 M
bl SYSTEM
i OTION
4 [&] MC-Task 158F
[Z1 MNC-Task 15WE
’: Image
[T7] Tables
E‘ Ohbjects

b St fxes

Channel 2

(& anaLyTICS
b /o

Click on the interpolation channel to display the following dialogs:

”Online" tab

All the axes in the current Interpolation Group [P 23] will be listed. Currently shown:

» Actual positions
+ Set positions

» Following errors
» Set velocities and
» Error Codes

12 Version: 2.11.0

TF5100

BECKHOFF

User interface in the TwinCAT 3 Engineering environment

Online | Overide

F1

FZ F3

+
F4

&[Hﬂ&*ﬂm]

Mame Actual Pos. Setp. Pos. Lag Dist. Setp. Velo Error

X0 1457318 1457318 0.0000 0.0000

Y (¥) 200.0000 200.0000 0.0000 0.0000 5]
Z(@) 0.0000 0.0000 0.0000 0.0000

"Override" tab

The channel override for the axes can be read and set on the 'Override' page. If PLC is running and the
cyclical channel interface [P 324] is being written, the override set here will be overwritten by the PLC.

Further information on the override principle can be found under Path override (interpreter override types)

[»323].

The spindle override is described by the cyclic channel interface, although it is currently not supported.

TF5100

Version: 2.11.0

13

User interface in the TwinCAT 3 Engineering environment

BECKHOFF

General m Cvemde

Puds Owvemide: [%]

1000000% | Set..

Set 100°%

]

Spindle Ovemide: [%]

00000% [Set.

Set 1007%

]

3.3 Interpreter element

fad Solution 'Tc3_Mci' (1 project)
a4 ol Te3 M
bl SYSTEM
P MOTION
4 MC-Task 1 S4F
B MC-Task 15vE
ﬁ: Image
[77] Tables
@ Objects

b St Awes
4 T Channel 2

Interpreter

P Inputs
b [l Outputs
5 Group 7
b PLC
[saFeTY
E C++
ANALYTICS
b 1o

Click on “Interpreter” to show the following property pages and the online window:

14

Version: 2.11.0

TF5100

BEGKHOFF User interface in the TwinCAT 3 Engineering environment

3.31 Interpreter online window
Mame Actual Pos, | Setp. Pos, | Lag Dist. Setp, Velo | Er... |
X (%) 32077262 32073262 0.0000 09.9180 00
Y [v) 19883170 19883170 0.0000 39967 0
rr 0.0000 0.0000 0.0000 0.0000 00
Q1 (Q1) 0.0000 0.0000 0.0000 0.0000 00
Q2 (Q2) 0.0000 0.0000 0.0000 0.0000 " 00

Actual Program Line:

W20 GO1 =1000
W30 GOT =3000
M40 GO 3500 2000

Program Mame: 1.ne

|nterpreter State: RUNMIMNG [5] Buffer Size [Byte]: EEE3G
Chatinel State: 0[0=0)

Axes
As on the "Online" properties page in the interpolation channel, this window lists all axes currently included in
the interpolation group. Values for the following parameters are displayed:

* Actual positions

» Set positions

« Following errors

+ Set velocities and

« Current error codes

Actual Program Line

The Actual Program Line shows the current NC block to be processed in the block execution. The last row in
the window is the current block.
Unlike this, the current block is in the middle row in the case of GST.

As for nearly all the parameters, the program display can be read off via ADS. This can be used to display
the current NC blocks in a Visual Basic application, for example (see ADS device documentation - ADS
Interface NC).

Program name

Displays the name of the currently loaded program. This does not necessarily have to be the program
displayed in Editor.

Interpreter status

The interpreter status indicates the current status of the interpreter state machine. The complete list is given
below. As PLC evaluation does not require all status information, only the most important parameters are
explained.

Status Description

ITP_STATE_IDLE The interpreter is in idle state when there is no NC
program loaded as yet or when a group reset is being
executed. The interpreter also goes into idle state
when a current program is stopped. In the case a

TF5100 Version: 2.11.0 15

User interface in the TwinCAT 3 Engineering environment BEGKHOFF

Status Description

group reset must be executed in order to prevent
error 0x42C5. It is therefore recommended to
execute a group reset after stopping via the PLC.

ITP_STATE_READY After successful loading of an NC program, the
interpreter is in ready state. After a program has been
successfully processed and exited, the interpreter
goes into ready state. In the meantime, however,
other states are accepted.

ITP_STATE_ABORTED If a runtime error occurs during the processing of an

NC program, the interpreter goes into aborted state.
The actual error code is given in the channel status.

ITP_STATE_SINGLESTOP This status is only accepted in Single Block Mode

[»_132]. As soon as the entry has been sent from the
interpreter to the NC core, the interpreter goes into
this mode.

Querying the interpreter status during program execution

o

1 Since the interpreter status may change between different states during program execution, we
recommend querying it with a negative logic. During program execution the interpreter state is not
necessarily ITP_STATE_RUNNING. If the program was executed successfully, the interpreter is

subsequently always in Ready state (see also Samples [»_311]).

® End of program

1 The end of the program is characterized by an M function. Therefore either M2 or M30 are being
used. If the M function is missing at the end of the program, the status of the interpreter could return
wrong values.

Interpreter status return values

ITP STATE INITFAILED
ITP STATE IDLE

ITP STATE READY
ITP_STATE STARTED

ITP STATE SCANNING

ITP STATE RUNNING

ITP STATE STAY RUNNING
ITP STATE WRITETABLE
ITP STATE SEARCHLINE
ITP STATE END

10 ITP STATE SINGLESTOP
11 ITP STATE ABORTING

12 ITP STATE ABORTED

13 ITP STATE FAULT

14 ITP STATE RESET

15 ITP STATE STOP

16 ITP STATE WAITFUNC

17 ITP STATE FLUSHBUFFERS

W Jo U WN PO

e

Channel status

The channel status indicates the current error state of the channel. If an error occurs during NC program
loading or runtime, the corresponding error code is displayed here. If, for example, an axis following error
occurs during processing, the NC program is stopped and the channel status will have a value unequal 0.
The channel status should therefore always be checked in the PLC, in order to be able to respond to errors.
The channel status is always 0 during normal operation.

Loading buffer

The current size of the loading buffer for the interpreter is displayed here. Select the "Interpreter" tab to
change the value.

16 Version: 2.11.0 TF5100

BEGKHOFF User interface in the TwinCAT 3 Engineering environment

3.3.2 "Interpreter” tab

General Interpreter M-Functions F-Parameter Zero Poirts Tools Editor MDI

Type: NC Interpreter DIN 66025 (G5T) o

Save / Restore

Load Buffer Size: |64 3| kByte

[]R-Parameter
G70 Factor: [25.4 | [Zero Shifts

[Tools
G71 Factor: |1 |

Save
Restare
Type

The interpreter type can be selected in the Type selection box. Available are

» the GST-interpreter [P 31]. GST combines native DIN 66025 based G-code with programming
extensions of Structured Text as a higher level language.

» The DIN 66025 based NC-interpreter [»_125] (Classic Dialect) with @-command register function
extensions.

» The selection of none if the Plcinterpolation [294] library is used.

As default setting the GST-interpreter is set. To employ the NC-interpreter with register function extensions
you have to select it explicitly.

Loading Buffer Size

The loading buffer for the interpreter can be edited here. Note that the memory required in the interpreter is
substantially greater than the size of the NC-file. The maximum permitted loading buffer size is limited to
64 MB.

® Changing the Loading Buffer Size
1 If the size of the loading buffer is changed, it is absolutely necessary to execute a TwinCAT restart.

G70/G71 Factor

If a switch from _G71 [»_130] (millimeters - default) to G70 takes place in the parts program, the conversion
factor is stored here. This conversion factor only has to be edited if the base reference system is not
millimeters.

If for example the machine was calibrated based on inches and G70 is activated in the parts program, the
G70 factor should be set to 1 and the G71 factor should be setto 1/25. 4.

TF5100 Version: 2.11.0 17

User interface in the TwinCAT 3 Engineering environment BEGKHOFF

Save/Restore

At runtime the Save function can be used to save a “snapshot” of the current parameters. The checkboxes
can be used to specify the parameters to be saved. The Save function generates the file ‘SnapShot.bin’ in
the TwinCAT\CNC directory.

The Restore function loads the file saved with the Save function. This function is solely intended for
debugging purposes.

3.3.3 "M-Functions" tab

| General | Irrterpreterl M-Functions |H—PEIIT:II'I'IE‘tE|’ | Zero Points I Tools | Editor | MDI |

No |HShake |Fast | Reset (36,..) | Comment |~

M (26 BM _*lNone |
M [31 aM _*|BMAutoRe.. I
M |50 MNone _*|AaM |55
M (51 Nene _rlam x|ss
M (52 Nene _rlam =|ss -
o] Do Do) (5] Miiee

® Use only with interpreter
1 This tab is irrelevant for operation with the library Tc2_PlcInterpolation.

Shows the currently parameterized M-functions. On this page new M-functions can be added, or existing
ones modified.

A more detailed description of the available parameters can be found in the interpreter description under M-
functions [»_163].

@® Parameterization of M-functions

1 If M-functions are re-parameterized, subsequent activation of the configuration and a TwinCAT
restart is required.

18 Version: 2.11.0 TF5100

BEGKHOFF User interface in the TwinCAT 3 Engineering environment

3.34 "R parameters" tab

| General | Interpreter | I'H'I-Fundiuns| R-Parameter |Zem Foirts |T:m|s | Editor | MO |

R O-4 9.000000 | 789000000 0.000000 56.000000 0.000000 | =~
R 59 0.100000 0.005000 45.000000 0.000000 | 45.000000
R 10-14 0.000000 | 45000000 0.000000 7.100000 0.000000
R 15-19 78.000000 0.000000 | 456.000000 0.000000 0.000000
R 20- 24 0.000000 0.000000 0.000000 0.000000 0.000000
R 25-29 80.000000 | 120.000000 5846.000000 0.000000 0.000000
R 30- 34 0.000000 0.000000 0.000000 0188500 0.000000
R 35.20 1 0NN N nnnnnn M NNnnnn M Onnnnn nnnnann | T

The currently applicable R parameters are displayed on the 'R parameters' properties page. During the test
phase it is possible to, for example, initialize or change R parameters here. R parameters are generally
edited, however, from the NC program or if necessary, from the PLC.

You can find further information about R parameters in the interpreter description under R Parameters
[»_1331.

TF5100 Version: 2.11.0 19

User interface in the TwinCAT 3 Engineering environment

BECKHOFF

3.3.5

"Zero point" tab

| General | Interpreter | M-Functions | R-Parameter | Zero Poirts | Tools | Editor | MDI |

P54 F |P54t3 |P55F |PSSG |P56F |PSGG |P5?F |P5?

A
¥
£

100.000... 50,0000...) 0.000000 0.000000 0000000 0.000000 0.000000 0.0
10.0000... 20,0000...) 1.000000 0.000000 0000000 0.000000 04000000 0.0
45.0000... 0.000000 0000000 0.000000 0000000 0.000000 04000000 0.0

The current zero shift values for the axes within the interpolation group are displayed here. The parameters
P54..P59 represent for the corresponding G code. As for the R parameters, the zero shift values can be
edited from here.

M Columns F & G (e.g. P54 F & P54 G) exist for historical reasons and are added for each
parameter.

You can find further details of the effects in the interpreter description under zero shifts [»_141].

20

Version: 2.11.0

TF5100

BEGKHOFF User interface in the TwinCAT 3 Engineering environment

3.3.6 "Tools" tab

| General | Imtemreter I M-Functions | R-Farameter | Fem F‘ulnts| Tools | Editar | Mo |

THr.(PO) Typ(P1) Geom.(P2) Geom.(P3) =~
01 1 20 5000000 0.00
D2 a a 0.000000 0.001
D3 3 20 4000000 0.00
D4 a a 0.000000 0.00
D5] 10 1000000 0.00
Do a a 0.000000 0.001 =
4]

You can edit the data for the tool compensation on the "Tools" property page.

More detailed parameter descriptions can be found in the interpreter description under tool compensations
» 1791

3.3.7 "Editor" tab

| General | Imterpreter | M-Functions I R-Parameter | fero Paints I Tools | Editor | [In]] |

CATwinCAT WMz \Noi'Mdemo nc Browse..

GO X0 ¥0 ZO A
GO01 X100 ¥100 Z0 F5000

(MFunc with handshake, e.g. start
M40 GO1 X100 Y200 (M40 with handsh:
G01 X200

G01 Y100

<@

o8 1) .

G01 X100

TF5100 Version: 2.11.0 21

User interface in the TwinCAT 3 Engineering environment BEGKHOFF

The editor is used to display and edit the NC programs.

* Browse...
Opens a dialog with which existing NC programs can be selected and displayed.

® Remote Connection: Load NC-File from Target System

1 If the target system is connected via a remote connection, the NC-file has to be selected from the
target system and cannot be loaded from the local machine.

* F5
Starts the currently loaded NC program.
([
The NC program displayed in the editor does not necessarily have to be the currently loaded
program.
* F6
Stops the currently running NC program.
- F7
Loads the NC program displayed in the editor.
* F8
Executes a group reset.
* F9
Saves the NC program currently displayed in the editor under the same name.
- Editor...

Opens a larger window in which the NC program is displayed.

3.3.8 "MDI" tab

| General | Interpreter | M-Functions | R-Parameter | Zero Points | Tools | Editor | MDI |

G01 X1000 Fe000

=R &

MDI stands for “Manual Data Interface”. It can be used to enter individual NC blocks directly from the
TwinCAT 3 Engineering environment (XAE). Processing is started and stopped via F5 and F6 respectively.

22 Version: 2.11.0 TF5100

BEGKHOFF User interface in the TwinCAT 3 Engineering environment

3.4 Group element

fad Solution 'Te3_Mei' (1 project)
a4 ol Te3 M
bl SYSTEM
4 |Z MOTION
4 [B] MC-Task 154F
[Br NC-Task 1 5B
B Image
7] Tables
IE‘ Ohjects

e Axes
4 S Channel 2
GO Interpreter

2 Inputs
b B Outputs
Group 4

General [P 23]

DXD [r_24]

Settings [P 28]

Online [P 29]

3D-Online [» 30]

3.41 "General" tab
General | DXD | Settings | Online | 3D-Online |
Mame: Group 4 d: 4
Ohject Id: (05070040
30 Group
Comment:
Digabled Create symbols

group ID

The group ID is shown on the "General" page. This is required for group-specific ADS commands.

Create symbols

In order to be able to access path variables symbolically, select symbol generation for the group here.

TF5100 Version: 2.11.0

23

User interface in the TwinCAT 3 Engineering environment BEGKHOFF

3.4.2 "DXD" tab
DD |5ei‘tings | Online | 3D-Dﬂ|ine|

Parameter | Offline Value Online Value T1.r Unit

Curve Velocity Reduction Mode 'COULOMEB' ™

Velocity Reduction Factor for C0-Transition 01 F
Velocity Reduction Factor for C1-Transition 1.0 F
Critical Angle for Segment Transition 'Low’ 10.0 F :
Critical Angle for Segment Transition 'High' 75.0 F :
Minimurn velocity at segrment transitions 0.0 F
Global Soft Position Limits (for xy,z-axes) TRUE ;I B
Interpreter Override Type Reduced ;I E
Enable calculation of the total remaining cherd length FALSE ;I B
Maximurmn number of transferred jobs pernc cycle[1 ... 20] 1 o

SAF cycle time divisor 1 D

User defined SAF table length [128 ... 1024] 128 1]

The NCI group parameters are written on the "DXD" properties page.

Curve velocity reduction method

The curve velocity reduction method is only effective for CO transition (see Classification of Segment
Transitions [P 320])

Defines of the curve velocity reduction method

0 Coulomb

1 Cosinus

2 VeloJump

3 DeviationAngle (not yet released)

24 Version: 2.11.0 TF5100

BECKHOFF

User interface in the TwinCAT 3 Engineering environment

Method

Description

Coulomb

The coulomb reduction method is a dynamic process analogous to the
Coulomb scattering.

The deflection angle ¢ in the transition point is the angle between the
tangents of the path at the end of the segment S1 and the tangent of the path
at the start of segment S2.

The velocity is set to the velocity at infinity, in analogy to Coulomb scattering,
Vi = (tan(0.5(tr-¢)))"

and then reduced via the CO factor.

V,«— COV,.

In the case of a motion reversal (¢=180) the reduction is always V, = CO. As
the reduction in the case of small deflection angles is drastic, there is an
angle @, [0,180] from which full reduction takes effect. To avoid reduction,
set @, = 180. For full reduction (down to ¢ = 0), set CO = 0.0 and @, = 0.

= 1.0 1 Coulomb- Reduktisnamethode
mit AngleLow = 150 und C0 1.0 |

- 06

Eelative Redulstion

o] Lao 200 S0 a0
i . I . 1 . I . I
Ablenkungswinkel [Grad]

TF5100

Version: 2.11.0

25

User interface in the TwinCAT 3 Engineering environment BEGKHOFF

Method Description
Cosine The cosine reduction method is a purely geometrical process.
It involves:

» the CO factor € [0,1],
* an angle @, < [0,180],
* an angle @y, . [0,180] with ¢, < @high

Reduction scheme:

* ,<olOW: no reduction: V,«V,

* ,high < @: reduction by the CO factor: V,«— CO V,

* Qow < @ <@pg,: partial reduction continuously interpolating between cases 1
and 2, proportional to the cos function in the range [0,11/2].

For full reduction (down to ¢ = 0), set CO = 0.0 and ¢,,, = 0 and @4, very
small but not equal to 0 (e.g. 1.0E-10)

- L0
I'_ O Beduklonsinethods it .'I
L | Anglelow 15,0 AngleHigh 70.0
E I| und 0 LES |
=ah b I|
b | I
= : | [
o a5 |]
= i |
.E B I| i
E - [] Il I|I
= 1 i
L II. .I...
- 0.2
0 100 a0 300 400
1 " 1 X 1 "] L 1
Ablenlmngewinke] [Grad]
VeloJump It is a geometrical procedure for determining the segment transition velocity at

a CO0 transition. The procedure reduces the path velocity as required, so that
the step change in velocity does not exceed the specified limit value. It is
calculated based on the following formula: VeloJump factor * cycle time * min

(acceleration; deceleration)_Further information: [»_320]

Velocity reduction factor CO transition
Reduction factor for CO transitions. The effect depends upon the reduction method.

C0 € [0.0, 1]

Velocity reduction factor C1 transition

First, V_link is set to the lower of the two segment target velocities:
V_link = min(V_in,V_out).

The geometrically induced absolute step change in acceleration AccJump in the segment transition is
calculated depending on the geometry types G_in and G_out, and the plane selection G_in and G_out of the
segments to be connected, at velocity V_link.

If this is greater than C17 times the path acceleration/(absolute) deceleration AccPathReduced permissible for
the geometries and planes, the velocity V_link is reduced until the resulting step change in acceleration is
equal to AccPathReduced.

26 Version: 2.11.0 TF5100

BEGKHOFF User interface in the TwinCAT 3 Engineering environment

If this value is less than V_min, then V_min takes priority.

M When changing the dynamic parameters, the permissible path acceleration for the geometries
and planes and thereby the reaction of the reduction changes automatically.

Reduction factor for C1 transitions: C7 = 0.0

Critical angle, segment transition 'low’

Parameters for @,,, (see curve velocity reduction method [P 24]).

Critical angle, segment transition 'high’

Parameters for ¢, (see curve velocity reduction method [P 24]).

Minimum velocity at segment transitions

Each NCI group has a minimum path velocity V_min = 0.0. The actual velocity should always exceed this
value. User-specified exceptions are: programmed stop at segment transition, path end and override
requests which lead to a velocity below the minimum value. A systemic exception is a motion reversal.

With the reduction method DEVIATIONANGLE the deflection angle is ¢ = ¢_h, in which case the minimum
velocity is ignored. V_min must be less than the set value for the path velocity (F word) of each segment.

The minimum velocity can be set to a new value V_min = 0.0 in the NC program at any time. The unit is mm/
sec.

Global soft position limits (for x,y,z-axes)

Parameters for enabling the software end positions of the path (see: Parameterization [P_322]).

Interpreter override type

Parameter for selecting the path override type (see Path override (interpreter override types) [»_323]).

Enable calculation of the total remaining chord length

Activates the calculation of the remaining path length. When the calculation of the remaining path length has
been activated, it can be extracted via ADS afterwards. See also within the Appendix: Displaying the
Remaining Path Length [» 319].

Maximum number of transferred jobs per nc cycle [1 ... 20]

Maximum number of commands to be transferred per NC cycle. With this parameter it is possible that the
SVB task still runs slower than the SAF task and nevertheless sufficiently enough jobs are transposed so
that the SAF table does not run out of jobs.

SAF cycle time divisor

The cycle time reduction ensures that the set value in the SAF is not calculated with the SAF cycle time, but
with a time that is divided by the value specified here. For highly dynamic motions it may make sense to set
the parameter to a value greater than 1, in order to minimize discretization inaccuracies. Increasing the SAF
cycle time divisor results in the set value generator being called more frequently internally.

User-defined SAF table length

Parameter that defines the size of the SAF table and therefore the maximum number of cached SAF entries
(look-ahead). If an NC program involves sequential movement of many very short segments, increasing this
value can help to avoid an unintentional velocity reduction at the segment transitions.

TF5100 Version: 2.11.0 27

User interface in the TwinCAT 3 Engineering environment BEGKHOFF

3.4.3 “Settings” tab
General | DXD | Settings | Online | 30-Online |

Group Cycle Time / Access Divider
Divider: 1 = 2.000

Modulo: 1] S

Under the "Settings" tab you can set the cycle time for the interpolation. The cycle time set here is a multiple
of the cycle time of the SAF task.

® Using the cycle time in the "Settings" tab

The cycle time setting can be used if you have to select a cycle time for the interpolation that differs
from the SAF task. Generally, the cycle time of the SAF task should be adjusted to set the cycle

time.

28 Version: 2.11.0 TF5100

BEGKHOFF User interface in the TwinCAT 3 Engineering environment

344 "Online" tab

| General | DXD | Settings | Online | 3D-Online |

Ermor Code: 0 (D)

SWB-State: Ready

SAF-State: Idl=

SVE Entries: 0

SAF Ertries: 0
Error code

The current error code for the channel is displayed here. The value is the same as the value displayed in the
online window of the interpreter under 'channel status [»_14]'

SVB status

SVB status displays the current block preparation status (SVB = Satzvorbereitung). Possible SVB states are:

ERROR
IDLE
READY
START
DRIVEOUT
CALIBRATE
MFUNC
SYNCREC
DELAY
MEFUNCWAIT
SPINDLEWAIT

PLC evaluation of the SVB status is normally not necessary.

SAF status

SAF status displays the current block execution status (SAF = Satzausfiihrung). Possible SAF states are:

ERROR

IDLE

CONTROL

RUN
RUN_DRIVEOUT
WAIT

PLC evaluation of the SAF status is normally not necessary.

TF5100 Version: 2.11.0 29

User interface in the TwinCAT 3 Engineering environment BEGKHOFF

SVB entries

Number of current SVB entries.

SAF entries

Number of current SAF entries.

3.45 "3D-Online" tab

| General | DXD | Settings | Online | 30-Online |

Norminial Assignmert Actual Assignmert
X [x - x [Cexr]
v [y - [Cear |
2 2 J oz ——
Q1: [{none) »| ione) [Clear]
Q2: | nene) =] fnone) [Cexr]
Q3: |(none) x| ione) (Clear]
Qé: |(nane) x| ihone) (Clear]
Q5: | (nane) »| ione) [Clear]
| Accept Assignmert)
[Clear Assignment]

Target assignment

At this point the interpolation group is formed. The movement of the PTP axes, which are assigned to the
path axes X, Y and Z, can then be based on interpolation.

Any PTP axes can be selected with the aid of the selection lists for the path axes X, Y and Z. Press the
'"Apply' button to form the 3D group.

A comparably PLC function block is available in the PLC Library: Tc2 NCI [197]. (See CfgBuildExt3DGroup
[»_198])

Actual assighment

The current path axis configurations are displayed here. Use 'Delete' to remove individual axes from the 3D
group.

Delete whole configuration

Resolves the complete 3D group. Here, too, a corresponding PLC function block is available in the PLC
Library: Tc2 NCI [»_197]. (See CfgReconfigGroup [P 200])

30 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

4 GST Reference Manual

4.1 General Notes

All sT-examples in this documentation presuppose the following assumptions:

« Initially, the tool is located at x0, Y0, Z0.

« All state-variables of the interpreter are set to their default values, except that the velocity is set to a
nonzero value.

4.2 Preprocessor

Include Directive

#include "<path>"
#include < <path> >

The #include directive inserts the contents of another file. The included file is referenced by its path.
Typically, it is used to “import” commonly used code like e.qg. libraries. Its behavior is similar to the c-
Preprocessor.

Example:

In the following example file a . nc includes file b.nc. On execution of a . nc the interpreter internally
replaces the include-line by the text of b. nc. Therefore, executing the program a . nc has the same effect as
executing the program c.nc.

FILE a.nc:

GO0l X0 YO Fo6000
#include "b.nc"
G01 X0 Y100

FILE b.nc:

G0l z-2
G01 X100
GO0l z2

FILE c.nc:

G01 X0 YO F6000
GO0l z-2

G01 X100

GO01 z2

G01 X0 Y100

» If path is absolute, it is directly used to locate the included file. An absolute path must be surrounded
by quotation marks.

» If path is relative and surrounded by quotation marks, it is appended to the directory of the including
file to form the path of the included file.

» If path is enclosed in angle brackets, it is regarded to be relative to the paths in the searchpath list.
The first entry in this list that leads to an existing file is used for inclusion. The searchpath listis
supplied by the interpreter environment of the interpreter.

Example:

The following example assumes that the searchpath is set to the directories c:\j3j7j and c: \kkk. The file
aaa.nc consists of a sequence of #include-directives that are explained in the following.

TF5100 Version: 2.11.0 31

GST Reference Manual BEGKHOFF

The file bbb . nc is included using an absolute path. Therefore, its location is independent of the
location of aaa . nc. Absolute referencing is useful for files that always reside at a fixed location on the
filesystem.

The file ccc.nc is referenced relative. It must reside in the directory of aaa . nc (the including file),
which is ¢ : \mmm\.

The file ddd. nc is also referenced relative. It is expected to reside at c: \mmm\ocoo\ddd.nc.

The relative reference of ece . nc uses the sequence ' .. ', which refers to the parent directory.
Therefore, the file ece.nc is expected in c: \ppp\ggg\eee.nc.

The relative path of ££f.nc is denoted in angle brackets. Therefore, the directories in the
searchpath are considered, rather than the directory of aaa.nc. The file is expected in c:
\jIJ\fff.ncor c:\kkk\fff.nc. The first path that leads to an existing file is considered. If there is
no file ££f.nc in any directory of the searchpath, an error is reported.

Finally, the file ggg.nc is expected in c: \rrr\ggg.nc. Both entries in the searchpath lead to this
location.

FILE c:\mmm\aaa.nc:

#include "c:\nnn\bbb.nc"
#include "ccc.nc"

#include "ooo\ddd.nc"
#include "..\ppp\gag\eee.nc"
#include <fff.nc>

#include <../rrr/ggg.nc>

Each include-directive must be denoted on a dedicated line. Then, this entire line is replaced by the
contents of the included file. An additional ‘newline’ character is appended.

The include-directive may be used multiple times at arbitrary locations of the including file.
If an included file does not exist, an error is reported.

If the include directive is not placed at the first position of a line, an error is reported.
Include directives in included files are also subject to replacement.

An infinite loop due to recursive inclusion (e.g. A includes B, B includes C and C includes 2) is detected
and reported as an error.

The same file may be included multiple times.

@ Itistypically bad practice to include a file multiple times. Especially, if this feature is misused to
1 factor out code. Instead, a function should be preferred to define code that is reused multiple times

(see section Userdefined Functions [»_59]).

Example:

In the following example file a . nc includes file b. nc twice. The second inclusion is always expanded,
independently of the enclosing condition by the TF-THEN expression. The included file b . nc itself includes

file c.nc.

FILE a.nc:

G01 X100 F6000
#include "b.nc"
G0l Y100

! IF stVariable=47 THEN

#include "b.nc"
! END IF;

FILE b.nc:

#include "c.nc"
GOl X0 YO

FILE c.nc:
GOl 20

32

Version: 2.11.0

TF5100

BEGKHOFF GST Reference Manual

Example:

File x . nc demonstrates a series of invalid include directives. The first three lines violate the rule that each
include directive must be denoted on a dedicated line. In lines 4 and 5 the filename is not properly enclosed
in quotation marks or angle brackets. In line 6 a nonexisting file is included. Line 7 violates the rule that the
include directive always has to be placed at the first position of a line. Line 8 includes the file y.nc, which
itself includes file x. nc. This loop is reported as an error.

FILE x.nc:

#include "a.nc" GOl X100

! #include "a.nc"

#include "a.nc" #include "b.nc"

#include a.nc

#include "a.nc>

#include "non_existing file.nc"
#include "a.nc"

#include y.nc

FILE y.nc:

#include "x.nc"

4.3 Combining G-Code and ST

A GST-Program

<g-code>
<g-code>

! <st-code>
<g-code>
<g-code>

{
<st-code>
<st-code>
! <g-code>
<st-code>
<st-code>

}
<g-code>
<g-code>

A GST-file consists of sequences of G-code and sequences of ST-code that can be interleaved as shown
above. Each program starts in G-code mode. The mode can be switched to ST for one line using an
exclamation mark (‘'). The sT-mode ends at the end of line automatically.

As an alternative a block of ST-code can be defined using curly braces (‘{"...’}’). This notation is more
practical to define a long sequence of ST-code in a GST-program. Within the sT-block the G-code mode can
be entered for one line using the exclamation mark. Thereby, the G-code mode ends at the end of line
automatically.

G-Code Block
<address><value> <address>=<G-Expression> <address>{<ST-Expression>}

A line of G-code is called a block. It consists of a sequence of words. A word is a combination of an
address (e.g. G or X) and a value. A value can be defined by a literal (e.g. 2.54), by a G-expression (e.g.
2*foo+1) or by an sT-expression (e.g. sin (foo**2) -1).

G-Code Expression

<address>=a+b-c*d/e

TF5100 Version: 2.11.0 33

GST Reference Manual BEGKHOFF

The result of the expression is used as the value of the word. The four basic arithmetic operations (‘+’, ‘-’
‘*’ /") can be used in a G-expression. They are evaluated as expected, i.e. all operations are left-associative

and ‘*’, ‘/” have a higher precedence than ‘+’, ‘-’. Variables that have been declared in ST can also be used
in a G-expression (with respect to their scope).

All computations are performed using type LReal (64-bit floating point according to IEEE 754). The value of
an sT-variable is implicitly converted to type LReal according to the conversion rules of ST. If a type (e.g.
STRING) cannot be converted, an error is reported.

® RESTRICTION:

1 ST-variables that contain a number in their name (e.g. x0) cannot be used in a G-expression to
avoid confusion with a G-Code like x0. This limitation does not apply to ST-expressions.

® RESTRICTION:

1 Array variables, struct variables and objects cannot be used in a G-expression. This limitation does
not apply to sT-expressions.

® RESTRICTION:

1 Parentheses are not allowed in a G-expression as they are used to denote comments in G-Code.
For the same reason function calls are not available. These limitations do not apply to ST-
expressions.

Embedded ST-Expression
<address>{<ST-Expression>}

The result of the ST-expression is used as the value of the word. It must be convertible to L.Real. Basically,
an sT-expression is ST-Code that could be placed on the right hand side of an assignment. Other sT-Code
(e.g. an sT-statement) is not allowed. However, extensive computations can be encapsulated in an ST-
function that is then called in the sT-expression.

@® An sT-expression should not have side effects, since the evaluation order of ST-expressions is
generally undefined and may change in the future. Besides, this style of programming employing

1 side effects is a bad programming style. For instance, an sT-expression should not call a function
that contains G-Code.

Example:
* The following GST-program starts with a line of G-code that moves the tool rapidly to the origin.

» The line is followed by a line of ST-code that declares variable ‘i’. The ST-mode is entered by the
prefixed exclamation mark (‘!’). After this line G-code mode resumes.

e The G-code in line 3 moves the tool down.

 Lines 4 to 8 define a block of sT-code that contains a FOR-loop. The code in this block is interpreted as
ST-code, except for the G-code line in line 6. This line of G-code uses a G-expression to set the X-axis
to 10*i. The value of the Y-axis is defined using an ST-expression that is enclosed in curly braces.
This expression evaluates to 0 if ‘1’ is even and to 10 otherwise.

* The programmed path of the program is shown in Figure “ExampleExpressions”.

GO0 X0 YO Zz0

! VAR i : INT; END VAR
GOl Zz-1 F6000

{

FOR i := 1 TO 5 DO
1601 X=i*10 Y{ (i MOD 2) *10 }
END FOR;

}

34 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

20—Y + + + + + + +
104
0 + + + +

-10 ! j | | | X

[
-10 O 10 20 30 40 50 60

Figure “ExampleExpressions”.

Suppression of G-Code Blocks
/<n><G-Code block>

The execution of a G-Code block can be suppressed conditionally. If /<n>’ is prefixed and the n-th bit in an
internal disable mask is set, the block is suppressed (not executed). The disable mask can be set by the
PLC and by the ST-function disableMaskSet. If n is omitted, it has 0 value by default. [See section

Suppression of G-Code Blocks [P 82].]

44 G-Code (DIN 66025)

441 Tool Radius Compensation (D, G40, G41, G42)

D
D<v>

Select tool v. The new tool applies to its own block and all succeeding blocks until a new tool is selected.
Tool 0 is special. Its selection deactivates any tool compensation. Tool 0 can be regarded as tool where all
tool parameters are set to zero. It is selected by default.

Example:

In the following example tool 1 is defined to have a Y-offset of 10 and tool 2 to have an Y-offset of 20. Block
N10 and block N50 use tool 0. Tool 1 applies to block N20 and to block N30. In block N40 tool 2 is active.
Figure “ExampleD” shows the resulting programmed path (dotted line) and the resulting tool center point
path (solid line).

'toolSet (index:=1, nr:=1, offsetY:=10);
'toolSet (index:=2, nr:=2, offsetY:=20);
N10 GOl X10 YO F6000

N20 GOl X20 YO D1

N30 GOl X30 YO

N40 GOl X40 YO D2

N50 GOl X50 YO DO

M02

-10

>

I
-10 O 10 20 30 40 50 60

TF5100 Version: 2.11.0 35

GST Reference Manual BEGKHOFF

Figure “ExampleD”.

G40
Command G40 (default setting)
Cancellation G41 or G42

Deactivate Tool Radius Compensation (TRC).

G4a1
Command G41
Cancellation G40 or G42

Activate tool radius compensation (TRC). After activation the programmed path is shifted left by the radius of
the currently selected tool. (See D.)

1 On activation, a tool with a nonzero index must be selected.

Example:

The following example demonstrates the activation and deactivation of tool radius compensation. The
programmed path (dotted line) and the compensated path (solid/ dashed line) are shown in
Figure “ExampleG40G41”.

The first line of the GST program sets the of fset parameter to 5 mm. Therefore, the adjacent
segments of a gap are extended by 5 mm. The remaining gap is closed by a circular arc.

The second line defines the approach and depart behavior to use a circular arc with a radius of 5 mm
and an angle of 90 degree.

The third line defines tool 1 to have a radius of 10.
Block N10 describes a linear movementto [10,0,0].

The next block N20 selects tool 1 and activates tool radius compensation, where D1 comes into effect
before G40 is processed and G40 is active before x20 is processed. Therefore, the end of segment
N20 is subject to TRC (tool radius compensation). The linear movement from the end of segment N10
to the end of segment N20 in the programmed path is substituted by an approach-segment (dotted
line) from the end of N10 to the end of N20 ' in the compensated path.

In the next three lines a linear movement along N30, N40 and N50 is programmed. Since segment N40
would result in a collision, it is eliminated from the compensated path.

In the next line a circular arc along N60 is programmed. The gap between the end of N50 ' and the
beginning of N60 ' is closed as described earlier.

The line along N70 is the last segment that is subject to TRC (tool radius compensation), since its
deactivation becomes active before the end of N80. The line along N80 is replaced by the depart-
segment N80 ', similarly to the approach-segment.

'trcOffsetSet (offset:=5);

!trcApproachDepartSet (approachRadius:=5, approachAngle:=90, departRadius:=5, departAngle:=90);
'toolSet (index:=1, tooltype:=tooltypeMill, radius:=10);
N10 GOl X10 F6000

N20 X20 G41 D1

N30 X35

N40 X40

N50 Y20

N60 GO2 X50 Y10 Ul0

N70 GO1 X70

N80 X80 YO G40

N90 X90

MO02

36

Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Y a .
30 - + + + 9 \’p\t ’—_‘_N_SE + + + + + +
4
20 - + + h + : @ + N70 - “\I + + +
approac P ' 4
pp \ N50' -, \ depart
WA : N6 Y%
N i ; N70
10 —] + + 7 ~ N50+ [herenasernns o {+ + +
N20}/ N30' P,
0 ._"NZO. @ + + G40+ N80 ""._. +
N10 N30 N40 N90
G41
-10 | | | f | l X

Figure “ExampleG40G41”.

G42
Command G41
Cancellation G40 or G41

This function is the same as G41, except that the path is shifted to the right. See G41 for details.

442 Comments

DIN 66025 Comment
<g-code> (<comment>) <g-code>

Text that is enclosed in round parentheses is treated as comment in G-Code (according to DIN 66025). The

comment must not include further parentheses. A comment within round parentheses can extend for multiple
blocks or lines and therefore may skip a carriage return, too.

Example:

The following example demonstrates the notation of comments in G-Code.

N10 GOl X0 Y-10 F3000

N20 GOl (activate linear interpolation) X10 (set X-coordinate to
10) YO F6000

(the next block results in a semicircle with center point
X10 Y10)

N30 GO2 (activate clockwise interpolation) Y20 U1l0 (radius is 10)
M02

Line Comment
<g-code> // <comment>

Text between ‘//’ and the end of line is treated as a comment in G-Code.

Example:

The following example demonstrates the notation of line comments in G-Code.

N10 GOl X10 F6000 // perform a linear movement to X10 YO

// the next block results in a semicircle with center point X10 Y10
N20 GO2 Y20 Ul0

MO02

TF5100 Version: 2.11.0 37

GST Reference Manual BEGKHOFF

443 Execution Order

A block (line of G-code) consists of a sequence of words. The programmed order of words is not considered
by the GST interpreter. Instead, the following execution order is obeyed that consists of 7 sequential and
dependent steps.

1. Reference System N* Set block number.
G17..G19 Selection of a workingplane.
G70,G71, G700, G710 Selection of a unit.
G90, G91 Selection of absolute/ incremental

programming.

D*, P* Selection of a tool and its orientation.
2. Configuration G40..G42 (De-)activation of Tool Radius
Compensation.
G53..G59 Selection and programming of zero offset
shift.
F* Set velocity.
3. M-Function Pre M* M-functions that are configured as “before”.
4. Parameter to PLC H*, S*, T*
5. Movement 0*,G00..G03 Movement to a point.
G09, G60 Activation of accurate stop.
6. Wait G04 Wait for a given duration.
7. M-Function Post M* M-functions that are configured as “after”.

The first step sets up the reference system. The second step configures following movements. Note that the
second step may depend on the first one. E.g. the programmed velocity (F) considers a velocity unit (G700)
that is programmed in the same block. Step three and the following steps perform actions like a movement.

38 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

444 Mutual Exclusive G-Codes

Certain combinations of G-Codes must not be programmed in the same block (line of G-Code). Such
conflicting G-Codes typically set state variables to contradictory values (e.g. set length unit to mm and to
inch). There are also combinations that use the same parameters and therefore must not be programmed
in the same block (e.g. G58 and G59). Below is a list of groups of G-Codes. G-Codes that belong to the same
group are in conflict.

* GO0, GO1, G022, G0O3, GO4, G58, G59
Interpolations and programmed zero-offset-shift.

e G70,G71,G700,G710
Set unit for length and speed.

* G90, G91
Set absolute/ relative programming.

e G53, G54, G55, G56, G57
Deactivate/ select zero-offset-shift.

* G40, G41,G42
Deactivate/ activate Tool Radius Compensation.

e G17,G18,G19
Select workingplane.

4.4.5 Rapid Traverse (G00)

Command GO0 or GO0
Cancellation GO1 [»_40], GO2 oder G0O3 [» 40]

Set the interpolation mode to “rapid, linear”. The interpolation mode applies to this block and all succeeding
blocks until it is reset by G01, G02 or G03. GO0 is the default interpolation mode.

If GOO is active, programming of a point (see X) will result in a linear geometry segment that is processed
with maximum velocity. The programmed velocity is not considered. G00 is typically used to position the tool.
For machining GO1 should be used, which considers the programmed velocity.

[
1 G01, G02, G03, G04, G58 and G59 are mutually exclusive. They must not be programmed in a
common block.

Example:

The resulting path of the following example is shown in Figure “ExampleG00”. The first block N1 0 rapidly
moves the tool to position X20, Y10, Z30. The resulting geometry segment is a line in space. The orientation
remains unchanged. The second block N20 performs a rapid movement to x50, Y10, Z30. There is no need
to denote GO0 in this line, since interpolation is modal.

N10 GO0 X20 Y10 Z30

N20 X50
MO02

20 — + +

+ + +

Z=30 rapid Z=30

10 | X rapid+ \l_ \l\ \l_

TF5100 Version: 2.11.0 39

GST Reference Manual BEGKHOFF

Figure “ExampleG00”.

4.4.6 Linear Interpolation (G01)

Command G1 or GO1 (default setting)
Cancellation GO00, G02 oder G03

Set the interpolation mode to “linear”. This interpolation mode is like GO0, except that the path is machined
with the programmed velocity. (See F.) The interpolation mode applies to this block and all succeeding
blocks until it is reset by G00, G02 or GO3.

N20 GOl X100.1 Y200 F6000
N30 X150
MO02

4.4.7 Circular Interpolation (G02, G03, IJK, U)

GO02 clockwise circular interpolation

Command G2 or G02
Cancellation GO0 [» 391, GO1 [» 40] or GO3

Set the interpolation mode to “circular/helical, clockwise”. The interpolation mode applies to this block and all
succeeding blocks until it is reset by G00, G01 or G03. If GO2 is active, programming of a point will result in a

circular (or helical) arc that is machined with the current velocity. (See General Codes (F, N, Q, X, Y, Z, A, B, C)
[».501.) In the following, a circular arc is regarded. The helical arc is covered later.

A circular arc starts at the current point and ends at the programmed point. It rotates around the working-
plane normal (PCS, i.e. program coordinate system) in the center point. The center point can be defined
using Centerpoint Programming or using Radius Programming.

Centerpoint Programming I, J, K

For Centerpoint Programming the center is standardly defined relative to the starting-point using the 1, J, K
parameters. The center point is the sum of the starting-point and the vector [T, J, K]. Alternatively, the
center point can also be specified as absolute. For this the reference type must be set to absolute in
advance with the ST command circleCenterReferenceSet [P 96]. The I, J, K parameters are optional and
have 0 value by default. If the starting-point and the endpoint are equal with respect to the workingplane, a
full circle will be emitted.

® CONSTRAINTS:

1 » The radius at the starting-point and at the endpoint must be equal. However, small deviations are
allowed and corrected automatically, see Centerpoint Correction [P 77].

» The center point must not be equal to the starting-point or endpoint.

Radius Programming U

For Radius Programming the center point is derived from the radius that is given by the U parameter.
Typically, there are two arcs of a given radius that lead from the starting-point to the endpoint. If the radius is
positive, the shorter one is used, otherwise the longer one is chosen. Apart from that, the absolute value of
the radius is regarded by the interpreter.

® CONSTRAINTS:

1 » Radius Programming can by its nature not be used to program a full circle. This curvature can be
programmed by Centerpoint Programming.

¢ The radius must not be zero.

» The radius must not be smaller than half of the distance between starting-point and endpoint with
respect to the workingplane.

40 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Helical

If the starting-point and endpoint do not lie in a plane that is parallel to the workingplane, a helical movement
is performed.

® TIP: moveCircle3D

The sT-function moveCircle3D is a more powerful way to define a circle or helix. It covers 3D-arcs
and multiturn circles.

Example:

The following example results in the path that is shown in Figure “ExampleG00G02”. The block N10 uses
Radius Programming to define a clockwise arc from x0 Y0 to X10 Y10 with radius 10. Because the radius is
positive, the center point c1 of the shorter arc is chosen. In block N30 the center point c2 of the longer arc is
used because the radius is negative. The block N50 uses Centerpoint Programming, where the center
c3=1[60,0, 0] is the sum of the starting-point [50,0,0] and [I,J,K]=[10,0,0]. The block N70 defines
a full circle with center point C04 because the starting-point and endpoint are equal. The block N90 defines a
helical arc with center point C05 and height 30 (in z-direction).

NO1 GOO X0 YO

N10 GO2 X10 Y10 U10 F6000
N20 GOO X30 YO

N30 GO2 X40 Y10 U-10

N40 GOO X50 YO

N50 GO2 X60 Y10 I10

N60 GOO X80 YO

N70 GO2 J10

N80 GOO X110 YO

NS0 GO2 J10 X120 Y10 Z30
M30

X
| | | | | |
-10 O 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure “ExampleG00G02”.

GO03 anticlockwise circular interpolation

Command G3 or G03

Cancellation GO0 [r 39], GO1 [r_40] or GO2

Set the interpolation mode to “circular/ helical, counterclockwise”. This interpolation behaves similar to G02.
The interpolation mode applies to this block and all succeeding blocks until it is reset by G00, GO1 or G02.

Centerpoint Programming I<vx> J<vy> K<vz>

Defines the center point for circular movements. See G2, G3 for details. The center point is defined as
currentPoint + [vx,vy,vz]. The currentlength unitis used for vx, vy, vz. The parameters 1, J, K are
optional and have a 0 default value.

Radius Programming U<v>

TF5100 Version: 2.11.0 41

GST Reference Manual

BECKHOFF

In the context of G2 or G3 the radius is set to |v|. The current length unit is used for v. If v is positive, the
shorter arc is used to interpolate between the current and the next point. If v is negative, the longer one is
used. See G2, G3 for details.

G303

With G303 an circular arc (a CIP circle) can be programmed, that can be freely located in space.

The CIP circle can also be used to program a circle anywhere in space. For this purpose, it is necessary to
program not only an end point but also some other point on the path.

So that the circle can be described unambiguously, it is necessary, that the three points (the starting point is
given implicitly) must not be collinear. It is thus not possible to program a full circle in this way.

I, J and K are available as path point parameters. By default, their values are relative to the starting point of a

circular path.

G90

N10 GO1 F2000 X0 YO ZzO

N20 G303 I30 J-15 K15 X60

N30 MO2

&0

Z AXIs
20

15

&0

Requirements G303

45

YO Z30

// Pl
// P2
// P3

(start point):

(path point):
(end point):

X, Y, Z,
I, J, K
X, Y, Z
_____ _;HL
-4“:"
T4t
~-30
Y AXS
-15

-G0

TwinCAT

TwinCAT V3.1.4024.40

- ¢ ¢ "a
L ’f .
"
,” n .. J,
.. M -
., ’ﬂ . l"“-., -
. L —. *
. el L e,
, . -
. | .
A el .
.‘f n.."- -
.1’ :_C un
¢ L "‘._‘“
30 .
WAES L
15
]]
GST
GST 3.1.8.62

42

Version: 2.11.0

TF5100

BECKHOFF GST Reference Manual

4438 Dwell Time (G04)

Command G4 or G04
Cancellation End of block
Parameter F or X

Suspend machining for a given duration. The duration is defined by either X or F in the current time unit.
(See unit for details.)

Example:

The following example assumes that the current time unit is set to seconds. On one execution of the
program the machine moves to X10, waits for 1.5 seconds and then moves to X20.

N10 GOl X10 F6000

N20 GO4 F1.5

N30 GOl X20
MO02

449 Accurate Stop (G09,G60)

The accurate stop instruction is used, for example, when sharp contour corners must be manufactured. At
the contour transition the set path velocity is reduced to zero and then increased again. This ensures that the
programmed position is approached precisely.

GO09 blockwise Accurate Stop - Nonmodal

Command G9 or G09

Cancellation End of block

GO09 acts only on the set value side.

G60 Accurate Stop - Modal

Command G60

Cancellation GO0 [» 39]

4410 Delete Distance to go (G31)

Command G31

Cancellation End of block

G31 (“delete distance to go”) is activated block by block via the NC program. This command enables
deleting of the residual distance of the current geometry from the PLC with the function block ItpDelDtgEx

[»_207]. In other words, if the command is issued while the block is processed, the motion is stopped with the
usual deceleration ramps. The NC program then processes the next block. An error message is generated if
the PLC command is not issued during the execution of a block with "delete distance to go" selected.

G31 always effects an implicit decoding stop, i.e. an exact positioning always occurs at the end of the block.

Example:

N10 GOl XO YO F6000
N20 G31 GOl X2000
N30 GO1 XO

N40 MO2

Requirements

Development Environment Target System

TwinCAT V3.1.4024.20 PC or CX (x86 or x64)

TF5100 Version: 2.11.0 43

GST Reference Manual BEGKHOFF

4411 Zero Offest Shifts (G53,G54...59)

G53 zero shift suppression

Command G53 (default setting)
Cancellation G54..G57

Deactivate any zero offset shift translation. This adjustment is the default. The deactivation becomes active
also for the current block. See sections Zero Offset Shift [> 83] and G58/ G59 for details.

G54..G57 adjustable zero shift

Command G54
G55
G56
G57

Cancellation G53
or selection of another configurable zero shift

Activates the translation that is associated with the given G-Code (Tz54..T757). Also activates the
translations of G58 and G59. The translations apply to the current block and all succeeding blocks until

changed. See section Zero Offset Shift [P 83] for details.

G58, G59 programmable zero shift

Command G58 or G59
Cancellation G53

Set the translation that is associated with the given G-Code. The new translation value is given by the
parameters X, Y, z, which are mandatory. By default, the associated translations are zero. See section Zero

Offset Shift [» 83] for details.

Example:

The resulting MCS (machine coordinate system) path and the applied translations of this example are shown
in Figure “ExampleG54G58G59”.

* The first line sets the translation that is associated with G54 to [0, 5,0].

» The next line sets the programmed translation of G58 to [0, 10, 0]. Since zero-offset-shifts are still
disabled (default G53), the PCS (program coordinate system) and MCS (machine coordinate system)
match.

» Accordingly, the block N20 results in a linear movement from MCS (machine coordinate system)
coordinate [0,0,0] to [20,0,0].

» The next line activates G54 and programs a linear movement along N30, whereby G54 becomes active
before the movement. The programmed PCS (program coordinate system) coordinate [40,0,0] is
mapped to the MCS (machine coordinate system) coordinate [40,15,0].

* The next line sets the programmed transformation G59 to [0, 5, 0]. Thereby, the effective translation
changes from [0,15,0] to [0,20, 0]. Since the current MCS (machine coordinate system)
coordinate must not be affected by this change, the current PCS (program coordinate system)
coordinate is setto [40, -5, 0], implicitly.

» The succeeding sT-function frameGet stores these coordinates in [pcsX, pcsY, pcsz].

» The next line merely programs the X-coordinate of the end of segment N50. Therefore, the PCS
(program coordinate system) coordinate of the end of segment N50 is [60, -5, 0], which is mapped to
the MCS (machine coordinate system) coordinate [60, 15, 0]. In other words: The translation G59 is
active, but does not become apparent due to the adaption of the current PCS (program coordinate
system) coordinate. (See section Applying Transformations [P 99] for details.)

44 Version: 2.11.0 TF5100

BECKHOFF GST Reference Manual

It becomes apparent by the last line, which sets the PCS (program coordinate system) coordinate of
the end of segment N60 to [80, 0, 0]. This coordinate is mapped to the MCS (machine coordinate
system) coordinate [80,20,0].

lzeroOffsetShiftSet (g:=54, x:=0, y:=5, z:=0);
N10 G58 X0 Y10 ZO

N20 GOl X20 YO F6000

N30 G54 X40 YO

N40 G59 X0 Y5 70

!VAR pcsX, pcsY, pcsZ : LREAL; END VAR

! frameGet (x=>pcsX, y=>pcsY, z=>pcsZ);

N50 X60

N60 X80 YO

MO02

30 - + + + + + + + + + + +
20 -

10

| | | | | | | | | | |
-10 0 10 20 30 40 50 60 70 80 90 100

Figure “ExampleG54G58G59”.

4412 Working Plane and Feed Direction (G17, G18, G19, P)

G17 working plane XY

Command G17 (default setting)
Cancellation G18 or G19

Select xy-plane as workingplane, i.e. the workingplane normal is setto [0, 0, 1]. This workingplane is the
default workingplane.

G18 working plane ZX

Command G18
Cancellation G17 or G19

Select zx-plane as workingplane, i.e. the workingplane normal is setto [0,1,0].

G19 working plane YZ

Command G19
Cancellation G17 or G18

Select Yz-plane as workingplane, i.e. the workingplane normal is setto [1,0,0].

P Specification of the feed direction
P<v>

Switch tool orientation. The value of v must be 1 or -1. If v is negative, the tool points in the direction of the
working plane normal. Otherwise, it points into the opposite direction.

TF5100 Version: 2.11.0 45

GST Reference Manual BEGKHOFF

Example:

The resulting MCS-path (MCS: machine coordinate system) of the following example is shown in
Figure “ExampleP”. The first line of the program defines Tool 1 to have a length of 10. G18 activates the Xz-
workingplane.

N10: The end of segment N10 is not subject to any tool compensation as DO is active.

N20: For segment N20 tool 1 is active with a positive tool orientation. To compensate the
tool length the translation [0, 10, 0] is applied. (See section Transformations [P 97]
for details.) Thereby, the PCS (program coordinate system) endpoint [20,10,0] of
N20 is mapped to the MCS (machine coordinate system) endpoint [20,20,0]. The
MCS (machine coordinate system) point and the applied transformation are shown in
Figure “ExampleP”.

N30: In block N30 the tool orientation is switched, which sets the translationto [0,-10,0].
This translation is applied to the PCS (program coordinate system) endpoint of N30
resulting in the MCS (machine coordinate system) endpoint [30,0,0].

N20..N90: The blocks N60. .N90 are similar to N20 . .N50, except that the Y-coordinate is not
programmed. Therefore, the tool length compensation does not become apparent,
although it is active. That behavior happens because the current PCS (program
coordinate system) point is always adapted on a changed transformation. (See section
Applying Transformations [P 99] for details.)

'toolSet (index:=1, tooltype:=tooltypeDrill, length:=10);
G18

N10 X10 Y10 DO F6000
N20 X20 Y10 D1

N30 X30 Y10 P-1

N40 X40 Y10 Pl

N50 X50 Y10 DO

N60 X60 D1

N70 X70 P-1

N80 X80 Pl

N90 X90 DO

M02

30 - + + + + + + + + + + +

20

10

Figure “ExampleP”.

4413 Inch/metric dimensions (G70, G71, G700, G710)

G70 dimensions in inches
‘Command ‘G70

46 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Cancellation |G71, G700 or G710

Set the unit for lengths to inch. The new unit also applies to the current block. G70 is equivalent to the call
unitLengthSet (unitLengthInch). The unit for velocity is not affected. See UnitLength [P 84] and G71

for details.
G71 dimensions in millimeters

Command G71
Cancellation G70, G700 or G710

Set the unit for lengths to millimeter. The new unit also applies to the current block. G71 is equivalent to the

call unitLengthSet (unitLengthMillimeter). The unit for velocity is not affected. See UnitLength
[»_84] for details.

Example:

In Figure “ExampleG70G71” the path of the following example is shown, which uses the unit millimeter.

» The first line of the program sets the unit for lengths to inch. This unit is used in the same line to
interprete X2 in inch. Thus, the path N10 ends at position [50.8 mm, 0 mm, 0 mm].

» Accordingly, the next line moves the tool along N20 towards [50.8 mm, 25.4 mm, 0 mm].

» The last line sets the unit to millimeter. Therefore, the path N30 ends at position [80 mm, 25. 4 mm,
0 mm]. Accordingly, the segment N30 is a horizontal line.

N10 GO1 X2 G70 F6000

N20 GO1 Y1
N30 GO01 X80 Y25.4 G71
M02
Y [mm]
30 - + + + + + + + + + + +
N30
20 - + + + + + + + + + + +
N20
10 - + + + + + + + + + + +
0— [+ + + + +
N10
-10 | | | | | | | | | | t X [mm]

-10 0 10 20 30 40 50 60 70 80 90 100

Figure “ExampleG70G71”.

G700 dimensions in inches with calculation of the feed

Command G700
Cancellation G70, G71 or G700

Like G70, but also applies to the interpretation of velocity. The new unit comes into effect in the current block.
G700 is equivalent to the calls unitLengthSet (unitLengthInch) and
unitVelocitySet (unitLengthInch,unitTimeMinute).

G710 dimensions in millimeters with calculation of the feed

Command G710
Cancellation G70, G71 or G700

TF5100 Version: 2.11.0 47

GST Reference Manual BEGKHOFF

Like G71, but also applies to the interpretation of velocity. The new unit comes into effect in the current block.
G710 is equivalent to the calls unitLengthSet (unitLengthMillimeter) and
unitVelocitySet (unitlLengthMillimeter,unitTimeMinute).

Example:

The path of the following example is shown in Figure “ExampleG700G710”.
» The first line defines a linear movementto [1 in, 1 in, 0 in] with a velocity of 100 in/min.

* The second line sets the length unit to mm, but does not affect the velocity unit. It defines a movement
to [30 mm, 10 mm, O mm] with a velocity of 50 in/min.

* The last line also sets the velocity unit to mm/min. Therefore, there is a movement to
[40 mm, 20 mm, O mm] with a velocity of 1000 mm/min.

N10 G700 GO1 X1 Y1 F100
N20 G71 GO01 X50 Y10 F50
N30 G710 GO1 X80 Y20 F1000

go Mmoo
20 4 + +
10 - N v
0- N N N N N N N N . N
-10 | | | | | | | | | | r X [mm]

-10 0 10 20 30 40 50 60 70 80 90 100

Figure “ExampleG700G710”.

4414 Dimensional Notation (G90, G91)

G90 absolute dimensions

Command G90 (default setting)
Cancellation G91

Switches to absolute coordinates. X, Y, z are interpreted as absolute PCS (program coordinate system)
coordinates. This adjustment is the default. The switch becomes active in its own block.
G91 relative dimensions

Command G91
Cancellation G90

Switches to relative coordinates. X, Y, z are interpreted to be relative to the current point, i.e. the next point is
computed as the sum of [X, Y, Z] and the current point. The switch has an effect for its own block.

® Implement Offsets Manually

1 Using G91 and in this way switching to relative coordinates any Tool Offsets and Zero Shifts that
have been defined earlier are not evaluated within these coordinates and therefore have to be
defined and implemented manually within the framework of the G91-Code.

48 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Example:

The path of the following example is shown in Figure “ExampleG90G91”. The switch to G390/ G91 takes effect
immediately.

N10 G90 GO1 X10 Y20 F6000
N20 X20 Y10

N30 G91 X10 Y10

N40 X10 Y-10

N50 GS90 X50 Y20

MO02

Figure “ExampleG90G91”.

4415 M-Functions (M)

M
M<v>

Triggers the M-function v. The timing and behavior depends on the definition of v in the development
environment of TwinCAT.

M2 and M30 are internally defined. Both functions trigger a synchronization with the NC-channel. (See wait()-

function, chapter Synchronization [»_79].) Both functions stop the execution of the GST-program. Due to this
order the interpreter waits for the completion of the NC-channel before it stops.

In addition, M30 also resets all fast M-functions and H, S, T.

o
1 There must not be more than one M-function of type handshake in a block.

d The M-functions M2 and M30 do not have to be defined by the user in the development environment
] of Twincat.

Example:

This example assumes the following definitions of M-functions:

M10: Fast before move.

M11: Fast after move.

M12: Fast before move, auto-reset, reset M10, M11.
M20: Handshake before move.

TF5100 Version: 2.11.0 49

GST Reference Manual BEGKHOFF

M21: Handshake after move.

M02: Program end.

Figure “ExampleM10M11M12M20M21” visualizes the programmed path and the activation of M-functions.
The fast M-functions M10, M11 are reset by M12, which itself is reset automatically.

N10 GO1 X10 F6000
N20 X30 M10 M20
N30 X50 M11 M21
N40 X70

N50 X90 Ml12

MO02

0 ° /‘/ ° +
M10,M20 M11,M21 M12
-10 | | | | | | | | | | r X
-10 0 10 20 30 40 50 60 70 80 90 100

Figure “ExampleM10M11M12M20M21”.

4.4.16 General Codes (F,N,Q, X, Y, Z, A, B, C)

F
F<v>

Set velocity to v. Applies to the current block and all succeeding blocks until a new velocity is programmed.

The unit for velocity selected currently is used. (See section unitVelocitySet [P 84] for details.) The default
velocity is 0.

d The velocity must be set to a nonzero value before a movement is programmed. Otherwise, an
error is issued.
Example:

The first two segments N10 and N20 are processed with a velocity of 6000 mm/min, and the last segment
N30 is processed with a velocity of 3000 mm/min.

N10 GOl X100 F6000
N20 GO1 X200

N30 GO1 X300 F3000
MO02

N
N<v>

Set the block number to v. Typically, the block number is used to monitor the progress of the NC-program.

50 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Q

O<i>=<v>

Set the value of axis Q<i> to v where i must lie in the range 1 to 5. The Q-axes use linear interpolation.

o
1 The address letters @ and R are handled in a special way for historical reasons.

d The address Q<i> has to be followed by a G-expression or by an ST-expression. The G-word
Q1100 isinvalid. Use ©Q1=100, instead.
Example:

The path of the following example is shown in Figure “ExampleQ”. The Q-axes are interpolated linear with the
interpolation of a movement. The last block (N40) results in a linear interpolation of a Q-axis without a
concurrent movement.

N10 GOl X30 YO Q1=100 F6000

N20 GO2 X50 Y20 I20 Q2=200
N30 GOl X60 Q1=300 Q2=300

N40 Q1=0
M02
Y
30 4 + + + + + + + + + + +
_Q1=100, _Q2=200 _Q1=300, _Q2=300
20 — + + + + + > N30 \I\‘ N40 + +
10 _Q1=100, _Q2=100 -Q1=0, _Q2=300
— + + + + + + + + +
-a1=0, Q270 Q1=100, _Q2=0
0 - ‘./‘/ N10 L4 - + _+ + + + + +
_Q1=50, _Q2=0
-10 | | | | | | l | | r X

|
-10 O 10 20 30 40 50 60 70 80 9 100

Figure “ExampleQ”.
X

X<v>

Sets the x-coordinate of the next point to v. The current length unit is used for v.

Y
Y<v>

Sets the Y-coordinate of the next point to v. The current length unit is used for v.

Z
L<v>

Sets the z-coordinate of the next point to v. The current length unit is used for v.

A

A<Lv>

TF5100 Version: 2.11.0 51

GST Reference Manual BEGKHOFF

Sets the A-angle of the next orientation to v. The current angle unit is used for v.

B
B<v>

Sets the B-angle of the next orientation to v. For v the current angle unit is used.

C
C<v>

Sets the Cc-angle of the next orientation to v. For v the current angle unit is used.

4.5 ST - Structured Text (IEC 61131-3)

451 Comments

Line Comment
<st-code> // <comment>

Text between ‘//’ and the end of line is treated as comment in ST-Code.

Example:

{
VAR
i : INT; // this variable is primarily used in FOR-loops for counting
END VAR
}

[* *I Comment

<st-code> /* <comment>
<comment> */ <st-code>

Text between ‘/*’ and ‘* /’ is treated as comment in ST. This type of comment may be nested up to a depth
of 3. The ‘/*..* /’-style comment may appear anywhere between literals, keywords, identifiers and special
symbols. It may also contain G-Code lines.

Example:

The following example demonstrates the notation of comments in ST-Code. The first comment is placed
within a variable declaration. The second comment encloses an entire ST-loop. The comment contains
further comments and a G-Code line, which itself contains a G-Code comment.

{
VAR i /* used for counting */ : INT; END_ VAR

/* The following loop is commented out.

FOR i := 0 TO 10 DO
/* zigzag pattern */
! GOl (linear interpolation) X=1i Y{i MOD 2} F6000
// end of loop

END_FOR;

*

}

(* *) Comment

<st-code> (* <comment>
<comment> *) <st-code>

52 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Text between ‘ (*” and ‘*)’ is treated as comment in ST. This type of comment may be nested up to a depth
of 3. It is similar to the /*..x /-style comment.

4.5.2 Literals

Integer Literals

Decimal 18
Binary 2#10010
Octal 8#22
Hexadecimal 16#12

The same integer value in decimal, binary, octal and hexadecimal notation.

Real Literals
Notation of real values
1.0

1.602E-19

Boolean Literals

Notation of Boolean values
0

1

TRUE

FALSE

Typed Literals
<typename>#<literal>

Typed literals where typename is a native type (e.g. Word or LReal) or an enumeration type (to avoid
ambiguities).

Typing of literals is typically not necessary in GST, since the interpreter implements a decent typesystem that
handles untyped literals properly. There are a few exceptions where the type of a literal is significant for
semantics, like in the following example.

Example:

The first assignment assigns the value 16#80 to w, whereas the second one assigns the value 16#8000 to
W.

AR w: word; END VAR
ror (BYTE#1,1);
ror (WORD#1,1) ;

SRERERSI

TF5100 Version: 2.11.0 53

GST Reference Manual BEGKHOFF

String Literals
" abc "
'abc'

Notation of a 2-byte and a 1-byte string, respectively. Note that there is no implicit conversion between both
types. The following escape-sequences can be used within both types of literals:

SL line feed

SN newline

SP form feed

SR carriage return

St tab

S'ors" quotes

$<2 or 4 hexadecimal digits> character of given code

Duration Literals
T#[+/-]<value><unit>[..]<value><unit>
TIME# [+/-] <value><unit>[..]<value><unit>
LT#[+/-]1<value><unit>[..]<value><unit>
LTIME# [+/-]<value><unit>[..]<value><unit>

Time literals of type TIME or LTIME. The literal consists of an optional sign (+/-) and a sequence of value/
unit pairs. Value must be an integer, except for the last one that may also be a floating point number.
Values must not be negative and may be arbitraryly large. Units must appear in the following order.

d day

h hour

m minute

s second

ms millisecond
us microsecond
ns nanosecond

An arbitrary subset of units may be used in a literal. For instance, the literal T#1d15ms1500.01us is valid.

54 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Date Literals
DATE#<yyyy>—-<mm>-<dd>
D#<yyyy>-<mm>-<dd>
LDATE#<yyyy>—-<mm>-<dd>
LD#<yyyy>-<mm>-<dd>

Date literal of type DATE or LDATE. The literal is interpreted as UTC, i.e. timezone, daylight saving time and
leap seconds are not considered. The year must not be smaller than 1970. The values yyyy, mm and dd
have to be integer values, i.e. D#1980-20-10 is a valid date literal, for example.

Time-of-Day Literals

TIME OF DAY#<hh>:<mm>:<ss>
TOD#<hh>:<mm>:<ss>

LTIME OF DAY#<hh>:<mm>:<ss>
LTOD#<hh>:<mm>:<ss>

Time-of-day literal of type TOD or LTOD. The literal is interpreted as UTC, i.e. timezone, daylight saving time
and leap seconds are not considered. hh and mm must be integer values. ss may be an integer or a
floatingpoint number, i.e. TOD#7:30:3.1415 is a valid literal, for example.

Date-and-Time Literals

DATE AND TIME#<yyyy>-<mm>-<dd>-<hh>:<mm>:<ss>
DT#<yyyy>-<mm>-<dd>-<hh>:<mm>:<ss>

LDATE AND TIME#<yyyy>-<mm>-<dd>-<hh>:<mm>:<ss>
LDT#<yyyy>-<mm>-<dd>-<hh>:<mm>:<ss>

Date-and-time literal of type DT or LDT. The literal is interpreted as UTC, i.e. timezone, daylight saving time
and leap seconds are not considered. This literal is a combination of the date literal and the time-of-day
literal. Analogously, the corresponding rules for these two parts apply.

4.5.3 Native Data Types

Bitstring Types
BOOL, BYTE, WORD, DWORD, LWORD

Bitstring types of 1, 8, 16, 32 and 64 bit. Implicit conversion from left to right using zero extension.

Unsigned Integer Types
USINT, UINT, UDINT, ULINT

Unsigned integer types of 8, 16, 32 and 64 bit. Implicit conversion from left to right preserving the value.

Signed Integer Types
SINT, INT, DINT, LINT

Signed integer types of 8, 16, 32 and 64 bit. Implicit conversion from left to right preserving the value. An
unsigned type of n bit is also implicitly converted to a signed type of m bit where the relation m > n must
hold. There is no implicit conversion between bitstring types and integer types.

TF5100 Version: 2.11.0 55

GST Reference Manual BEGKHOFF

Floating Point Types
REAL, LREAL

Floating point data types of 32 and 64 bit. Implicit conversion from left to right preserving the value.

String Types
string[<length>]
wstring[<length>]

1-byte and 2-byte strings of given 1ength. If length is omitted, it has 255 as default value.

Character Types
char
wchar

Single 1-byte and 2-byte character of a string. It can be implicitly converted to a string.

Time-Related Types

TIME, LTIME

DATE, LDATE

TIME OF DAY, TOD, LTIME OF DAY, LTOD
DATE AND TIME, DT, LDATE AND TIME, LDT

Datatypes for duration, date and time. Internally, all values of these types are represented with a granularity
of 1 nanosecond. Values of date-related types represent the number of nanoseconds since 1.1.1970
(UTC). Leapseconds are ignored. Implicit conversion is allowed from a non-1 type to an L type, e.g. from
TIME {0 LTIME.

4.5.4 Userdefined Types

Derived Types

TYPE

<typeName>: <typeName> := <defaultValue>;
END TYPE

Definition of a new type as an alias to an existing type. The default value is optional.

Enumeration Types

TYPE

<typeName> : (<enumValue>, .., <enumValue>) := <defaultValue>;
END TYPE

Definition of an enumeration type. The default value is optional.

Enumeration Types with Defined Values
TYPE

<typeName> : (<enumValue>:=<integer value>, ..,

56 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

<enumValue>:=<integer value>) := <defaultValue>;
END TYPE

Definition of an enumeration type with user-defined values for each element. The default value is optional.

Array Types

TYPE

<typeName>: ARRAY [<from>..<to>,<from>..<to>] OF <typeName> :=
[<defaultValue>, <repetition> (<defaultValue>), ..1;

END TYPE

Definition of an array type. The array may be multi-dimensional. The index range is defined for each
dimension. At runtime the boundaries of the array are checked. A boundary violation leads to a runtime-
error. The default values are defined in ascending order starting with the last dimension. A value can be
repeated by placing it into parentheses prefixed with the number of repetitions. If the number of defined
default values does not match the array size, initialization is truncated or padded with the default value of the
element type. In either cases a compile-time warning is issued.

Structure Types
TYPE
<typeName>: STRUCT

<memberName>: memberType;

END STRUCT := (<memberName> := <defaultValue>, ..);
END TYPE

Defines a structure type of the given members. Currently, the default value is placed after the type definition.
This positional style is a difference to the ST-standard.

Pointer Types
TYPE

<typeName>: REF TO <basetypeName>;
END TYPE

Defines a pointer type of the given base type.

455 Control Structures

IF-THEN-ELSIF-ELSE

IF <condition> THEN
<statements>

ELSIF <condition> THEN
<statements>

ELSE

<statements>

TF5100 Version: 2.11.0 57

GST Reference Manual BEGKHOFF

END IF;

Conditional statement. The ELSTF-branch and ELSE-branch are optional. ELSTIF can be repeated arbitrarily.

CASE OF
CASE <expression> OF
<value>, <value>, .., <value>: <statements>
ELSE
<statements>
END CASE;

The case-list consists of a comma-separated sequence of values or ranges. Only the first matching case is
executed. The optional EL.SE-branch is executed if no case matches.

FOR

FOR <variable> := <expression> TO <expression> BY <expression> DO
<statements>

END FOR;

Iterates over the given variable in the defined range (including) using the supplied step-size. If the latter is
omitted, it has 1 as default value.

WHILE

WHILE <condition> DO
<statements>

END WHILE;

Pre-checked loop.

REPEAT

REPEAT
<statement>

UNTIL <condition>

END REPEAT;

Post-checked loop. The break condition is evaluated after performing the <statements> the loop includes.

EXIT
EXIT;

EXIT can be used within loops to leave the loop. If loops are nested, only the innermost loop is left. If there
is no loop surrounding the EXIT keyword, a compile-time error is issued.

4.5.6 Jump statement
LABEL <label name>;
<statements>

GOTO <label name>;

58 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

The LABEL- and GOTO statements allow jumps in the G-code.
LABEL <label name>;

A jump destination with the specified name is included at the specified position using LABEL.

<label name> must be a valid identifier, like the name of a variable or a function.

A LABEL statement can be used where a statement is expected, except in the context of a CASE statement.
If a LABEL statement is defined in a function, its scope is limited to the function.

If the label statement is in the global code, it is valid only in the global scope.

It is an error if two LABEL statements with the same name are defined in the same scope.

GOTO <label name>;

Causes the execution of the g-code to continue at the point where the specified LABEL is included.
It is an error if the specified <label name> is not defined in the scope of the GOTO statement.
In addition, it is not allowed to use GOTO statements within a CASE statement.

Sample

N10 GOO X0 YO zO
N20 GOl X10 F1000
'R1 := O;

!LABEL jumpPos;
'R2 := R1;

'Rl := R2 + 1;
N30 GOl Y=10*R1

!TF R1 = 1 THEN
!GOTO jumpPos;

|END IF

N40 GOl Z =10*rl

!TF R1 = 2 THEN
!goto jumpPos;

IEND_IF

M30

Requirements

TwinCAT GST Interpreter
TwinCAT 3.1.4024.47 GST 3.1.8.67
4.5.7 Userdefined Functions

Function Definition
FUNCTION <name> : <returntype>
VAR INPUT

<variable declarations>
END VAR
VAR OUTPUT

<variable declarations>
END VAR
VAR _IN OUT

<variable declarations>

END VAR

TF5100 Version: 2.11.0 59

GST Reference Manual BEGKHOFF

VAR

<variable declarations>
END VAR
VAR EXTERNAL

<variable declarations>
END VAR

<statements>
END FUNCTION

Declares a function. Thereafter, it is callable by its name. The declaration of the return type is optional. If it is
supplied, the function returns a value of the given type. The return value is defined within the function body
by an assignment to the function name.

The function may have input, output and in-out parameters. The order of declaration is significant. It is used
for nonformal calls. Declared variables are only used within the function body. External variables are
imported from global scope. Variables and parameters are not persistent, i.e. they do not retain their value
between two calls.

Nonformal Function Call
<functionname> (<expression>, .., <expression>)

Nonformal function call. The order of expressions must match the number and order of declared parameters.

Formal Function Call

<functionname> (
<inputParamName> := <expression>,
<outputParamName> => <variableName>,
<inputParamName> := <variableName>)

Formal function call. Parameters are identified by their name. If a declared parameter is not listed, it is
implicitly set to its default value.

® Do not Mix Formal with Nonformal
1 Mixing formal with nonformal function calls leads to invalid GST-syntax.

45.8 Standard Functions

4.5.8.1 Type Conversion

Type Conversion (*_TO_¥)
<nativeType> to <nativeType> (x)
to <nativeType> (x)

Explicit conversion between the given native types. The second alternative is overloaded for any applicable
type.

For conversion from floatingpoint to integer x is rounded.

60 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

4.5.8.2 Arithmetic and Trigonometric

ABS
ABS (x)
Returns the absolute value of x.

The function is overloaded for any integer type and floatingpoint type. The type of x is used as return type.

SQRT

SORT (x)

Returns the square root of x.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

® RESTRICTION:
1 Variable x must not be negative.

LN

LN (x)

Returns the natural logarithm of x, i.e. the logarithm to the base e.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

® RESTRICTION:
1 Variable x must be larger than 0.

LOG

LOG (x)

Returns the logarithm of x to the base 10.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

® RESTRICTION:
1 Variable x must be larger than 0.

EXP
EXP (x)
Returns e raised to the power of x.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

SIN
SIN (x)
Returns the sine of x where x is expected to be in radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gSin function (chapter Trigonometric [>_85]).

TF5100 Version: 2.11.0 61

GST Reference Manual

BECKHOFF

CcOos
COS (%)

Returns the cosine of x where x is expected to be in radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gCos function (chapter Trigonometric [>_85]).

TAN
TAN (x)

Returns the tangent of x where x is expected to be in radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gTan function (chapter Trigonometric [»_85]).

ASIN
ASIN (x)

Returns the arc sine of x within the interval [-PI/2, PI/2] radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gASin function (chapter Trigonometric [»_85]).

® RESTRICTION:
1 Variable x must lie within the interval [-1,1].

ACOS
ACOS (x)

Returns the arc cosine of x within the interval [0, PI] radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gACos function (chapter Trigonometric [P _85])..

® RESTRICTION:
1 Variable x must lie within the interval [-1,1].

ATAN
ATAN (x)

Returns the arc tangent of x within the interval [-P1/2, P1/2] radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gATan function (chapter Trigonometric [» 85])..

ATAN2
ATANZ (y, x)

Returns the arc tangent of v/x within the interval [-PT, PT] radians.

62 Version: 2.11.0

TF5100

BEGKHOFF GST Reference Manual

The function is overloaded for any floatingpoint type. The smallest common type of x and y is used as return
type.

See also: The gATan2 function (chapter Trigonometric [P 85])..

ADD
ADD (x1, x2, ..)

Returns the sum of all parameters. The ADD-function can have an arbitrary number of parameters, but has to
have at least one.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

MUL
MUL (x1, x2, ..)

Returns the product of all parameters. The MUL-function can have an arbitrary number of parameters, but
has to have at least one. The infix-operator ‘*’ can be used as an alternative.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

SuB
SUB (x,y)
Returns the difference x-y. The infix-operator ‘-’ can be used as an alternative.

The function is overloaded for any integer and floatingpoint type. The smallest common type of x and y is
used as return type.

DIV
DIV (x,Yy)
Returns the quotient x/vy. The infix-operator '/' can be used as an alternative.

The function is overloaded for any integer and floatingpoint type. The smallest common type of x and vy is
used as return type. If the return type is an integer type, the result is truncated towards zero.

® RESTRICTION:
1 Variable y must not be zero.

MOD
MOD (%, y)
Returns the remainder of the integer division x/y. The infix-operator ‘MOD’ can be used as an alternative.

The function is overloaded for any integer type. The smallest common type of x and y is used as return type.
The result may also be negative. The equation x = MUL (DIV(x,y),y) + MOD(x,y) holds.

® RESTRICTION:
1 Variable y must not be zero.

EXPT

EXPT (x,V)

TF5100 Version: 2.11.0 63

GST Reference Manual BEGKHOFF

Returns x raised to the power of vy.

The function is overloaded such that x has a floatingpoint type and y has a floatingpoint type or integer type.
The type of x is used as return type, i.e. returned is a Real or an LReal floating point type. The infix-
operator ‘“**’ can be used as an alternative.

® RESTRICTION:
1 If x is negative, then y must be an integer.

® RESTRICTION:
1 If x is zero, then y must be larger than zero.

45.38.3 Shift and Rotation

SHL
SHL (x,V)

Returns the bitstring x shifted left by v bits. Zero-bits are inserted at the right side. The least significant bit is
assumed to be rightmost.

The function is overloaded for any bitstring type for x and any integer type for y. The type of x is used as
return type.

® CONSTRAINT:
1 Variable y must not be negative.

SHR
SHR (x, V)

Returns the bitstring x shifted right by y bits. Zero-bits are inserted at the left side. The least significant bit is
assumed to be rightmost.

The function is overloaded for any bitstring type for x and for any integer type for y. The type of x is used as
return type.

@® CONSTRAINT:
1 Variable y must not be negative.

ROL
ROL (x,¥y)

Returns the bitstring x rotated left by vy bits. Bits that are shifted out at the left side are inserted at the right
side. The least significant bit is assumed to be rightmost.

The function is overloaded for any bitstring type for x and for any integer type for y. The type of x is used as
return type.

® CONSTRAINT:
1 Variable y must not be negative.

ROR

ROR (%, V)

64 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Returns the bitstring x rotated right by vy bits. Bits that are shifted out at the right side are inserted at the left
side. The least significant bit is assumed to be rightmost.

The function is overloaded for any bitstring type for x and for any integer type for y. The type of x is used as
return type.

® CONSTRAINT:
1 Variable y must not be negative.

4.5.8.4 Logical Operations

AND
AND (x1, x2, ..)

Returns the bitwise Logical And of all parameters. Bit i is set in the result if bit 1 is set in all parameters. The
AND function can have an arbitrary number of parameters, but has to have at least one.

The function is overloaded for any bitstring type. The smallest common bitstring type is used as return type.

OR
OR (x1, x2, ..)

Returns the bitwise Logical Or of all parameters. Bit i is set in the result if bit 1 is set in at least one of all
parameters. The OR function can have an arbitrary number of parameters, but has to have at least one.

The function is overloaded for any bitstring type. The smallest common bitstring type is used as return type.

XOR
XOR (x1, x2, ..)

Returns the bitwise Logical Exclusive Or of all parameters. Bit i is set in the result if bit 1 is set in an uneven
number of all parameters. The XOR function can have an arbitrary number of parameters, but has to have at
least one.

The function is overloaded for any bitstring type. The smallest common bitstring type is used as return type.

NOT
NOT (x)
Returns the bitwise complement of x. Bit i is set in the result if bit 1 is not set in x.

The function is overloaded for any bitstring type. The type of x is used as return type.

4.5.8.5 Selection (Conditional Expressions)

SEL
SEL (cond, x1, x2)

Returns x1 if cond is false, and x2 otherwise.

MUX
MUX (select, x0, x1, .., xN)

Returns x<select>. If select is 0, x0 is returned. If select is 1, x1 is returned and so forth. The MUX
function can have an arbitrary number of parameters, but has to have at least two.

TF5100 Version: 2.11.0 65

GST Reference Manual BEGKHOFF

The function is overloaded for any type for x<i> and for any integer for select. The smallest common type
of x<i> is used as return type.

® RESTRICTION:

The variable select must lie within the interval [0, N]. Otherwise, an out-of-bounds error is issued
at runtime.

4.5.8.6 Min, Max and Limit

MAX
MAX (x1, x2, ..)
Returns the maximum of all parameters.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

MIN
MIN (x1, x2, ..)
Returns the minimum of all parameters.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

LIMIT
LIMIT (min, in, max)
Returns in if it lies in the interval [min, max]. Otherwise, the violated bound (min or max) is returned.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

® CONSTRAINT:
1 The min boundary must be smaller than the max boundary.

4.5.8.7 Comparison

GT
GT (x,y)
Returns TRUE if x is larger than y. The smallest common type of x and y is used to perform the comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

GE
GE (x,V)

Returns TRUE if x is not smaller than y. The smallest common type of x and y is used to perform the
comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

EQ

EQ(x,vy)

66 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Returns TRUE if x and y are equal. The smallest common type of x and vy is used to perform the comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

LE
LE (x,V)

Returns TRUE if x is not larger than y. The smallest common type of x and vy is used to perform the
comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

LT
LT (x,v)

Returns TRUE if x is smaller than y. The smallest common type of x and v is used to perform the
comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

NE
NE(xy)

Returns TRUE if x and y are not equal. The smallest common type of x and v is used to perform the
comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

459 R-Parameters

Arithmetic Parameters

The arithmetic parameters, for short known as R-parameters, are interpreter variables that are named by an
expression of the form “R<n>”. Since ‘n’ is an integer in the range 0. . 999, a total of 1000 R-parameters are
available. The first 900 values RO . .R899 of these are local variables for the NC channel. They can only be
accessed by the interpreter of the channel. The R-parameters R900. .R999 are declared globally. They exist
only once for each NC, and all channels access the same storage. This kind of accessibility organization
makes it possible to exchange data (e.g. for part tracing, collision avoidance etc.) beyond channel
boundaries.

Assigning a Value to an R-Parameter

Assigning a value to an R-parameter is merely possible within Structured Text. There are two ways of
assigning a value to an R-parameter. The value can be assigned directly or the rSet function can be
employed. The function rset is suitable to use when the index of the R-parameter to be assigned should not
be determined until runtime.

Structured Text: Assigning an R-Parameter Value Directly

R<n> := LReal;
Example
IR1 := 7;

Structured Text: Assigning an R-Parameter Value with the “rSet” Function
rSet (index := LINT, value := LREAL)

Example

'rSet (1, 7);

TF5100 Version: 2.11.0 67

GST Reference Manual BEGKHOFF

Reading an R-Parameter Value

There are two ways of reading an R-parameter. An R-parameter can be used in G-Code directly or it can be
extracted within Structured Text using the rGet function. The function rGet extracts an R-parameter value
according to its index.

Structured Text: Reading an R-Parameter Value with the “rGet” Function
rGet (index := LINT) : LREAL

G-Code Example: Extracting an R-Parameter Value Directly

IR1 := 7;

N10 GO1 X=R1 F6000

G-Code Example: Extracting an R-Parameter Value with the “rGet” Function

'R1 := 7;
N10 GOl X={rGet (1)} F6000

Example: Assigning and Extracting

{
VAR

valueRl : LREAL;
END VAR

rSet (1, 7);
valueRl := rGet(1l);

R2
R3

10;
R1 + R2;

IN10 GO1 X=R1l Y0 Z=R2 F6000
IN20 GOl X={rGet (3)}

MSG(toString ('Rl = ', valueRl, ',R2 ="', rGet(2), ', R3 ="', R3));

}
MO02

Output:
R1 = 7.000000, R2 = 10.000000, R3 = 17.000000

R-Parameters in Subroutines (Functions)

o
1 Within a subroutine (function) an R-parameter has to be declared via a VAR EXTERNAL declaration.

Example:

{

FUNCTION myFunction : LREAL

VAR EXTERNAL

R45: LREAL;
END_ VAR
}

N10 GO01 X=R45 F6000

!END FUNCTION

Requirements

Development Environment Target System
TwinCAT V3.1.4024 .4 or 4022.32 PC or CX (x86 or x64)

4.5.10 H, S, and T parameters

The H, S, and T parameters are used to transfer parameters to the PLC during block execution.

68 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Parameter Data type Use Example

H parameter DINT (32Bit signed) Help parameter N1 G1 X10 Y20 H=1020
S parameter WORD Spindle N2 Gl X20 Y30 S=30
T parameter WORD Tool N3 G1 X30 Y40 T4

® * In contrast to the classic interpreter, the H parameter also acts before the movement in the GST
1 interpreter, see Execution Order [»_38] of a block.

* No R parameter can be assigned to the T parameter.
* For the T parameter, assignment is performed without an assignment operator ('=").

4.6 CNC Functions

4.6.1 Strings and Messages

toString
toString(<arg0>, .., <argN>): STRING

Converts and concatenates the given arguments to one string. This string is limited to 255 characters, which
is the default string length. The toString-function behaves like the print function, except that it yields a
formatted string instead of printing.

o
1 The tostring-function is especially useful to format a string for the msg (...) -function.

msg
msg (str:= String[81])

Send the given message to the message list of TwinCAT. The message is processed by the NC-channel
synchronously. It appears in the user-interface when all preceeding NC-commands are completed.

To send formatted strings this function can be combined with the toString-function.

o
1 The message is restricted to 81 characters. Text exceeding this restriction will be truncated.

Example:

The path of the following example is shown in Figure “ExampleMsg”. It is annotated with the emitted
messages.

{
VAR
X,y,z: LREAL;
start: LDT;
END VAR

IN10 GOO X0 YO F300

start := currentLdt();

IN20 GO1 X30

msg ('N20 completed');

IN30 X60 Y10

frameGet (x=>x, y=>y, z=>z) ;

msqg (toString ('Current position: [',x,',',v,',',2,'1"));
IN40 X90

sync () ;

msg (toString ('Machining time: ', currentLdt()-start));
}

M02

TF5100 Version: 2.11.0 69

GST Reference Manual BEGKHOFF

Y
30 — + + + + + + + + + + +
20 Machining time: +18.00
Current position: [60.00,10.00,0.00] \
10 — + + + + + + +
N20 completed N40
N30
0 — ® L 4 + + + + + + +
N20

-10 i i | | | | | | | | f X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “ExampleMsg”.

4.6.2 Transformations
transRotX/Y/Z

transRotX (angle := LREAL)
transRotY (angle := LREAL)
transRotZ (angle := LREAL)

Rotation around the respective axis by the given angle in the user-defined angle unit. The rotation is pushed
onto the stack of transformations. The angle value is interpreted using the current angle-unit. See section

Transformations [P 97] for details.

Example:

The resulting path of the following example is shown in Figure “ExampleTransRotZ”.

e N10 is programmed with the PCS (program coordinate system) and the MCS (machine coordinate
system) being equal.

* N20 is programmed after a 45-degree rotation around the z-axis in [0, 0, 0] has been pushed onto
the stack of transformations. Another rotation of 45 degrees is pushed onto the transformation stack
such that the rotations add up to 90 degree.

» Therefore, the MCS (machine coordinate system) coordinate of the end of segment N30 is [0, 30,0].

N10 GOl X30 YO F6000
!transRotZ (45);

N20 GOl X30 YO
!'transRotZ (45) ;

N30 GOl X30 YO
'transPop () ;
!transPop () ;

M02

70 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Y
30 - + + + + + + +
20 - + + + + + + +
10 + + + + + +
0 - + + + + + + +
N10
-10 | | | | | | | l | | r X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “ExampleTransRotZ”.

transRotA
transRotA (x:=LReal, y:=LReal, z:=LReal, angle:=LReal)

Rotate around vector [x, v, z] by the given angle. The rotation is pushed onto the stack of
transformations. The angle value is interpreted using the current angle-unit. See section Transformations
[»_97] for details.

o
1 The vector [x, v, z] must not be the zero vector.

Example:

The resulting path of the following example is shown in Figure “ExampleTransRotA”. The first invocation of
transRotA rotates the PCS (program coordinate system) around the positive z-axis (right-hand rule) by
45 degree. The second invocation rotates around the negative Z-axis by the same angle, i.e. into the
opposite direction. The combination of both rotations is the identity transformation.

'transRotA (0,0,1,45);

N10 GO1 X30 YO F6000

!transRotA (0,0,-1,45);
N20 GOl X30 YO

!transPop () ;

!transPop () ;

MO2

Y
30 - + + + + + + + + + + +
20 + + + + + + +
10 + + + + + + +
0 - + + + + + + +

-10 | | | | | | | l | | r X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “ExampleTransRotA”.

transMirrorX/Y/Z

transMirrorX ()

TF5100 Version: 2.11.0 71

GST Reference Manual BEGKHOFF

transMirrorY ()
transMirrorZ ()

Mirror with respect to the X-direction, v-direction or z-direction relative to the origin of the current PCS
(program coordinate system). The transformation is pushed onto the stack of transformations.

@® Theinvocation of a mirror function switches the orientation of the coordinate system from right-
handed to left-handed or vice versa. Most notably, this behavior switches the rotation direction of

1 circles and the compensation direction of tool radius compensation. By default, the coordinate
system is right-handed.

Example:

The resulting path of the following example is shown in Figure “ExampleTransMirrorX”. The PCS (program
coordinate system) is mirrored along the x-dimension. Thereby, the coordinate system becomes a left-
handed system, within which the rotation direction of G2 is (intentionally) swapped.

N10 GO2 X20 Y20 U20 F6000

!transMirrorX() ;

N20 GO2 X-40 YO U20

!transPop () ;

MO02
30 4 + + + + + + + + + + +
20 + + + + + +
10 + + + + + +
0 - + + + + + +
-10 | ! ! ! ! ! ! ! ! ! X

-10 O 10 20 30 40 50 60 70 80 9 100

Figure “ExampleTransMirrorX”.

transScale
transScale (factor:= LReal)

Scales the coordinate system by the factor in the x-dimension, Y-dimension and z-dimension. The
transformation is pushed onto the stack of transformations.

o
1 The factor must be nonzero.

d If the factor is negative, the coordinate system is effectively mirrored in the x-dimension, v-
dimension and z-dimension. Thus, the orientation of the coordinate system is swapped.
Example:

The resulting path of the following example is shown in Figure “ExampleTransScale”. After scaling by a
factor of 2, the endpoint of segment N20 is mapped to [60,20,0].

N10 GOl X30 Y10 F6000
'transScale (2) ;

N20 GOl X30 Y10
!transPop () ;

MO02

72 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

30—Y + + + + + + + + + ¥ +
20 - + + ¥ +
10 + + ¥ +
04 + + ; +
-10 ! j | | ! | | | | | r X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “ExampleTransScale”.

transScaleAxis
transScaleAxis (axisNo := axisIndex, factor := value);

Scales the selected path axis (axisNo) by the factor. The supported axis and indexes are:
« X:0
* Y:1
o Z:2

Q-axes are not supported.

(
1 A different axes scaling is only allowed for linear movements, not for circular movements.

Example 1

N10 GOl X30 Y10 F6000

'transScaleAxis (axisNo:= 0, factor:=2.0);
'transScaleAxis (axisNo:= 1, factor:=2.0);
'transScaleAxis (axisNo:= 2, factor:=3.0);

N20 GOl X30 Y10
N30 GO3 X40 Y10 I5 JO
MO02

30 - + + + + + + + + + + +
20 - + i
10 — + +
0 N .
-10 | | | | | | | | | | r X

-10 0 10 20 30 40 50 60 70 80 90 100

Figure “Example 1 TransScaleAxis”.

Example 2

N10 GOl X20 Y5 F6000

'transScaleAxis (axisNo:= 0, factor:=2.0);
'transScaleAxis (axisNo:= 1, factor:=2.0);
'transScaleAxis (axisNo:= 2, factor:=3.0);
N20 GOl X20 Y5

'transScaleAxis (axisNo:= 0, factor:=2.0);

TF5100 Version: 2.11.0 73

GST Reference Manual BEGKHOFF

'transScaleAxis (axisNo:= 1, factor:=3.0);
N30 GOl X20 Y5

MO2
30—Y . .
20 — ¥ +
10 + +
= . .
-10 ! j | ! ! | | | | | r X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “Example 2 TransScaleAxis”.

Requirements

Development Environment Target System
TwinCAT V3.1.4024.20 PC or CX (x86 or x64)

transTranslate
transTranslate (x:=LReal, y:=LReal, z:=LReal)
Translate by vector [x, vy, z]. The translation is pushed onto the stack of transformations.

Example:

The resulting path of the following example is shown in Figure “ExampleTransTranslate”. After translating by
[40,20,0] the endpoint of segment N20 is mapped to [80,20,0].
N10 GO1 X20 YO F6000

!'transTranslate (40,20,0) ;
N20 GOl X40 YO

!transPop () ;
MO2
Y

30 4 + + + + + + + + + + +
20 — ; +
10 - ; +
0 + +
-10 | | | | | | | l | | r X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “ExampleTransTranslate”.

transPop
transPop ()
Pops a transformation from the stack of transformations.

Example:

74 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

The resulting path of the following example is shown in Figure “ExampleTransPop”. This example pushes
the translation [0, 20, 0] onto the stack, followed by the translation [0, 10, 0]. Thereby, the effective
translation for N30 is [0, 30, 0]. The invocation of transPop removes the translation [0, 10, 0] from the
stack. Thus, the endpoint of segment N40 is translated by [0, 20, 0]. After removing the last translation
from the stack the endpoint of segment N50 is not translated at all.

N10 GOl X10 YO F6000
'transTranslate (0,20,0) ;
N20 GO1 X30 YO
'transTranslate (0,10,0) ;
N30 GOl X50 YO
!'transPop () ;

N40 GO1 X70 YO
!transPop () ;

N50 GOl X90 YO

M02

30 —

20

10

N10

-10 f f f f f f f f f f r X

-10 0 10 20 30 40 50 60 70 80 90 100

Figure “ExampleTransPop”.

transDepth
transDepth () : Ulnt

Yields the depth of the stack of transformations, i.e. the number of active transformations. See
transRestore(...), chapter transformations [P 97], for more details.

transRestore
transRestore (depth:= UInt)

Reduces the stack of transformations to the given depth. This command is typically used in conjunction with
transDepth () to restore an earlier state of the stack.

(
1 The current depth of the stack must not be smaller than the given depth.

Example:

The resulting path of the following example is shown in Figure “ExampleTransDepthTransRestore”. A
translation to [40, 10, 0] is initially pushed onto the transformation stack. The resulting depth is stored in
variable savedDepth. The following code repeatedly performs a linear move to X20 Y0 and a rotation by
45 degree. This resulting path is one half of an octagon, composed of segments N10 to N50. When N50 is
processed, the transformation stack contains the initial translation and 4 rotations by 45 degree. The
invocation of transRestore (savedDepth) restores the stack depth of 1 by removing all rotations. Hence,
only the translation is applied to N60.

!VAR savedDepth : UINT; END VAR

'transTranslate (40,10,0);
!'savedDepth := transDepth();

N10 GOl X20 YO F6000

TF5100 Version: 2.11.0 75

GST Reference Manual BEGKHOFF

!'transRotZ (45) ;
N20 GOl X20 YO
!transRotZ (45) ;
N30 GOl X20 YO
!'transRotZ (45) ;
N40 GOl X20 YO
!transRotZ (45) ;
N50 GOl X20 YO
'transRestore (savedDepth) ;
N60 GOl X10 YO

MO02
30—Y
20 + + ¥ +
10 + + ¥ +
0 + + ; +
-10 ! j ! ! | ! | | | | r X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “ExampleTransDepthTransRestore”.

4.6.3 Circular Movement

moveCircle3d

moveCircle3d (cx:=LREAL, cy:=LREAL, cz:=LREAL, nx:=LREAL, ny:=LREAL, nz:=LREAL, a
ngle:=LREAL, height:=LREAL)

Move circular by rotating around the center cx,cy,cz and the normal vector nx,ny,nz by the given angle. If
height is nonzero, a helix is described. If angle is greater than a full circle, a multiturn circle or a multiturn
helix is described. The rotation is performed according to the right hand rule. Using a negative angle or
flipping the normal will reverse the direction of rotation. The angle value is interpreted using the current angle
unit. The parameters x, y, z, cx, cy, cz are interpreted using the current length unit.

()
1 The radius must be nonzero.

Example:

The resulting path of the following example is shown in Figure “ExampleMoveCircle3D”. The invocation of
moveCircle3D describes a helical movement. It starts at the current point thatis [40,10, 0]. The center
axis of the helix is defined by the point [30, 10, 0] and direction [gSin (22.5),0,gCos (22.5) 1.
Compared to the workingplane normal [0, 0, 1] the axis is tilted by 22 . 5 degree in x-direction. The angle of
720+90 degree describes a multiturn helix. It exhibits a height of 30 with respect to the center axis. The
endpoint of the helix is not explicitly programmed to avoid redundancy. If the user requires these
coordinates, they can be retrieved by the frameGet (..) function, as demonstrated. The approximate
coordinates are shown in Figure “ExampleMoveCircle3D”.

{

VAR

X,y¥,z: LREAL;
END VAR

IN10 GO1 X40 Y10 F6000

moveCircle3D (cx:=30, cy:=10, cz:=0, nx:=gSin(22.5), ny:=0, nz:=gCos(22.5), angle:=720+90, height:=30
) i

frameGet (x=>x, y=>y, z=>z) ;

76 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

MO2
30 M
N ' ’ ’ ’ ’ X=4294.. ’ ' ’
Y=19.23...
20 - + + + + & Z=31.25... + + + +
10 + + + + + + + + +
0 - + + + + + + + + + +
-10 | | | | | | | l | | r X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “ExampleMoveCircle3D”.

46.4 Centerpoint Correction

centerpointCorrectionSet
centerpointCorrectionSet (on:= bool)

Activates the centerpoint correction for circles. The centerpoint correction will be used for circles that are

defined using centerpoint programming, see G2 and G3 [P _40]. Due to inaccuracies (e.g. rounding errors by
the CAD program), the radius of the starting-point and endpoint with respect to the centerpoint may differ. If
centerpoint correction is active, the center will be moved in such a way that the starting-radius and endradius
are equal to their former average.

A limit for centerpoint correction can be configured with centerpointCorrectionLimitSet (..). If this
limit is exceeded, a runtime error will be reported.

centerpointCorrectionLimitSet
centerpointCorrectionlLimitSet (limit:= LREAL)

Sets the precision limit for the centerpoint of circles. If the given limit is exceeded, a runtime error is reported.
The default limit value is 0.1 mm.

4.6.5 Tools

® Using tool displacement and rotation

1 If the Cartesian tool displacement is used in combination with rotation [»_70], then the
compensation will only be correct, if the aggregate (the tool carrier) is also rotated through the same
angle.

toolParamSet
toolParamSet (tidx:= USINT, col:= USINT, val:= LREAL)
Set a parameter of the tool tidx (1..255) to val. The parameter is identified by col (0..15).

COL DESCRIPTION

0 tool number
For giving the tool a number.
Written to the T-parameter in the cyclic channel interface.

TF5100 Version: 2.11.0 77

GST Reference Manual BEGKHOFF

1 tool type (1 0: drill, 20: miller)
The drill is type 10.
The miller is type 20.

2 length
Describes the length of e.g. the drill.

3 -
4 radius
5 length (added to the length value of column 2)
Describes the wear on e.g. the drill. The wear has to be given as a negative value as it
is added to the length.
6 -
7 radius (added to the radius value of column 4)
8 x-shift
Cartesian tool displacement in x-direction.
9 y-shift
Cartesian tool displacement in y-direction.
10 z-shift
Cartesian tool displacement in z-direction.
11 -
12 -
13 Tool type 20 (miller): for free use by the user
14 Tool type 20 (miller): for free use by the user
15 Tool type 20 (miller): for free use by the user
toolParam

toolParam(tidx:= USINT, col:= USINT): LREAL

Yields the given tool parameter.

toolSet

toolSet (index:= USINT, nr:= INT, tooltype:= ToolType, length:= LREAL, radius:=
LREAL, lengthAdd:= LREAL, radiusAdd:= LREAL, offsetX:= LREAL, offsetY:= LREAL,
offsetZ:= LREAL)

Set all parameters of a tool. The index is used in D-words [P _35] to refer to the tool. It must lie in the range 1
to 255. The parameter nr has only informational purpose. Typically, it is a company internal number to
identify a certain tool. The parameter tooltype identifies the kind of tool, like a drill for instance. The
remaining parameters are dimensions, which are visualized in Figure “ToolSetDimensions”. If the tool
orientation is changed towards the negative (see P-word [P 45]), the value 1ength+lengthAdd is implicitly
negated. The parameters 1ength, radius, lengthAdd, radiusAdd, offsetX, offsetY and offset?
are interpreted using the current length unit.

78 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

Y offsetZ
offsetY
offsetX
A | x
i | <—length+lengthAdd
Tool—>|

radius+radiusAdd

Figure “ToolSetDimensions”.

Example:

The example defines tool 1 as a drill of total length 48.5 and tool 2 as a mill with a length of 30 and a
diameter of 5.

'toolSet (index:=1, nr:=4711, tooltype:=tooltypeDrill, length:=50, lengthAdd:=-1.5);
'toolSet (index:=2, nr:=10783, tooltype:=tooltypeMill, length:=30, radius:=2.5);

toolType

Enumeration of tool types.

tooltypeDrill
tooltypeMill

tooltypeDrill: Selects a drill as a tool.
tooltypeMill: Selects a mill as a tool.

4.6.6 Synchronization

sync
sync ()

Synchronizes the interpreter with the associated NC-channel. The sync () -command blocks until all pending
NC-commands are completed, i.e. until the job-queue of the NC-channel is empty. This command replaces
the former @714-command. Oftentimes, the sync () -command is combined with a preceeding M-function of
type handshake. Then, the sync () -command will block until the M-function is acknowledged by the PLC.

wait

wait ()

Waits for a GoAhead-signal from the PLC. The wait ()-command blocks until this signal is received. This
command replaces the former @71 7-command. Compared to a combination of an M-function and sync (),

this kind of synchronization does not result in an empty job queue. Notably, an empty job queue forces the
machine to halt.

d The Goahead-signal may be send from the PLC before the associated wait () -function is called. In
1 this case the wait () -function does not block.

TF5100 Version: 2.11.0 79

GST Reference Manual BEGKHOFF

4.6.7 Query of Axes

queryAxes
queryAxes ()

Set the MCS (machine coordinate system) coordinates of the interpreter to the actual coordinates of the
physical axes. The MCS (machine coordinate system) coordinates are automatically translated to PCS (path
coordinate system) coordinates, which are exposed to the programmer. They may also be retrieved by
frameGet (..). A combination of sync () and queryaAxes () replaces the former @71 6-command.

* The queryAxes () -command considers the path axes (X, Y, z), as well as the auxiliary axes
(Q1..05).

o
1 The queryAxes ()-command should be preceeded by sync () to avoid unexpected behavior.

Example:

The resulting path of the following example is shown in Figure “ExampleQueryAxes”. The example assumes
M20 to be an M-function of type “handshake after”. The PLC is assumed to

* wait for M20,

* move the Y-axis to 20,

+ wait for completion of the movement,
» acknowledge M20.

The interpreter sends the line segment N1 0 to the NC-channel followed by the M-function M20. Then the
invocation of sync () blocks. The NC-channel signals the M-function to the PLC after the line segment N10
has been processed. Then the PLC moves the tool from the end of segment N10 to the beginning of
segment N20 and acknowledges M20. The interpreter resumes operation and invokes queryAxes (), which
sets the internal “current point” to the endpoint of segment N1 0 '. Therefore, the final block sends the line
segment N20 to the NC-channel.

NOO
N10 GOl X40 M20 F6000
!'sync () ;
'queryAxes () ;
N20 GOl X80
MO02
Y
30 — + + + + + + + + + + +
20 — + + + + N20 ® + +
M20 acknowledged; axes queried
10 + + + + N10' + + + + + +
Performed by PLC
O — ® + + + + + +
N10 .
M20 signaled to PLC
-10 | | | | | | | l | | r X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “ExampleQueryAxes”.

80 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

4.6.8 Current Point

frameGet
frameGet (x:=LREAL, y:=LREAL, z:=LREAL, a:=LREAL, b:=LREAL, c:=LREAL)

Store the current frame of the PCS (program coordinate system) in x, y, z and a, b, c.

Example:

The output of the following example is shown below. The G-Code in the example performs a linear
movement to the PCS (program coordinate system) point [10, 20, 30]. Then these coordinates are stored
in curX, curY, curz by frameGet (..). The translation [1, 2, 3] that is pushed onto the transformation-
stack leads to an adaption of the current PCS (program coordinate system) point such that the MCS
(machine coordinate system) point [10, 20, 30] remains unchanged. Therefore, the subsequent call of
frameGet (..) retrieves the PCS (program coordinate system) point [9,18,27].

{
VAR
curX, curY, curz : LREAL;
END_ VAR
'G01 X10 Y20 z30 F65000

frameGet (x=>curX, y=>curY, z=>curiZ);
MSG (toString (curX,"' ',curY,' ',curz,''));

transTranslate(1,2,3);

frameGet (x=>curX, y=>curY, z=>curiZ);

MSG (toString (curX,"' ',curY,' ',curz,''));
}

M02

Output:

10.000000 20.000000 30.000000
9.000000 18.000000 27.000000

qAxisGet
gAxisGet (gl:=LREAL, g2:=LREAL, g3:=LREAL, g4:=LREAL, g5:=LREAL)

Store the current values of Q-axes in g1 to g5. The Q-axes are the auxiliary axes.

4.6.9 Tool Radius Compensation

trcApproachDepartSet

trcApproachDepartSet (approachRadius:= LREAL, approachAngle:= LREAL, departRadius
:= LREAL, departAngle:= LREAL)

Configures the approach and depart behavior to use an arc of given radius and angle. If the product of radius
and angle are zero, no approach or depart segment will be inserted.

The resulting configuration is used by G41/G42.

trcOffsetSet
trcOffsetSet (offset:= LREAL)

Configures the amount of segment extension that is used to close gaps. If of fset is zero, no extension will
be performed.

The resulting configuration is used by G41/G42.

TF5100 Version: 2.11.0 81

GST Reference Manual BEGKHOFF

trcLimitSet

trcLimitSet (limit:= ULINT)
Configures the lookahead that is used for collision elimination.

The resulting configuration is used by G41/G42.

trcParam
trcParam(): TrcParamType

Returns the current configuration as a structure value.

trcParamSet
trcParamSet (param:= TrcParamType)

Configures the tool radius compensation. This function is an alternative that summarizes
trcApproachDepartSet, trcOffsetSet and trcLimitSet. It can be used in combination with
trcParam to load, save and restore different TRC (tool radius compensation) configurations efficiently.
TrcParamType

TrcParamType

This structure contains all configuration parameters of the tool radius compensation. It consists of the
following parameters.

approachRadius: LREAL;
approachAngle: LREAL;
departRadius: LREAL;
departAngle: LREAL;
offset: LREAL;

limit: ULINT;

See trcApproachDepartSet, trcOffsetSet, trcLimitSet for a comprehensive description of the listed
parameters.

collisionElimination
collisionElimination(nx:= LREAL, ny:= LREAL, nz:= LREAL, limit:= ULINT)

Activates collision elimination with respect to the plane of the normal vector nx, ny, nz. Collisions within the
projection of the path onto the plane are eliminated. Supplying a zero vector deactivates collision elimination.
The 1imit parameter can be used to restrict elimination to the last n segments. By default, elimination is
unlimited.

collisionEliminationFlush
collisionEliminationFlush ()

This function can be called during active collision elimination to ignore any conflicts between the path
preceding the call and the path succeeding the call.

4.6.10 Suppression of G-Code Blocks

disableMask
disableMask () : LWORD

Yields the current value of the disable mask. Note that the mask may also be set by the PLC.

82 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

disableMaskSet

disableMaskSet (mask:= LWORD)

Sets the internal disable mask to the given value. The mask is used to suppress execution of G-Code blocks.
The disable mask has 0 default value, i.e. no suppression is active by default. The mask consists of 64 bits.

In a binary notation like 241101 bits are numbered from right to left, starting with bit 0. For the value 2#1101
the bits 0, 2 and 3 are set by value one. The remaining bits are not set by exhibiting zero value.

Example:

The resulting path of the following example is shown in Figure “ExampleDisableMaskSet”. The disable mask
is initially set to the binary value 241101, which is equal to the decimal value 13. The first G-Code, which is
N10 in the given example, is always executed, independently of the current disable mask because there is
no ‘/’-operator in the N1 0-line. N20 is only executed if bit 0 is not set. In the case bit 0 is set N20 is
supressed, which is true in the given example. The same holds for N30, since ‘/’ is only a shorthand for ‘/0’.
N40 is not supressed, since bit 1 is not set. The G-Codes N50 and N60 after disableMaskSet (0) are
executed, since no bit in the disable mask is set. In contrast, the call disableMaskSet (-1) sets all bits of
the mask. Consequently, the succeeding G-Codes that are prefixed with a ‘/’, N80 and N90, are disabled.

!disableMaskSet (2#1101) ;
N10 GOl X10 Y10 F6000
/0 N20 GO0l X20 YO

/ N30 GOl X30 YO

/1 N40 GOl X40 Y10
'disableMaskSet (0) ;

/ N50 GOl X50 YO

/1 N60 GOl X60 Y10
!disableMaskSet (-1) ;
N70 GOl X70 YO

/1 N80 GO1 X80 Y10

/2 N90 GO1 X90 Y20

MO02
Y
30 — + + + + + + + + + + +
disabled disabled
20 — + + l l + + + + l I +
10 — + » N40 L} + + + + +
N10
/ N50 N6 \N7O
0 — + + + + + + + +
-10 f f f f f f f f f f r X

Figure “ExampleDisableMaskSet”.

4.6.11 Zero Offset Shift

zeroOffsetShiftSet
zeroOffsetShiftSet (g:= USINT, x:= LREAL, y:= LREAL, z:= LREAL)

Sets the translation for G-Code g where g must be one of the numbers 54, 55, 56 or 57. Alternatively, the
Zero Offset Shift can be set with the PLC Function Block ItpWriteZeroShiftEx [»_248].

TF5100 Version: 2.11.0 83

GST Reference Manual BEGKHOFF

Example:

The resulting path of the following example is shown in Figure “ExampleZeroOffsetShiftSet”. The zero offset
shift of G54 is first set to the translation [0, 10, 0]. It gets active for N20 and any later segment endpoints
until a novel translation is applied. The second invocation of zeroOf fsetShiftSet has an immediate
effect. It applies to N30 and any later segment endpoints until a novel translation is applied. The same holds
for the last invocation. However, the block N40 does not program the Y-coordinate. Therefore, the change
does not become apparent for N40. (See section Transformations [»_97] for details.) Because the block N50
programs the Y-coordinate, it applies the recent [0, 30, 0] -translation.

!'zeroOffsetShiftSet (g:=54, x:=0, y:=10, z:=0);
N10 GOl X20 YO F6000

N20 GOl G54 X40 YO

!zeroOffsetShiftSet (g:=54, x:=0, y:=20, z:=0);
N30 GOl X60 YO

lzeroOffsetShiftSet (g:=54, x:=0, y:=30, z:=0);
N40 GOl X80

N50 GOl X100 YO

M02

30 —

20

10

-10 f f f f f f f f f f r X
-10 0 10 20 30 40 50 60 70 80 90 100

Figure “ExampleZeroOffsetShiftSet”.

4.6.12 Units

unitAngleSet
unitAngleSet (unitAngle:= UnitAngle)

Set the unit for angles to unitAngle. The default is unitAngleDegree. The unit for angles applies to all
NC-related functions like transRotX. It does not apply to sT-standard functions like sin. For this reason
the interpreter offers a set of NC-specific counterparts like gSin that consider the angle unit.

UnitAngle

Enumeration of the following values:

unitAngleRadian: 0..2pi
unitAngleDegree: 0..360
unitAngleGon: 0..400
unitAngleTurn: 0..1

unitLengthSet
unitLengthSet (unitLength:= UnitLength)

Set the unit for lengths to unitLength. The default is unitLengthMillimeter. The unit for length
applies to all NC-related functions like GO1 or zeroOffsetShiftSet (..).

84 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

UnitLength

Enumeration of the following values:

unitLengthMeter
unitLengthCentimeter
unitLengthMillimeter
unitLengthMicrometer
unitLengthNanometer
unitLengthInch
unitLengthFoot

unitTimeSet

unitTimeSet (unitTime:= UnitTime)

Set the unit for time to unitTime. The defaultis unitTimeSecond. The unit for time applies to all NC-
related functions like G04. It does not apply to ST-standard functions like currentLdt ().

UnitTime

Enumeration of the following values:

unitTimeSecond
unitTimeMillisecond
unitTimeMicrosecond
unitTimeMinute
unitTimeHour

unitVelocitySet
unitVelocitySet (unitLength:= UnitLength, unitTime:= UnitTime)

Set the unit for velocity to unitLength/unitTime. The defaultis unitLengthMillimeter/
unitTimeMinute. The unit for velocity applies to all NC-related functions. It is used by the F-parameter for
instance.

4.6.13 Trigonometric (Unit Aware)

gSin
gSin (angle:= LREAL)

+ Returns the sine of the given angle where the current angle unit [»_84] is used to interpret the angle.

* The return type is LREAL. This function is not overloaded.

gCos
gCos (angle:= LREAL)

* Returns the cosine of the given angle where the current angle unit [» 84] is used to interpret the
angle.

* The return type is LREAL. This function is not overloaded.

gTan
gTan (angle:= LREAL)

+ Returns the tangent of the given angle where the current angle unit [P 84] is used to interpret the
angle.

TF5100 Version: 2.11.0 85

GST Reference Manual BEGKHOFF

* The return type is LREAL. This function is not overloaded.

gASin
gASin (val:= LREAL)
* Returns the arcsine of val in the current angle unit [»_84].

» The return type is LREAL. This function is not overloaded.

* The result lies within the interval [-c/4, c/4] where c is the angle of a full circle in the current angle
unit.

® CONSTRAINT:
1 The variable val must reside within the interval [-1,1].

gACos
gACos (val:= LREAL)

* Returns the arccosine of val in the current angle unit [>_84].
* The return type is LREAL. This function is not overloaded.
» The result lies within the interval [0, c/2] where c is the angle of a full circle in the current angle unit.

® CONSTRAINT:
1 The variable val must reside within the interval [-1,1].

gATan
gATan (val:= LREAL)

* Returns the arctangent of val in the current angle unit [P 84].
* The return type is LREAL. This function is not overloaded.

» The result lies within the interval [-c/4, c/4] where c is the angle of a full circle in the current angle
unit.

gATan2
gATan2 (y:= LREAL, x:= LREAL)

* Returns the arctangent of y/x in the current angle unit [»_84].
* The return type is LREAL. This function is not overloaded.

* The result lies within the interval [-c/2, c/2] where c is the angle of a full circle in the current angle
unit.

4.6.14 Feed Mode

feedModeSet

feedModeSet (feedMode:= FeedModeType)

FeedModeType

Enumeration of the following values:

fmContour
fmInternalRadius
fmToolCenterPoint

86 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

fmContour: Holds the feedrate at the contour constant.

fminternalRadius: Reduces the feedrate at internal radii. This results in a constant velocity at the contour.
The velocity at external radii is not increased.

fmToolCenterPoint: Keeps the feedrate of the tool's center point constant. This means that at internal radii
the velocity at the contour is increased, and that it is correspondingly reduced at external radii.

4.6.15 Feed Interpolation

feedInterpolationSet

feedInterpolationSet (feedInterpolation:= FeedInterpolationType)

FeedinterpolationType
FeedInterpolationType

Enumeration of the following values:

fiConstant
filinear

fiConstant: The programmed velocity is applied as fast as possible with the constant feed interpolation
(default).

fiLinear: The linear feed interpolation transfers the velocity linearly over the path from v_start to v_end.

4.6.16 Streaming of Large G-Code Files

runFile
runFile (path:= string)

The size of files that can be executed employing the GsT-interpreter is limited. However, sometimes it is
required to execute large files that may have been created e.g. by a CAD-program. Therefore, the user has
the possibility to execute filestreams of native G-Code.

Executes the plain G-Code that is contained in the G-Code file given by path. The function call returns after
all lines in the supplied file have been processed. The function is intended for streaming large G-Code files to
the NC-kernel efficiently.

@® Native G-Code: No Structured Text Allowed
1 Note that the supplied G-Code file must not contain any sT-elements, but only plain G-Code.

A G-Code filestream from file 'myNativeGCodeFile.nc' can be called from a GST-program lining up the
following syntax:

'runfile ('myNativeGCodeFile.nc') ;

runFile with R parameters and simple arithmetic expressions
From the TwinCAT V3.1.4024.40 R parameters and simple arithmetic expressions are allowed with runfile.

callRunfileWithRParamsAndExpressions.nc

NO GO X0 YO Z0
N1 G1 X10 F5000

'R3:=3;
IR5:=5;
IR10:=15;

'r100:=-1.234;
IR888:=98.123;

TF5100 Version: 2.11.0 87

GST Reference Manual BEGKHOFF

N2 Gl y={rl00}
'runfile (RunfileWithRParamsAndExpressions.nc') ;
M30

RunfileWithRParamsAndExpressions.nc

Gl X200

Gl Y150

Gl 7234

Gl z = R888 - r100 - rl00 / R10
Gl y=100-r888

Gl x=-R10/r5-r3 gl=20-r3*R5

4.6.17 Vertex Smoothing

smoothingSet

smoothingSet (mainType:= SmoothingMainType, subType:= SmoothingSubType, value:= L
Real)

Sets the vertex smoothing behavior according to the given parameters.

SmoothingMainType

Enumeration of the following values:

smoothingNone
smoothingParabola
smoothingBiquadratic
smoothingBezier3
smoothingBezier5
smoothingTwinBezier

smoothingNone: No smoothing.

smoothingParabola: For parabola smoothing a parabola is inserted geometrically into the segment
transition. This ensures a steady velocity transition within the tolerance radius.

smoothingBiquadratic: With biquadratic smoothing there is no step change in acceleration in the axis
components. With the same radius, a smaller input velocity may therefore be required than for parabolic
smoothing.

smoothingBezier3: In case of the 3rd order Bezier curve a step change in acceleration appears in the axis
components when the tolerance sphere is entered. The max. size is limited by the acceleration of the axis
components and the C1 factor.

smoothingBezier5: With 5th order Bezier blending, no step change in acceleration occurs in the axis
components on entry into the tolerance sphere. In other words, the path axis acceleration is always constant
if blending is selected.

smoothingTwinBezier: With the aid of smoothing, it is possible to insert a Bezier spline automatically
between two geometrical entries. It is only necessary to program the radius of the tolerance sphere. This
describes the maximum permissible deviation from the programmed contour in the segment transition. The
advantage of this type of smoothing as opposed to rounding with an arc is that there are no step changes in
acceleration at the segment transitions.

® Acute angles at the segment transition

1 The Bezier splines are generated by default, even at very acute angles. In order to avoid the
dynamic values being exceeded, a considerable reduction velocity is required in this case.
However, since the dynamics are held constant in the spline, the movement across the spline can
be quite slow. In this case it is often practical to start the segment transition with an accurate stop.
The command AutoAccurateStop [»_157] can be used to avoid having to calculate the angles
manually.

SmoothingSubType

Enumeration of the following values:

88 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

smoothingRadius
smoothingDistance
smoothingAdaptive

Example

The example visualizes the effect of using a smoothing parabola. In the first two corners smoothing value 10
and in the third corner smoothing value 50 have been used. Finally, the fourth corner exhibits smoothing
value 0.

N10 GOl X0 YO F60000

!'smoothingSet (mainType:=smoothingParabola, subType:=smoothingRadius, value:=10);
N20 GOl X100

N30 Y200

!'smoothingSet (mainType:=smoothingParabola, subType:=smoothingRadius, value:=50);
N40 X-100

!'smoothingSet (mainType:=smoothingParabola, subType:=smoothingRadius, value:=0);
N50 YO

N60 X0

MO2

200,09

§N4O

160,04 |

N50 : N30
40,0+

0.04 N6O | N20 |

-100

(=
o
o

4.6.17.1 Subtypes

SmoothingRadius (subtype 1)

If subtype 1 is selected, the maximum tolerance radius (R;g) is used for blending. R is reduced if and only if
the input or output segment is less than 3*R.

TF5100 Version: 2.11.0 89

GST Reference Manual BEGKHOFF

SmoothingDistance (subtype 2)

The distance between the programmed segment transition and the vertex of the parabola is specified with
the subtype 2. The tolerance radius (Rg) results from this. If a segment is too short, then the distance is
shortened so that the tolerance radius is a max. of 1/3.

(|

a i____

SmoothingAdaptive (subtype 3)

Within the tolerance radius (including constant tolerance radius) the system ensures that the maximum
permissible acceleration is not exceeded. Depending on the deflection angle and the velocity, the maximum
axis acceleration within the smoothing segment may be different. The aim of an adaptive tolerance radius is
maximum acceleration during smoothing. In order to achieve this, the smoothing radius is reduced based on
the programmed velocity and dynamics. In other words, if the programmed velocity is changed, the tolerance
radius can also change. The override has no influence on the radius.

4.6.18 Automatic Accurate Stop

autoAccurateStopSet

autoAccurateStopSet (angle:= LREAL) ;

The command autoAccurateStopSet is used in conjunction with blending (see smoothingSet) and allows
driving to acute angles with active blending. A limit angle, up to which an accurate stop between 2 segments
must take place, is defined for this in the command autoAccurateStopSet.

lautoAccurateStopSet (angle:= 30.0);

Segment A
For circle segments, the angle is calculated from the tangents at the points of entry and leaving.

Sample
N10 GO X0 YO zO

N20 GO1 X10 F20000
N30 GO1 X15 Y30
N40 GOl X20 YO

!'smoothingSet (mainType:=smoothingParabola,
subType:=smoothingRadius, value:=50);

N50 GOl X30

N60 GOl X35 Y30

N70 GOl X40 YO

90 Version: 2.11.0 TF5100

https://infosys.beckhoff.com/content/1031/tf5100_tc3_nc_i/4190500619.html?id=6006763733805499437

BECKHOFF

GST Reference Manual

lautoAccurateStopSet (angle:= 46.0) ;
N80 GOl X50
N90 GOl X55 Y30

N100 GOl X60 YO
N110 GO1 X80

N110 M30

N30 NS0

N60

N20 N40 NS5O N70 N80

IsmoothingSet

Requirements

Development environment

Target system

TwinCAT V3.1.4024.15

PC or CX (x86 or x64)

4.6.19 Spline Interpolation

transBSpline

transBSpline (BreakAngle:=LREAL, BreakLength:=LREAL, MergeDiff:=LREAL,

LineBreakAngle:=LREAL,

LineBreakLength:=LREAL,

LineMergeDiff:=LREAL)

transBSpline generates a continuous curve from a piecewise linear polyline.

The curve is bounded by the input polyline, the start and end points are interpolated, interior points are the
control points (DeBoor points) of the curve. At least three points are required. A BSpline curve exhibits local
control and is thereby amenable to control point manipulation.

//Enable
transBSpline (BreakAngle

:= 70, BreakLength :

//Disable
transBSpline () ;

Example:

!'//BSpline

N10 GO0 X18.498 YO
!'transBSpline (BreakAngle:=70.0,
N20 GOl X18.498 YO z0O F6000
N30 X16.572 Y6.543 z1

N40 X15.616 Y9.715 Z2

N50 X15.121 Y11.275 Zz3

BreakLength:=1000.

1000) ;

0);

TF5100

Version: 2.11.0

91

GST Reference Manual BEGKHOFF

N60 X14.838 Y13.196 z4
N70 X14.982 Y15.085 z5
N80 X15.595 Y16.485 Z6
N90 X16.396 Y17.490 z7
N100 X18.653 Y19.243 78
N110 X25.07 Y22.526 Z9
N120 X22.228 Y22.997 78
N130 X19.569 Y23.174 77
N140 X16.488 Y22.884 76
N150 X13.634 Y22.228 75
N160 X9.533 Y20.793 z4
N170 X6.668 Y19.009 z3
N180 X4.224 Y16.877 72
N190 X2.376 Yl4.61 z1
N200 X1.068 Y11.959 Zz0
! transBSpline();

M02

Parameters

BreakAngle (mandatory): Allows preservation of sharp angle features in the path. The spline will break
when the path deviates more than BreakAngle. The spline will terminate and interpolate the point.

e, N30
(3 — »0 Break Angle
N10 N20

BreakLength (mandatory): Allows preservation of long features in the path. The spline will break for
segments longer than BreakLength. The spline will terminate and interpolate the start and end points of the
long segment.

BreakLength

vo o 0
N40

N10 N20 N30

MergeDiff (optional): The BSpline is comprised of Bezier segments. To potentially improve processing
speed the spline may be compressed by merging. Adjacent segments will be merged together when the
difference in control points is less than MergeDiff. Below adjacent segments are merged into one.

® Excessive curvature

1 Overly aggressive merging can result in excessive contortion and a segment of excessive curvature
will be rejected with a run time error.

Acceptable curvature is derived from path velocity and acceleration.

The BSpline is constructed from a control point polyline formed by G01 segments, eg: CADCAM. To improve
processing speed the control point polyline may be compressed or simplified by merging adjacent segments.

92 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

LineBreakAngle (optional): Merging of adjacent control points will break if the deviation angle exceeds
LineBreakAngle.

@, N30
[3 — »® Break Angle
N10 N20

LineBreakLength (optional): Merging of adjacent control points will break if the length exceeds
LineBreakLength.

BreakLength

) o 7°
N40

N20 N30

L
N10

LineMergeDiff (optional): Adjacent control points will be merged if the difference (perpendicular distance) is
less than LineMergeDiff. In the example N30 may be eliminated, simplifying the control polygon.

e N40

N10

N20 N30 N50

If the optional parameters aren’t parameterized or if they are 0, no merging will take place.

jmi o

Excessive curvature

Overly aggressive merging can result in excessive contortion and a segment of excessive curvature
will be rejected with a run time error.

i o

Acceptable curvature is derived from path velocity and acceleration.

Processing order:

If the BreakAngle or BreakLength are 0. No further processing will take place. LineBreakAngle,
LineBreakLength and LineMergeDiff are processed firstly to simplify the control point polyline. BreakAngle
BreakLength and MergeDiff are processed finally to generate the BSpline curve.

Decoder Stops and Handshake M functions:

The BSpline should be terminated with ! transBSpline () ; prior to either a decoder stop or a M-function
type handshake.

!//BSpline

N10 GO0 X18.498 YO
!'transBSpline (BreakAngle:=70.0, BreakLength:=1000.0);
N20 GOl X18.498 YO Z0 F6000
N30 X16.572 Y6.543 Zl

N40 X15.616 Y9.715 Z2

N50 X15.121 Y11.275 z3

N60 X14.838 Y13.196 Zz4

N70 X14.982 Y15.085 Z5

N80 X15.595 Y16.485 Z6

N90 X16.396 Y17.490 z7

N100 X18.653 Y19.243 278

TF5100 Version: 2.11.0 93

GST Reference Manual BEGKHOFF

N110 X25.07 Y22.526 zZ9
'transBSpline () ;
Isync();

!transBSpline (BreakAngle:=70.0, BreakLength:=1000.0);
N120 X22.228 Y22.997 Z8
N130 X19.569 Y23.174 77
N140 X16.488 Y22.884 76
N150 X13.634 Y22.228 Z5
N160 X9.533 Y20.793 z4
N170 X6.668 Y19.009 z3
N180 X4.224 Y16.877 Z2
N190 X2.376 Y1l4.61 71
N200 X1.068 Y11.959 Z0
! transBSpline () ;

M02

Compatible G-Codes and functions

G-Codes other than G01 are supported.

GO0

G02, GO3 (Circle and Helix) : The BSpline will terminate before and continue afterwards.
G04

G09, G60

G54 and other transformations

disableMask ()

runFile (path:=)
smoothingSet (mainType:=smoothingTwinBezier, subType:=smoothingRadius,value:=)

ToolRadiusCompensation is not supported.

Requirements

Development Environment Target System
TwinCAT V3.1.4024 .4 PC or CX (x86 or x64)

4.6.20 Dynamic Override

dynOverrideSet
dynOverrideSet (value:= LREAL)
Set the dynamic override of axes to the given value.

The dynamic override function can be used to implement and evoke percentage changes to the dynamic
axis parameters in the axis group while the NC program is running. Thus, these changes result in new values
for motion dynamics. Without any stop the new dynamic values become valid when the line is executed.

Range of Values

The factor value for dynOverrideSet has to reside within the range 0 < value < 1.0.

Example

Within the example the new dynamic values become valid without any stop. In block N010 the previously set
values are used for deceleration, while the changed values are used for acceleration in block N020.

NO10 GO1 X100 Y200 F6000

!dynOverrideSet (value:= 0.4);

N020 GO01 X500
MO02

Example

The command dynOverrideSet can be used to reduce acceleration and jerk e.g. only for one movement.
In the example acceleration and jerk are reduced by 50 percent merely in block N020.

94 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

N010 GO01 X100 Y100 F6000
!dynOverrideSet (value:= 0.5);

N020 X0

!'dynOverrideSet (value:= 1);

N030 X100

MO02

4.6.21 Programming reference

programmingReferenceSet

programmingReferenceSet (value:= ReferenceType)

As an alternative to G90/G91 [P 48], programmingReferenceSet can be used to set the dimensions of the
subsequent movement commands to absolute or relative.

programmingReferenceGet
ReferenceType := programmingReferenceGet ()

The currently active dimension for the movement commands can be read out with
programmingReferenceGet

ReferenceType

Enumeration of the following values:

referenceAbsolute
referenceRelative

Example

programmingRefGet/Set is particularly recommended for functions. At the start of a function, the
currently set dimension can be read out with programmingRe fGet before it is set to the dimension of the
function with G90/G91 or programmingRefSet. At the end of the function, programmingRefSet is used
to ensure that the dimension is reset.

{
FUNCTION TestFunction

VAR
programmingRef : ReferenceType;

END VAR
programmingRef := programmingReferenceGet () ;
programmingReferenceSet (value:= referenceRelative);

IN21 GO1 X10 Y-10
IN22 GO1 X10 Y-10

programmingReferenceSet (value:= programmingRef) ;

END_FUNCTION
}

N10 GOO X0 YO ZzO
N20 GOl G90 X100 Y20 F6000

!TestFunction () ;

N30 GO1 X100 Y30
M30

Requirement

TwinCAT
TwinCAT V3.1.4024.54

TF5100 Version: 2.11.0 95

GST Reference Manual BEGKHOFF

4.6.22 Center Point Reference of Circles

circleCenterReferenceSet

circleCenterReferenceSet (value:= ReferenceType)

» Sets the center reference type for circles that are programmed by G02/G03 using a center point, whose

definition involves the 1,,k-parameters.

* For referenceAbsolute the center point of the circle is defined by the supplied 1,7,k-vector.

* For referenceRelative the center point is defined by the sum of the circle starting-point and the

supplied i,7,k-vector. This is the default and usual behavior of G-Code.

circleCenterReferenceGet
ReferenceType := circleCenterReferenceGet ()

Returns the currently active center point reference for circles.

circleCenterReferenceGet prerequisite

TwinCAT

TwinCAT V3.1.4024.54

ReferenceType

Enumeration of the following values:

referenceAbsolute
referenceRelative

4.6.23 Change in axis dynamics

axisDynamicsSet

axisDynamicsSet (axisNo:= UDINT, acc:= LREAL, dec:= LREAL, jerk:= LREAL);

axisDynamicsSet can be used to change the axis dynamics at runtime.

Function axisDynamicsSet
Parameter <axisNo> Axis in the interpolation group:

X:0

Y: 1

Z:2

Q1:3

Q5:7
Parameter <acc> Value of the maximum permitted acceleration in mm/s”2.
Parameter <dec> Value of the maximum permitted deceleration in mm/s*2.
Parameter <jerk> Value of the maximum permitted jerk in mm/s”3.
Example:
N10 GO1 X100 Y200 F6000
IR4:=10000;

'axisDynamicsSet (axisNo:= 0, acc:= 2250, dec:= 2250, jerk:= R4);
N30 GOl X500
N40 MO02

96 Version: 2.11.0

TF5100

BEGKHOFF GST Reference Manual

Requirements

Development Environment Target System

TwinCAT V3.1.4024.4 PC or CX (x86 or x64)

4.6.24 Change in path dynamics

pathDynamicsSet
pathDynamicsSet (acc:= LREAL, dec:= LREAL, jerk:= LREAL);

pathDynamicsSet can be used to change the path dynamics at runtime.

Function pathDynamicsSet

Must be set >= 1. If set to 0, the default value is used.

Parameter <acc> Value of the maximum permitted acceleration in mm/s”2.

Must be set >= 1. If set to 0, the default value is used.

Parameter <dec> Value of the maximum permitted deceleration in mm/s*2.

Parameter <jerk> Value of the maximum permitted jerk in mm/s”3.
Must be set >= 1. If set to 0, the default value is used.

Example:

N10 GOl X100 Y200 F60000

'R4:=10000;

//Set path dynamics

!'pathDynamicsSet (acc:=200, dec := 200, jerk := R4);

N30 GOl X500 YO

//Set path dynamics back to default values and jerk to 12000
!'pathDynamicsSet (acc:=0, dec := 0, jerk := 12000);

N50 GOl X100 Y200

//Set path dynamics to default values

!pathDynamicsSet (acc:=0, dec := 0, jerk := 0);

N70 GO1 X500 YO

N80 MO02

Requirements

Development Environment Target System

TwinCAT V3.1.4024.12 PC or CX (x86 or x64)

4.7 Transformations

Speaking of GsT-Transformations we refer e.g. to rotations or to zero-point-shifts.

The relation between the MCS (machine coordinate system) and the PCS (program coordinate system) is
defined by the effective transformation T. T is the concatenation of the transformations T, T, and

T (T =T,*T,* T;). Note that the order of concatenation is significant for the transformations do not
commute in general. The transformation T, represents a (historical) zero offset shift, the transformation T
represents a user defined transformation and the transformation T+ represents a tool transformation. They

are described in detail later.

Figure “TransformationsTzTuTt” visualizes the relation between the MCS (machine coordinate system) and

the PCS (program coordinate system):

» T,is defined to be a translation by [20, 20,01,

» Ty is a combination of the translation [30,-10, 0], followed by a rotation by 45 degree around the z-

axis,
e T;isatranslationby [0,-10,0].

TF5100 Version: 2.11.0

97

GST Reference Manual BEGKHOFF

30—Y
20 - + + ¥ +
10 + + ¥ +
0 + + ; +
-10 ! j | | ! | | | | | r X

Figure “TransformationsTzTuTt".

4.71 Modification of the Effective Transformation T and its Effect

Most G-Codes define only the destination point of a movement. Therefore, the interpreter maintains the
current position of the tool. This point can be represented in MCS (machine coordinate system) coordinates
and PCS (program coordinate system) coordinates while the equation

CurrentPointMCS = T * CurrentPointPCS holds. In contrast to the previous implementation, this
transformation equation also holds after a modification of T. This behavior is accomplished by adapting the
CurrentPointPCS. The MCS (machine coordinate system) point is not adapted, as this would affect the
machine. This behavior may be summarized roughly as: When the active transformation is changed, the
current PCS (program coordinate system) point is adapted in a way that the modification shows no effect.

Example:

After N10 the coordinates of the current PCS (program coordinate system) and MCS (machine coordinate
system) point are [20, 10, 80], since no transformation is active. The translation changes the current PCS
(program coordinate system) pointto [28, 7, 84]. Applying the translation on this point yields the
unchanged MCS (machine coordinate system) point [20, 10, 80]. Hence, the translation shows no effect,
although it is active. The block N20 programs a movement to the PCS (program coordinate system) point
[25,7,10], which is mapped to the MCS (machine coordinate system) coordinate [17, 10, 6]. After the
invocation of transPop () the current PCS (program coordinate system) point is set to the current MCS
(machine coordinate system) point.

N10 GO1 X20 Y10 z80 F6000

'transTranslate (-8,3,-4);

N20 GO1 X25 z10

!transPop () ;
MO02

Example:

If the user wants the PCS (program coordinate system) point to remain unchanged, he has to retrieve and
program it, as shown in the following code. However, the desire for an unchanged PCS (program coordinate
system) point typically indicates a bad programming style. Actually, there should be no need for the following
code.

{

VAR

pcsX, pcsY, pcsZ : LREAL;
END VAR

// .. G-Code ..

frameGet (x=>pcsX, y=>pcsY, z=>pcsZ) ;
// .. modify transformations ..

!GO0l x=pcsX y=pcsY z=pcsZ F6000

}

98 Version: 2.11.0 TF5100

BEGKHOFF GST Reference Manual

4.7.2 Components of the Effective Transformation T

Zero Offset Shift T,

The T,-transformation is affected by certain G-Codes. It has no effect if G53 is active. Otherwise, T, is the
combination of the three translations T, T,5, and one of {T,, ..., Tz} The former two translations are set
via the G-Codes G58 and G59. The latter translation is selected by the G-Codes G54 to G57. One translation
is associated with each of these 4 G-Codes. It can be set by the PLC or using the sT-function
zeroOffsetShiftSet.

Tool Transformation T;

T; is defined by the currently selected tool. It has no effect if tool 0 (D0) is selected. Otherwise, it is a
translation by [offsetX, offsetY, offsetz] + (length+lengthAdd) * D where Disthe normal
of the current workingplane.

Userdefined Transformation T

Ty is defined by a stack of transformations. The stack of depth N contains elementary transformations

Tuis Tuzs ---» Tuas Where T is the topmost transformation. Initially, the stack is empty. The userdefined
transformation is the concatenation of these elementary transformations T, = Ty, * Ty, * ... * Ty- Note that
the order is significant for the transformations do not commute in general. If the stack is empty, T is the
identity transformation, which has no transformation effect.

4.7.3 Applying Transformations

A transformation is pushed onto the stack by the following ST-functions. The transformation pushed recently
will be the topmost transformation on the transformation stack. When a transformation is pushed onto the
transformation stack, the stack depth is increased by one and T, is adapted accordingly.
transTranslate (x:= LREAL, y:= LREAL, z:= LREAL);

(* A rotation pushed onto the stack of transformations is interpreted around the respective
axis using the current angle-unit, e.g. degree or radian. *)

transRotX (angle:= LREAL) ;
transRotY (angle:= LREAL) ;
transRotZ (angle:= LREAL) ;
transMirrorX () ;
transMirrorY () ;
transMirrorZ () ;

transScale (factor:= LREAL) ;

4.7.4 Revoking Transformations

The function transPop () removes the topmost transformation from the transformation stack. When
transPop () removes a transformation from the transformation stack, the stack depth is reduced by one
and Ty is adapted accordingly. Commonly, the transPop () -function is used to revoke a temporary
transformation.

Example:

In the following example the translation is applied to N10, N20 and N30. The rotation is only applied to N20
as it is revoked by transPop () . Figure “ExampleRevokingTransformations” shows the resulting MCS
(machine coordinate system) path. Note that the rotation centeris [20, 0, 0] in MCS (machine coordinate
system), which is the origin in PCS (program coordinate system) after the preceeding translation.

'transTranslate (20,0,0);
N10 X10 YO0 Fe6000
!'transRotZ (90) ;

N20 X20 YO

!transPop () ;

N30 X30 YO

'transPop () ;

M02

TF5100 Version: 2.11.0 99

GST Reference Manual BEGKHOFF

Y
30 o + + + + + + + + + + +
20 - + + + + + + +
10 + + + + + + +
0-— [+ + + + +
NT0
-10 | | | | | | | l | | r X

-10 O 10 20 30 40 50 60 70 80 90 100

Figure “ExampleRevokingTransformations”.

4.7.5 Restoration of Stack

The function transDepth () yields the current depth of the stack. The function transRestore (depth)
removes transformations from the stack until the given depth is reached. Typically, the two functions are
combined to save and restore the state of the transformation stack.

It is good programming style to do this saving and restoring in the context of userdefined ST-functions.

Example:

Initially, within the following function the depth of the stack is stored in the variable depth. At the end of the
function the initial state is restored by t ransRestore. Note that restoration only works properly if the stack
depth does not fall below depth within the function. Instead of using transDepth () and

transRestore () the stack depth could also be restored using transPop (). However, it may become
cumbersome to keep pushing and popping of transformations synchronous, especially if transformations are
pushed conditionally.

{
FUNCTION draw
VAR
depth : UINT;
END_VAR
depth := transDepth();
transTranslate (10,0,0) ;
// .. G=Code ..
transRotZ (45) ;
// .. G-Code ..
transMirrorX () ;
// .. G-Code ..
transRestore (depth) ;
END_FUNCTION
}

4.8 Error Reporting

Efficient development of CNC-programs requires decent support by development tools. This support includes
proper reporting of programming errors for both, compile-time errors and runtime errors. An error message
should point directly to the source code the error originates from and give a precise description of the
circumstances under that the error occured (dynamic data). Such individual error messages help a developer
substantially to fix errors in short time. The GST-interpreter yields such error messages, as described in the
following texts.

100 Version: 2.11.0 TF5100

BECKHOFF GST Reference Manual

4.8.1 Error Messages

In case of an error the interpreter produces a descriptive error message. An error message consists of a
source code coordinate and a description. The source code coordinate links the error to its origin in the GST-
program. It defines a range of source code stretching from the first character of the code range to the last
character of the code range. Both, first and last character, are defined by their file, line and column. Note that
the last character actually points to the first character behind the range, which is a common technical
convention.

Example:

In the following example an integer variable i is declared and initialized. The initialization uses a floatingpoint
literal. Since an implicit conversion from floatingpoint to integer is not allowed in ST, the interpreter produces
the descriptive error message given below when the program is loaded. The error message does not only
report that a type-error has occured, it also gives the precise position: File aaa.nc, line 3, column 14 to 17.
This code range displays the literal ‘1. 5’. In addition, the programmed type (real) and the expected type
(int) are reported. With such a detailed error message bugs can be fixed by the developer easily.

{
VAR

i : int := 1.5;
END_VAR

}
M02

Error message:

aaa.nc: 3.14-3.17: Invalid implicit conversion from type
'<real literal>' to 'int'.

4.8.2 Compile-Time Errors and Runtime Errors

Errors may occur during program loading (so called compile-time errors) or during program execution (so
called runtime errors). Fortunately, most errors are detected at compile-time. This detection includes missing
files, syntax errors, type errors and unexpected identifiers. The developer gets feedback immediately when
he tries to load the program. Thus, a part of unexpected failures during machining is avoided.

However, there are also errors that, by their nature, cannot be detected at compile-time. For instance, this
circumstance includes a division by zero, since the divisor may be computed dynamically. If a runtime error
occurs, the interpreter is stopped safely and an error message is produced. A runtime error message is
similar to a compile-time error message. It even includes a reference to the pertinent source code.

Example:

In the following example the FOR-loop contains a division of 10 by the loop variable i. Since the variable i is
iterated from -3 to 3, this program leads to an error during the 4th iteration, when i has the value 0. This
error is detected at runtime and stops the interpreter. The error message shown below is reported. It points
precisely to the code ‘10/1’ in the example.

FILE aaa.nc:
{
VAR
i, 3 : int;
END_ VAR
FOR i := -3 TO 3 DO
j = J + 10/1i;
END_ FOR;
}
MO02

Error message:

aaa.nc: 7.12-7.16: Division by =zero

TF5100 Version: 2.11.0 101

GST Reference Manual BEGKHOFF

Example:

At runtime the interpreter also performs checking of array bounds. Consequent