
Manual | EN

TF5100
TwinCAT 3 | NC I

2024-01-12 | Version: 2.11.0

Table of contents

TF5100 3Version: 2.11.0

Table of contents
1 Foreword.. 7

1.1 Notes on the documentation ... 7
1.2 For your safety .. 7
1.3 Notes on information security.. 9

2 Introduction ... 10

3 User interface in the TwinCAT 3 Engineering environment.. 11
3.1 Outline... 11
3.2 Interpolation Channel .. 12
3.3 Interpreter element .. 14

3.3.1 Interpreter online window... 15
3.3.2 "Interpreter" tab .. 17
3.3.3 "M-Functions" tab... 18
3.3.4 "R parameters" tab... 19
3.3.5 "Zero point" tab .. 20
3.3.6 "Tools" tab.. 21
3.3.7 "Editor" tab ... 21
3.3.8 "MDI" tab .. 22

3.4 Group element .. 23
3.4.1 "General" tab.. 23
3.4.2 "DXD" tab ... 24
3.4.3 “Settings” tab.. 28
3.4.4 "Online" tab .. 29
3.4.5 "3D-Online" tab .. 30

4 GST Reference Manual ... 31
4.1 General Notes ... 31
4.2 Preprocessor ... 31
4.3 Combining G-Code and ST... 33
4.4 G-Code (DIN 66025) ... 35

4.4.1 Tool Radius Compensation (D, G40, G41, G42) ... 35
4.4.2 Comments.. 37
4.4.3 Execution Order ... 38
4.4.4 Mutual Exclusive G-Codes... 39
4.4.5 Rapid Traverse (G00) .. 39
4.4.6 Linear Interpolation (G01) .. 40
4.4.7 Circular Interpolation (G02, G03, IJK, U) ... 40
4.4.8 Dwell Time (G04) ... 43
4.4.9 Accurate Stop (G09,G60)... 43
4.4.10 Delete Distance to go (G31)... 43
4.4.11 Zero Offest Shifts (G53,G54...59) .. 44
4.4.12 Working Plane and Feed Direction (G17, G18, G19, P) .. 45
4.4.13 Inch/metric dimensions (G70, G71, G700, G710).. 46
4.4.14 Dimensional Notation (G90, G91) .. 48
4.4.15 M-Functions (M) ... 49

Table of contents

TF51004 Version: 2.11.0

4.4.16 General Codes (F, N, Q, X, Y, Z, A, B, C).. 50
4.5 ST - Structured Text (IEC 61131-3) .. 52

4.5.1 Comments.. 52
4.5.2 Literals.. 53
4.5.3 Native Data Types.. 55
4.5.4 Userdefined Types ... 56
4.5.5 Control Structures .. 57
4.5.6 Jump statement.. 58
4.5.7 Userdefined Functions ... 59
4.5.8 Standard Functions .. 60
4.5.9 R-Parameters... 67
4.5.10 H, S, and T parameters.. 68

4.6 CNC Functions.. 69
4.6.1 Strings and Messages.. 69
4.6.2 Transformations ... 70
4.6.3 Circular Movement ... 76
4.6.4 Centerpoint Correction ... 77
4.6.5 Tools .. 77
4.6.6 Synchronization.. 79
4.6.7 Query of Axes .. 80
4.6.8 Current Point .. 81
4.6.9 Tool Radius Compensation.. 81
4.6.10 Suppression of G-Code Blocks .. 82
4.6.11 Zero Offset Shift ... 83
4.6.12 Units ... 84
4.6.13 Trigonometric (Unit Aware) .. 85
4.6.14 Feed Mode ... 86
4.6.15 Feed Interpolation .. 87
4.6.16 Streaming of Large G-Code Files .. 87
4.6.17 Vertex Smoothing... 88
4.6.18 Automatic Accurate Stop.. 90
4.6.19 Spline Interpolation .. 91
4.6.20 Dynamic Override .. 94
4.6.21 Programming reference ... 95
4.6.22 Center Point Reference of Circles.. 96
4.6.23 Change in axis dynamics ... 96
4.6.24 Change in path dynamics... 97

4.7 Transformations .. 97
4.7.1 Modification of the Effective Transformation T and its Effect ... 98
4.7.2 Components of the Effective Transformation T.. 99
4.7.3 Applying Transformations .. 99
4.7.4 Revoking Transformations ... 99
4.7.5 Restoration of Stack... 100

4.8 Error Reporting.. 100
4.8.1 Error Messages.. 101
4.8.2 Compile-Time Errors and Runtime Errors.. 101

Table of contents

TF5100 5Version: 2.11.0

4.8.3 Errors in G-Code .. 102
4.8.4 Preprocessing .. 103

4.9 General Command Overview.. 103
4.10 Comparative Command Overview .. 114

5 Classic Dialect Reference Manual ... 125
5.1 Basic Principles of NC Programming .. 125

5.1.1 Structure of an NC Program... 125
5.1.2 Block Skipping.. 126
5.1.3 Look-Ahead.. 126
5.1.4 Smoothing of Segment Transitions .. 128
5.1.5 Co-ordinate System ... 128
5.1.6 Dimensional Notation ... 128
5.1.7 Working Plane and Feed Direction .. 129
5.1.8 Inch/metric dimensions .. 130
5.1.9 Single Block Operation... 132
5.1.10 Arithmetic Parameters.. 133

5.2 Programming Movement Statements.. 135
5.2.1 Referencing.. 135
5.2.2 Rapid Traverse... 135
5.2.3 Linear Interpolation .. 136
5.2.4 Circular Interpolation .. 137
5.2.5 Helix ... 139
5.2.6 Dwell Time ... 140
5.2.7 Accurate Stop... 140
5.2.8 Feed interpolation .. 140
5.2.9 Zero Offset Shifts ... 141
5.2.10 Target Position Monitoring ... 144
5.2.11 Contour definitions ... 146
5.2.12 Rotation.. 147
5.2.13 Mirror.. 150
5.2.14 Smoothing of segment transitions.. 151
5.2.15 Circular Smoothing... 156
5.2.16 Automatic Accurate Stop.. 157
5.2.17 Delete Distance to Go .. 158
5.2.18 Modulo Movements.. 158
5.2.19 Auxiliary axes ... 160

5.3 Supplementary Functions ... 163
5.3.1 M-Functions ... 163
5.3.2 H, T and S Parameters .. 167
5.3.3 Decoder stop.. 168
5.3.4 Jumps... 169
5.3.5 Loops ... 171
5.3.6 Subroutine techniques ... 172
5.3.7 Dynamic Override .. 174
5.3.8 Altering the Motion Dynamics .. 174
5.3.9 Change of the Reduction Parameters.. 175

Table of contents

TF51006 Version: 2.11.0

5.3.10 Change of the Minimum Velocity ... 177
5.3.11 Read Actual Axis Value.. 177
5.3.12 Skip virtual movements .. 178
5.3.13 Messages from NC program.. 179

5.4 Tool Compensation ... 179
5.4.1 Tool Data.. 179
5.4.2 Selecting and Deselecting the Length Compensation ... 182
5.4.3 Cartesian Tool Translation ... 182
5.4.4 Cutter Radius Compensation ... 185
5.4.5 Orthogonal Contour Approach/Departure .. 190
5.4.6 Path Velocity in Arcs .. 190
5.4.7 Bottle Neck Detection... 191

5.5 Command overview .. 192
5.5.1 General command overview .. 192
5.5.2 @-Command Overview.. 195

6 PLC NCI Libraries.. 197
6.1 PLC Library: Tc2_NCI ... 197

6.1.1 Configuration.. 197
6.1.2 NCI POUs .. 204
6.1.3 Parts program generator .. 260
6.1.4 Blocks for compatibility with existing programs.. 268
6.1.5 Obsolete... 293

6.2 PLC Library: Tc2_PlcInterpolation .. 294
6.2.1 FB_NciFeedTablePreparation.. 296
6.2.2 FB_NciFeedTable .. 297
6.2.3 Types and Enums .. 298

7 Samples ... 311

8 Support and Service ... 312

9 Appendix.. 313
9.1 Display of the parts program ... 313
9.2 Display of technology data .. 315
9.3 Displaying the remaining path length .. 319
9.4 Parameterisation ... 320

9.4.1 Path override (interpreter override types) .. 323
9.5 Cyclic Channel Interface ... 324

Foreword

TF5100 7Version: 2.11.0

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TF51008 Version: 2.11.0

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF5100 9Version: 2.11.0

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Introduction

TF510010 Version: 2.11.0

2 Introduction
The TwinCAT NCI stands for 'numerical control interpolation' and is the NC system for interpolated path
movements.
TwinCAT NCI offers 3D interpolation (interpreter, setpoint generation, position controller), an integrated PLC
with an NC interface and an I/O connection for axes via the fieldbus.

NCI can be used to drive 3 path axes and up to 5 auxiliary axes per channel. In addition, master/slave
couplings can be formed. In combination with TwinCAT Kinematic Transformation (TF511x), complex
kinematic systems can be controlled via NCI.

Programming is done with a dedicated NC program, based on DIN 66025, with its own language extensions
(cf. Classic Dialect Reference Manual [} 125]) or directly from the PLC with the PLC Library:
Tc2_PlcInterpolation [} 294].

Installation preconditions

TwinCAT NCI is integrated in the TwinCAT 3 installation.

Target system

Windows 7, Windows 10, Windows CE (only Classic Interpreter)

Minimum Plattform-Level: 40

Overview

Chapter Contents
XAE user interface [} 11] Description of the parameters and functionalities for

the interpreter in the TwinCAT 3 Engineering
environment (XAE)

Interpreter [} 125] Interpreter programming instructions.

PLC NCI Libraries [} 197] Description of the special NCI libraries

Samples [} 311] Samples for using TwinCAT NCI with PLC and parts
program, and for direct motion control from the PLC
with the Tc2_PlcInterpolation library

Appendix [} 320] Parameterization, cyclic channel interface

Further information
• ADS Return Codes

• ADS Specification of the NC

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_ads_intro/374277003.html&id=4954945278371876402
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713061899.html?id=4266053388574064834

User interface in the TwinCAT 3 Engineering environment

TF5100 11Version: 2.11.0

3 User interface in the TwinCAT 3 Engineering
environment

3.1 Outline
In order to be able to use the interpolation, add an interpolation channel in the XAE . This applies to the
interpreter and the PLC Library: Tc2_PlcInterpolation [} 294].
1. Create an NC channel.

2. In the selection box select the NC channel for the interpolation.

3. Assign PTP axes to it from the PLC via a function block.
ð The created channel consists of the following elements:

Interpolation Channel [} 12] Description of the properties pages embedded in the
'interpolation' element.

Interpreter Element [} 14] Description of the properties pages embedded in the
'Interpreter' element

Group element [} 23] Description of the properties pages embedded in the
'group' element

User interface in the TwinCAT 3 Engineering environment

TF510012 Version: 2.11.0

Notice Axis-specific parameters for NCI can be found in the axis parameterization under subitem 'NCI
parameters'.

3.2 Interpolation Channel

Click on the interpolation channel to display the following dialogs:

”Online" tab

All the axes in the current Interpolation Group [} 23] will be listed. Currently shown:

• Actual positions
• Set positions
• Following errors
• Set velocities and
• Error Codes

User interface in the TwinCAT 3 Engineering environment

TF5100 13Version: 2.11.0

"Override" tab

The channel override for the axes can be read and set on the 'Override' page. If PLC is running and the
cyclical channel interface [} 324] is being written, the override set here will be overwritten by the PLC.

Further information on the override principle can be found under Path override (interpreter override types)
[} 323].

The spindle override is described by the cyclic channel interface, although it is currently not supported.

User interface in the TwinCAT 3 Engineering environment

TF510014 Version: 2.11.0

3.3 Interpreter element

Click on “Interpreter” to show the following property pages and the online window:

User interface in the TwinCAT 3 Engineering environment

TF5100 15Version: 2.11.0

3.3.1 Interpreter online window

Axes

As on the "Online" properties page in the interpolation channel, this window lists all axes currently included in
the interpolation group. Values for the following parameters are displayed:

• Actual positions
• Set positions
• Following errors
• Set velocities and
• Current error codes

.

Actual Program Line

The Actual Program Line shows the current NC block to be processed in the block execution. The last row in
the window is the current block.
Unlike this, the current block is in the middle row in the case of GST.

As for nearly all the parameters, the program display can be read off via ADS. This can be used to display
the current NC blocks in a Visual Basic application, for example (see ADS device documentation - ADS
Interface NC).

Program name

Displays the name of the currently loaded program. This does not necessarily have to be the program
displayed in Editor.

Interpreter status

The interpreter status indicates the current status of the interpreter state machine. The complete list is given
below. As PLC evaluation does not require all status information, only the most important parameters are
explained.

Status Description
ITP_STATE_IDLE The interpreter is in idle state when there is no NC

program loaded as yet or when a group reset is being
executed. The interpreter also goes into idle state
when a current program is stopped. In the case a

User interface in the TwinCAT 3 Engineering environment

TF510016 Version: 2.11.0

Status Description
group reset must be executed in order to prevent
error 0x42C5. It is therefore recommended to
execute a group reset after stopping via the PLC.

ITP_STATE_READY After successful loading of an NC program, the
interpreter is in ready state. After a program has been
successfully processed and exited, the interpreter
goes into ready state. In the meantime, however,
other states are accepted.

ITP_STATE_ABORTED If a runtime error occurs during the processing of an
NC program, the interpreter goes into aborted state.
The actual error code is given in the channel status.

ITP_STATE_SINGLESTOP This status is only accepted in Single Block Mode
[} 132]. As soon as the entry has been sent from the
interpreter to the NC core, the interpreter goes into
this mode.

Querying the interpreter status during program execution
Since the interpreter status may change between different states during program execution, we
recommend querying it with a negative logic. During program execution the interpreter state is not
necessarily ITP_STATE_RUNNING. If the program was executed successfully, the interpreter is
subsequently always in Ready state (see also Samples [} 311]).

End of program
The end of the program is characterized by an M function. Therefore either M2 or M30 are being
used. If the M function is missing at the end of the program, the status of the interpreter could return
wrong values.

Interpreter status return values
0 ITP_STATE_INITFAILED
1 ITP_STATE_IDLE
2 ITP_STATE_READY
3 ITP_STATE_STARTED
4 ITP_STATE_SCANNING
5 ITP_STATE_RUNNING
6 ITP_STATE_STAY_RUNNING
7 ITP_STATE_WRITETABLE
8 ITP_STATE_SEARCHLINE
9 ITP_STATE_END
10 ITP_STATE_SINGLESTOP
11 ITP_STATE_ABORTING
12 ITP_STATE_ABORTED
13 ITP_STATE_FAULT
14 ITP_STATE_RESET
15 ITP_STATE_STOP
16 ITP_STATE_WAITFUNC
17 ITP_STATE_FLUSHBUFFERS

Channel status

The channel status indicates the current error state of the channel. If an error occurs during NC program
loading or runtime, the corresponding error code is displayed here. If, for example, an axis following error
occurs during processing, the NC program is stopped and the channel status will have a value unequal 0.
The channel status should therefore always be checked in the PLC, in order to be able to respond to errors.
The channel status is always 0 during normal operation.

Loading buffer

The current size of the loading buffer for the interpreter is displayed here. Select the "Interpreter" tab to
change the value.

User interface in the TwinCAT 3 Engineering environment

TF5100 17Version: 2.11.0

3.3.2 "Interpreter" tab

Type

The interpreter type can be selected in the Type selection box. Available are

• the GST-interpreter [} 31]. GST combines native DIN 66025 based G-code with programming
extensions of Structured Text as a higher level language.

• The DIN 66025 based NC-interpreter [} 125] (Classic Dialect) with @-command register function
extensions.

• The selection of none if the PlcInterpolation [} 294] library is used.

As default setting the GST-interpreter is set. To employ the NC-interpreter with register function extensions
you have to select it explicitly.

Loading Buffer Size

The loading buffer for the interpreter can be edited here. Note that the memory required in the interpreter is
substantially greater than the size of the NC-file. The maximum permitted loading buffer size is limited to
64 MB.

Changing the Loading Buffer Size
If the size of the loading buffer is changed, it is absolutely necessary to execute a TwinCAT restart.

G70/G71 Factor

If a switch from G71 [} 130] (millimeters - default) to G70 takes place in the parts program, the conversion
factor is stored here. This conversion factor only has to be edited if the base reference system is not
millimeters.

If for example the machine was calibrated based on inches and G70 is activated in the parts program, the
G70 factor should be set to 1 and the G71 factor should be set to 1/25.4.

User interface in the TwinCAT 3 Engineering environment

TF510018 Version: 2.11.0

Save/Restore

At runtime the Save function can be used to save a “snapshot” of the current parameters. The checkboxes
can be used to specify the parameters to be saved. The Save function generates the file ‘SnapShot.bin’ in
the TwinCAT\CNC directory.

The Restore function loads the file saved with the Save function. This function is solely intended for
debugging purposes.

3.3.3 "M-Functions" tab

Use only with interpreter
This tab is irrelevant for operation with the library Tc2_PlcInterpolation.

Shows the currently parameterized M-functions. On this page new M-functions can be added, or existing
ones modified.

A more detailed description of the available parameters can be found in the interpreter description under M-
functions [} 163].

Parameterization of M-functions
If M-functions are re-parameterized, subsequent activation of the configuration and a TwinCAT
restart is required.

User interface in the TwinCAT 3 Engineering environment

TF5100 19Version: 2.11.0

3.3.4 "R parameters" tab

The currently applicable R parameters are displayed on the 'R parameters' properties page. During the test
phase it is possible to, for example, initialize or change R parameters here. R parameters are generally
edited, however, from the NC program or if necessary, from the PLC.

You can find further information about R parameters in the interpreter description under R Parameters
[} 133].

User interface in the TwinCAT 3 Engineering environment

TF510020 Version: 2.11.0

3.3.5 "Zero point" tab

The current zero shift values for the axes within the interpolation group are displayed here. The parameters
P54..P59 represent for the corresponding G code. As for the R parameters, the zero shift values can be
edited from here.

Notice Columns F & G (e.g. P54 F & P54 G) exist for historical reasons and are added for each
parameter.

You can find further details of the effects in the interpreter description under zero shifts [} 141].

User interface in the TwinCAT 3 Engineering environment

TF5100 21Version: 2.11.0

3.3.6 "Tools" tab

You can edit the data for the tool compensation on the "Tools" property page.

More detailed parameter descriptions can be found in the interpreter description under tool compensations
[} 179].

3.3.7 "Editor" tab

User interface in the TwinCAT 3 Engineering environment

TF510022 Version: 2.11.0

The editor is used to display and edit the NC programs.

• Browse...
Opens a dialog with which existing NC programs can be selected and displayed.

Remote Connection: Load NC-File from Target System
If the target system is connected via a remote connection, the NC-file has to be selected from the
target system and cannot be loaded from the local machine.

• F5
Starts the currently loaded NC program.

The NC program displayed in the editor does not necessarily have to be the currently loaded
program.

• F6
Stops the currently running NC program.

• F7
Loads the NC program displayed in the editor.

• F8
Executes a group reset.

• F9
Saves the NC program currently displayed in the editor under the same name.

• Editor...
Opens a larger window in which the NC program is displayed.

3.3.8 "MDI" tab

MDI stands for “Manual Data Interface”. It can be used to enter individual NC blocks directly from the
TwinCAT 3 Engineering environment (XAE). Processing is started and stopped via F5 and F6 respectively.

User interface in the TwinCAT 3 Engineering environment

TF5100 23Version: 2.11.0

3.4 Group element

General [} 23]
DXD [} 24]
Settings [} 28]
Online [} 29]
3D-Online [} 30]

3.4.1 "General" tab

group ID

The group ID is shown on the "General" page. This is required for group-specific ADS commands.

Create symbols

In order to be able to access path variables symbolically, select symbol generation for the group here.

User interface in the TwinCAT 3 Engineering environment

TF510024 Version: 2.11.0

3.4.2 "DXD" tab

The NCI group parameters are written on the "DXD" properties page.

Curve velocity reduction method

The curve velocity reduction method is only effective for C0 transition (see Classification of Segment
Transitions [} 320])

Defines of the curve velocity reduction method
0 Coulomb
1 Cosinus
2 VeloJump
3 DeviationAngle (not yet released)

User interface in the TwinCAT 3 Engineering environment

TF5100 25Version: 2.11.0

Method Description
Coulomb The coulomb reduction method is a dynamic process analogous to the

Coulomb scattering.
The deflection angle φ in the transition point is the angle between the
tangents of the path at the end of the segment S1 and the tangent of the path
at the start of segment S2.
The velocity is set to the velocity at infinity, in analogy to Coulomb scattering,
Vk ∝ (tan(0.5(π-φ)))1/2

and then reduced via the C0 factor.
Vk ← C0 Vk.
In the case of a motion reversal (φ=180) the reduction is always Vk = C0. As
the reduction in the case of small deflection angles is drastic, there is an
angle φlow∈ [0,180] from which full reduction takes effect. To avoid reduction,
set φlow = 180. For full reduction (down to φ = 0), set C0 = 0.0 and φlow = 0.

User interface in the TwinCAT 3 Engineering environment

TF510026 Version: 2.11.0

Method Description
Cosine The cosine reduction method is a purely geometrical process.

It involves:
• the C0 factor ∈ [0,1],
• an angle φlow ∈ [0,180],
• an angle φhigh ∈ [0,180] with φlow < φhigh

Reduction scheme:
• φ < φlow: no reduction: Vk←Vk,

• φhigh < φ: reduction by the C0 factor: Vk← C0 Vk

• φlow < φ <φhigh: partial reduction continuously interpolating between cases 1
and 2, proportional to the cos function in the range [0,π/2].

For full reduction (down to φ = 0), set C0 = 0.0 and φlow = 0 and φhigh very
small but not equal to 0 (e.g. 1.0E-10)

VeloJump It is a geometrical procedure for determining the segment transition velocity at
a C0 transition. The procedure reduces the path velocity as required, so that
the step change in velocity does not exceed the specified limit value. It is
calculated based on the following formula: VeloJump factor * cycle time * min
(acceleration; deceleration) Further information: [} 320]

Velocity reduction factor C0 transition

Reduction factor for C0 transitions. The effect depends upon the reduction method.

C0 ∈ [0.0, 1]

Velocity reduction factor C1 transition

First, V_link is set to the lower of the two segment target velocities:
V_link = min(V_in,V_out).

The geometrically induced absolute step change in acceleration AccJump in the segment transition is
calculated depending on the geometry types G_in and G_out, and the plane selection G_in and G_out of the
segments to be connected, at velocity V_link.

If this is greater than C1 times the path acceleration/(absolute) deceleration AccPathReduced permissible for
the geometries and planes, the velocity V_link is reduced until the resulting step change in acceleration is
equal to AccPathReduced.

User interface in the TwinCAT 3 Engineering environment

TF5100 27Version: 2.11.0

If this value is less than V_min, then V_min takes priority.

Notice When changing the dynamic parameters, the permissible path acceleration for the geometries
and planes and thereby the reaction of the reduction changes automatically.

Reduction factor for C1 transitions: C1 ≥ 0.0

Critical angle, segment transition 'low'

Parameters for φlow (see curve velocity reduction method [} 24]).

Critical angle, segment transition 'high'

Parameters for φhigh (see curve velocity reduction method [} 24]).

Minimum velocity at segment transitions

Each NCI group has a minimum path velocity V_min ≥ 0.0. The actual velocity should always exceed this
value. User-specified exceptions are: programmed stop at segment transition, path end and override
requests which lead to a velocity below the minimum value. A systemic exception is a motion reversal.

With the reduction method DEVIATIONANGLE the deflection angle is φ ≥ φ_h, in which case the minimum
velocity is ignored. V_min must be less than the set value for the path velocity (F word) of each segment.

The minimum velocity can be set to a new value V_min ≥ 0.0 in the NC program at any time. The unit is mm/
sec.

Global soft position limits (for x,y,z-axes)

Parameters for enabling the software end positions of the path (see: Parameterization [} 322]).

Interpreter override type

Parameter for selecting the path override type (see Path override (interpreter override types) [} 323]).

Enable calculation of the total remaining chord length

Activates the calculation of the remaining path length. When the calculation of the remaining path length has
been activated, it can be extracted via ADS afterwards. See also within the Appendix: Displaying the
Remaining Path Length [} 319].

Maximum number of transferred jobs per nc cycle [1 … 20]

Maximum number of commands to be transferred per NC cycle. With this parameter it is possible that the
SVB task still runs slower than the SAF task and nevertheless sufficiently enough jobs are transposed so
that the SAF table does not run out of jobs.

SAF cycle time divisor

The cycle time reduction ensures that the set value in the SAF is not calculated with the SAF cycle time, but
with a time that is divided by the value specified here. For highly dynamic motions it may make sense to set
the parameter to a value greater than 1, in order to minimize discretization inaccuracies. Increasing the SAF
cycle time divisor results in the set value generator being called more frequently internally.

User-defined SAF table length

Parameter that defines the size of the SAF table and therefore the maximum number of cached SAF entries
(look-ahead). If an NC program involves sequential movement of many very short segments, increasing this
value can help to avoid an unintentional velocity reduction at the segment transitions.

User interface in the TwinCAT 3 Engineering environment

TF510028 Version: 2.11.0

3.4.3 “Settings” tab

Under the "Settings" tab you can set the cycle time for the interpolation. The cycle time set here is a multiple
of the cycle time of the SAF task.

Using the cycle time in the "Settings" tab
The cycle time setting can be used if you have to select a cycle time for the interpolation that differs
from the SAF task. Generally, the cycle time of the SAF task should be adjusted to set the cycle
time.

User interface in the TwinCAT 3 Engineering environment

TF5100 29Version: 2.11.0

3.4.4 "Online" tab

Error code

The current error code for the channel is displayed here. The value is the same as the value displayed in the
online window of the interpreter under 'channel status [} 14]'

SVB status

SVB status displays the current block preparation status (SVB = Satzvorbereitung). Possible SVB states are:
ERROR
IDLE
READY
START
DRIVEOUT
CALIBRATE
MFUNC
SYNCREC
DELAY
MFUNCWAIT
SPINDLEWAIT

PLC evaluation of the SVB status is normally not necessary.

SAF status

SAF status displays the current block execution status (SAF = Satzausführung). Possible SAF states are:
ERROR
IDLE
CONTROL
RUN
RUN_DRIVEOUT
WAIT

PLC evaluation of the SAF status is normally not necessary.

User interface in the TwinCAT 3 Engineering environment

TF510030 Version: 2.11.0

SVB entries

Number of current SVB entries.

SAF entries

Number of current SAF entries.

3.4.5 "3D-Online" tab

Target assignment

At this point the interpolation group is formed. The movement of the PTP axes, which are assigned to the
path axes X, Y and Z, can then be based on interpolation.

Any PTP axes can be selected with the aid of the selection lists for the path axes X, Y and Z. Press the
'Apply' button to form the 3D group.

A comparably PLC function block is available in the PLC Library: Tc2_NCI [} 197]. (See CfgBuildExt3DGroup
[} 198])

Actual assignment

The current path axis configurations are displayed here. Use 'Delete' to remove individual axes from the 3D
group.

Delete whole configuration

Resolves the complete 3D group. Here, too, a corresponding PLC function block is available in the PLC
Library: Tc2_NCI [} 197]. (See CfgReconfigGroup [} 200])

GST Reference Manual

TF5100 31Version: 2.11.0

4 GST Reference Manual

4.1 General Notes
All GST-examples in this documentation presuppose the following assumptions:

• Initially, the tool is located at X0, Y0, Z0.
• All state-variables of the interpreter are set to their default values, except that the velocity is set to a

nonzero value.

4.2 Preprocessor
Include Directive
#include "<path>"
#include < <path> >

The #include directive inserts the contents of another file. The included file is referenced by its path.
Typically, it is used to “import” commonly used code like e.g. libraries. Its behavior is similar to the C-
Preprocessor.

Example:

In the following example file a.nc includes file b.nc. On execution of a.nc the interpreter internally
replaces the include-line by the text of b.nc. Therefore, executing the program a.nc has the same effect as
executing the program c.nc.

FILE a.nc:
G01 X0 Y0 F6000
#include "b.nc"
G01 X0 Y100

FILE b.nc:
G01 Z-2
G01 X100
G01 Z2

FILE c.nc:
G01 X0 Y0 F6000
G01 Z-2
G01 X100
G01 Z2
G01 X0 Y100

• If path is absolute, it is directly used to locate the included file. An absolute path must be surrounded
by quotation marks.

• If path is relative and surrounded by quotation marks, it is appended to the directory of the including
file to form the path of the included file.

• If path is enclosed in angle brackets, it is regarded to be relative to the paths in the searchpath list.
The first entry in this list that leads to an existing file is used for inclusion. The searchpath list is
supplied by the interpreter environment of the interpreter.

Example:

The following example assumes that the searchpath is set to the directories c:\jjj and c:\kkk. The file
aaa.nc consists of a sequence of #include-directives that are explained in the following.

GST Reference Manual

TF510032 Version: 2.11.0

• The file bbb.nc is included using an absolute path. Therefore, its location is independent of the
location of aaa.nc. Absolute referencing is useful for files that always reside at a fixed location on the
filesystem.

• The file ccc.nc is referenced relative. It must reside in the directory of aaa.nc (the including file),
which is c:\mmm\.

• The file ddd.nc is also referenced relative. It is expected to reside at c:\mmm\ooo\ddd.nc.
• The relative reference of eee.nc uses the sequence '..', which refers to the parent directory.

Therefore, the file eee.nc is expected in c:\ppp\qqq\eee.nc.
• The relative path of fff.nc is denoted in angle brackets. Therefore, the directories in the
searchpath are considered, rather than the directory of aaa.nc. The file is expected in c:
\jjj\fff.nc or c:\kkk\fff.nc. The first path that leads to an existing file is considered. If there is
no file fff.nc in any directory of the searchpath, an error is reported.

• Finally, the file ggg.nc is expected in c:\rrr\ggg.nc. Both entries in the searchpath lead to this
location.

FILE c:\mmm\aaa.nc:
#include "c:\nnn\bbb.nc"
#include "ccc.nc"
#include "ooo\ddd.nc"
#include "..\ppp\qqq\eee.nc"
#include <fff.nc>
#include <../rrr/ggg.nc>

• Each include-directive must be denoted on a dedicated line. Then, this entire line is replaced by the
contents of the included file. An additional ‘newline’ character is appended.

• The include-directive may be used multiple times at arbitrary locations of the including file.
• If an included file does not exist, an error is reported.
• If the include directive is not placed at the first position of a line, an error is reported.
• Include directives in included files are also subject to replacement.
• An infinite loop due to recursive inclusion (e.g. A includes B, B includes C and C includes A) is detected

and reported as an error.
• The same file may be included multiple times.

It is typically bad practice to include a file multiple times. Especially, if this feature is misused to
factor out code. Instead, a function should be preferred to define code that is reused multiple times
(see section Userdefined Functions [} 59]).

Example:

In the following example file a.nc includes file b.nc twice. The second inclusion is always expanded,
independently of the enclosing condition by the IF-THEN expression. The included file b.nc itself includes
file c.nc.

FILE a.nc:
G01 X100 F6000
#include "b.nc"
G01 Y100
! IF stVariable=47 THEN
#include "b.nc"
! END_IF;

FILE b.nc:
#include "c.nc"
G01 X0 Y0

FILE c.nc:
G01 Z0

GST Reference Manual

TF5100 33Version: 2.11.0

Example:

File x.nc demonstrates a series of invalid include directives. The first three lines violate the rule that each
include directive must be denoted on a dedicated line. In lines 4 and 5 the filename is not properly enclosed
in quotation marks or angle brackets. In line 6 a nonexisting file is included. Line 7 violates the rule that the
include directive always has to be placed at the first position of a line. Line 8 includes the file y.nc, which
itself includes file x.nc. This loop is reported as an error.

FILE x.nc:
#include "a.nc" G01 X100
! #include "a.nc"
#include "a.nc" #include "b.nc"
#include a.nc
#include "a.nc>
#include "non_existing_file.nc"
 #include "a.nc"
#include y.nc

FILE y.nc:
#include "x.nc"

4.3 Combining G-Code and ST
A GST-Program
<g-code>
<g-code>
! <st-code>
<g-code>
<g-code>
{
<st-code>
<st-code>
! <g-code>
<st-code>
<st-code>
}
<g-code>
<g-code>

A GST-file consists of sequences of G-code and sequences of ST-code that can be interleaved as shown
above. Each program starts in G-code mode. The mode can be switched to ST for one line using an
exclamation mark (‘!’). The ST-mode ends at the end of line automatically.

As an alternative a block of ST-code can be defined using curly braces (‘{‘…’}’). This notation is more
practical to define a long sequence of ST-code in a GST-program. Within the ST-block the G-code mode can
be entered for one line using the exclamation mark. Thereby, the G-code mode ends at the end of line
automatically.

G-Code Block

<address><value> <address>=<G-Expression> <address>{<ST-Expression>}

A line of G-code is called a block. It consists of a sequence of words. A word is a combination of an
address (e.g. G or X) and a value. A value can be defined by a literal (e.g. 2.54), by a G-expression (e.g.
2*foo+1) or by an ST-expression (e.g. sin(foo**2)-1).

G-Code Expression

<address>=a+b-c*d/e

GST Reference Manual

TF510034 Version: 2.11.0

The result of the expression is used as the value of the word. The four basic arithmetic operations (‘+’, ‘-’,
‘*’, ‘/’) can be used in a G-expression. They are evaluated as expected, i.e. all operations are left-associative
and ‘*’, ‘/’ have a higher precedence than ‘+’, ‘-’. Variables that have been declared in ST can also be used
in a G-expression (with respect to their scope).

All computations are performed using type LReal (64-bit floating point according to IEEE 754). The value of
an ST-variable is implicitly converted to type LReal according to the conversion rules of ST. If a type (e.g.
STRING) cannot be converted, an error is reported.

RESTRICTION:
ST-variables that contain a number in their name (e.g. x0) cannot be used in a G-expression to
avoid confusion with a G-Code like X0. This limitation does not apply to ST-expressions.

RESTRICTION:
Array variables, struct variables and objects cannot be used in a G-expression. This limitation does
not apply to ST-expressions.

RESTRICTION:
Parentheses are not allowed in a G-expression as they are used to denote comments in G-Code.
For the same reason function calls are not available. These limitations do not apply to ST-
expressions.

Embedded ST-Expression

<address>{<ST-Expression>}

The result of the ST-expression is used as the value of the word. It must be convertible to LReal. Basically,
an ST-expression is ST-Code that could be placed on the right hand side of an assignment. Other ST-Code
(e.g. an ST-statement) is not allowed. However, extensive computations can be encapsulated in an ST-
function that is then called in the ST-expression.

An ST-expression should not have side effects, since the evaluation order of ST-expressions is
generally undefined and may change in the future. Besides, this style of programming employing
side effects is a bad programming style. For instance, an ST-expression should not call a function
that contains G-Code.

Example:
• The following GST-program starts with a line of G-code that moves the tool rapidly to the origin.
• The line is followed by a line of ST-code that declares variable ‘i’. The ST-mode is entered by the

prefixed exclamation mark (‘!’). After this line G-code mode resumes.
• The G-code in line 3 moves the tool down.
• Lines 4 to 8 define a block of ST-code that contains a FOR-loop. The code in this block is interpreted as
ST-code, except for the G-code line in line 6. This line of G-code uses a G-expression to set the X-axis
to 10*i. The value of the Y-axis is defined using an ST-expression that is enclosed in curly braces.
This expression evaluates to 0 if ‘i’ is even and to 10 otherwise.

• The programmed path of the program is shown in Figure “ExampleExpressions”.
G00 X0 Y0 Z0
! VAR i : INT; END_VAR
G01 Z-1 F6000
{
FOR i := 1 TO 5 DO
!G01 X=i*10 Y{ (i MOD 2) *10 }
END_FOR;
}

GST Reference Manual

TF5100 35Version: 2.11.0

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

Figure “ExampleExpressions”.

Suppression of G-Code Blocks

/<n> <G-Code block>

The execution of a G-Code block can be suppressed conditionally. If ‘/<n>’ is prefixed and the n-th bit in an
internal disable mask is set, the block is suppressed (not executed). The disable mask can be set by the
PLC and by the ST-function disableMaskSet. If n is omitted, it has 0 value by default. [See section
Suppression of G-Code Blocks [} 82].]

4.4 G-Code (DIN 66025)

4.4.1 Tool Radius Compensation (D, G40, G41, G42)

D

D<v>

Select tool v. The new tool applies to its own block and all succeeding blocks until a new tool is selected.
Tool 0 is special. Its selection deactivates any tool compensation. Tool 0 can be regarded as tool where all
tool parameters are set to zero. It is selected by default.

Example:

In the following example tool 1 is defined to have a Y-offset of 10 and tool 2 to have an Y-offset of 20. Block
N10 and block N50 use tool 0. Tool 1 applies to block N20 and to block N30. In block N40 tool 2 is active.
Figure “ExampleD” shows the resulting programmed path (dotted line) and the resulting tool center point
path (solid line).
!toolSet(index:=1, nr:=1, offsetY:=10);
!toolSet(index:=2, nr:=2, offsetY:=20);
N10 G01 X10 Y0 F6000
N20 G01 X20 Y0 D1
N30 G01 X30 Y0
N40 G01 X40 Y0 D2
N50 G01 X50 Y0 D0
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

GST Reference Manual

TF510036 Version: 2.11.0

Figure “ExampleD”.

G40

Command G40 (default setting)
Cancellation G41 or G42

Deactivate Tool Radius Compensation (TRC).

G41

Command G41
Cancellation G40 or G42

Activate tool radius compensation (TRC). After activation the programmed path is shifted left by the radius of
the currently selected tool. (See D.)

On activation, a tool with a nonzero index must be selected.

Example:

The following example demonstrates the activation and deactivation of tool radius compensation. The
programmed path (dotted line) and the compensated path (solid/ dashed line) are shown in
Figure “ExampleG40G41”.

• The first line of the GST program sets the offset parameter to 5 mm. Therefore, the adjacent
segments of a gap are extended by 5 mm. The remaining gap is closed by a circular arc.

• The second line defines the approach and depart behavior to use a circular arc with a radius of 5 mm
and an angle of 90 degree.

• The third line defines tool 1 to have a radius of 10.
• Block N10 describes a linear movement to [10,0,0].
• The next block N20 selects tool 1 and activates tool radius compensation, where D1 comes into effect

before G40 is processed and G40 is active before X20 is processed. Therefore, the end of segment
N20 is subject to TRC (tool radius compensation). The linear movement from the end of segment N10
to the end of segment N20 in the programmed path is substituted by an approach-segment (dotted
line) from the end of N10 to the end of N20' in the compensated path.

• In the next three lines a linear movement along N30, N40 and N50 is programmed. Since segment N40
would result in a collision, it is eliminated from the compensated path.

• In the next line a circular arc along N60 is programmed. The gap between the end of N50' and the
beginning of N60' is closed as described earlier.

• The line along N70 is the last segment that is subject to TRC (tool radius compensation), since its
deactivation becomes active before the end of N80. The line along N80 is replaced by the depart-
segment N80', similarly to the approach-segment.
!trcOffsetSet(offset:=5);
!trcApproachDepartSet(approachRadius:=5, approachAngle:=90, departRadius:=5, departAngle:=90);
!toolSet(index:=1, tooltype:=tooltypeMill, radius:=10);
N10 G01 X10 F6000
N20 X20 G41 D1
N30 X35
N40 X40
N50 Y20
N60 G02 X50 Y10 U10
N70 G01 X70
N80 X80 Y0 G40
N90 X90
M02

GST Reference Manual

TF5100 37Version: 2.11.0

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

G41

G40

approach

gap

depart

N10
N20

N30 N40

N50N20'

N60 N70

N80

N80'

N30'

N50'

N50''

N60'

N70'

N90

Figure “ExampleG40G41”.

G42

Command G41
Cancellation G40 or G41

This function is the same as G41, except that the path is shifted to the right. See G41 for details.

4.4.2 Comments

DIN 66025 Comment

<g-code> (<comment>) <g-code>

Text that is enclosed in round parentheses is treated as comment in G-Code (according to DIN 66025). The
comment must not include further parentheses. A comment within round parentheses can extend for multiple
blocks or lines and therefore may skip a carriage return, too.

Example:

The following example demonstrates the notation of comments in G-Code.
N10 G01 X0 Y-10 F3000
N20 G01 (activate linear interpolation) X10 (set X-coordinate to
10) Y0 F6000
(the next block results in a semicircle with center point
X10 Y10)
N30 G02 (activate clockwise interpolation) Y20 U10 (radius is 10)
M02

Line Comment

<g-code> // <comment>

Text between ‘//’ and the end of line is treated as a comment in G-Code.

Example:

The following example demonstrates the notation of line comments in G-Code.
N10 G01 X10 F6000 // perform a linear movement to X10 Y0
// the next block results in a semicircle with center point X10 Y10
N20 G02 Y20 U10
M02

GST Reference Manual

TF510038 Version: 2.11.0

4.4.3 Execution Order
A block (line of G-code) consists of a sequence of words. The programmed order of words is not considered
by the GST interpreter. Instead, the following execution order is obeyed that consists of 7 sequential and
dependent steps.

1. Reference System N* Set block number.

G17..G19 Selection of a workingplane.

G70, G71, G700, G710 Selection of a unit.

G90, G91 Selection of absolute/ incremental
programming.

D*, P* Selection of a tool and its orientation.

2. Configuration G40..G42 (De-)activation of Tool Radius
Compensation.

G53..G59 Selection and programming of zero offset
shift.

F* Set velocity.

3. M-Function Pre M* M-functions that are configured as “before”.

4. Parameter to PLC H*, S*, T*

5. Movement Q*, G00..G03 Movement to a point.

G09, G60 Activation of accurate stop.

6. Wait G04 Wait for a given duration.

7. M-Function Post M* M-functions that are configured as “after”.

The first step sets up the reference system. The second step configures following movements. Note that the
second step may depend on the first one. E.g. the programmed velocity (F) considers a velocity unit (G700)
that is programmed in the same block. Step three and the following steps perform actions like a movement.

GST Reference Manual

TF5100 39Version: 2.11.0

4.4.4 Mutual Exclusive G-Codes
Certain combinations of G-Codes must not be programmed in the same block (line of G-Code). Such
conflicting G-Codes typically set state variables to contradictory values (e.g. set length unit to mm and to
inch). There are also combinations that use the same parameters and therefore must not be programmed
in the same block (e.g. G58 and G59). Below is a list of groups of G-Codes. G-Codes that belong to the same
group are in conflict.

• G00, G01, G02, G03, G04, G58, G59
Interpolations and programmed zero-offset-shift.

• G70, G71, G700, G710
Set unit for length and speed.

• G90, G91
Set absolute/ relative programming.

• G53, G54, G55, G56, G57
Deactivate/ select zero-offset-shift.

• G40, G41, G42
Deactivate/ activate Tool Radius Compensation.

• G17, G18, G19
Select workingplane.

4.4.5 Rapid Traverse (G00)
Command G0 or G00
Cancellation G01 [} 40], G02 oder G03 [} 40]

Set the interpolation mode to “rapid, linear”. The interpolation mode applies to this block and all succeeding
blocks until it is reset by G01, G02 or G03. G00 is the default interpolation mode.

If G00 is active, programming of a point (see X) will result in a linear geometry segment that is processed
with maximum velocity. The programmed velocity is not considered. G00 is typically used to position the tool.
For machining G01 should be used, which considers the programmed velocity.

G01, G02, G03, G04, G58 and G59 are mutually exclusive. They must not be programmed in a
common block.

Example:

The resulting path of the following example is shown in Figure “ExampleG00”. The first block N10 rapidly
moves the tool to position X20, Y10, Z30. The resulting geometry segment is a line in space. The orientation
remains unchanged. The second block N20 performs a rapid movement to X50, Y10, Z30. There is no need
to denote G00 in this line, since interpolation is modal.
N10 G00 X20 Y10 Z30
N20 X50
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

Z=30

Z=0
rapid

rapid Z=30

GST Reference Manual

TF510040 Version: 2.11.0

Figure “ExampleG00”.

4.4.6 Linear Interpolation (G01)
Command G1 or G01 (default setting)
Cancellation G00, G02 oder G03

Set the interpolation mode to “linear”. This interpolation mode is like G00, except that the path is machined
with the programmed velocity. (See F.) The interpolation mode applies to this block and all succeeding
blocks until it is reset by G00, G02 or G03.
N20 G01 X100.1 Y200 F6000
N30 X150
M02

4.4.7 Circular Interpolation (G02, G03, IJK, U)

G02 clockwise circular interpolation

Command G2 or G02
Cancellation G00 [} 39], G01 [} 40] or G03

Set the interpolation mode to “circular/helical, clockwise”. The interpolation mode applies to this block and all
succeeding blocks until it is reset by G00, G01 or G03. If G02 is active, programming of a point will result in a
circular (or helical) arc that is machined with the current velocity. (See General Codes (F, N, Q, X, Y, Z, A, B, C)
[} 50].) In the following, a circular arc is regarded. The helical arc is covered later.

A circular arc starts at the current point and ends at the programmed point. It rotates around the working-
plane normal (PCS, i.e. program coordinate system) in the center point. The center point can be defined
using Centerpoint Programming or using Radius Programming.

Centerpoint Programming I, J, K

For Centerpoint Programming the center is standardly defined relative to the starting-point using the I,J,K
parameters. The center point is the sum of the starting-point and the vector [I,J,K]. Alternatively, the
center point can also be specified as absolute. For this the reference type must be set to absolute in
advance with the ST command circleCenterReferenceSet [} 96]. The I,J,K parameters are optional and
have 0 value by default. If the starting-point and the endpoint are equal with respect to the workingplane, a
full circle will be emitted.

CONSTRAINTS:
• The radius at the starting-point and at the endpoint must be equal. However, small deviations are

allowed and corrected automatically, see Centerpoint Correction [} 77].
• The center point must not be equal to the starting-point or endpoint.

Radius Programming U

For Radius Programming the center point is derived from the radius that is given by the U parameter.
Typically, there are two arcs of a given radius that lead from the starting-point to the endpoint. If the radius is
positive, the shorter one is used, otherwise the longer one is chosen. Apart from that, the absolute value of
the radius is regarded by the interpreter.

CONSTRAINTS:
• Radius Programming can by its nature not be used to program a full circle. This curvature can be

programmed by Centerpoint Programming.
• The radius must not be zero.
• The radius must not be smaller than half of the distance between starting-point and endpoint with

respect to the workingplane.

GST Reference Manual

TF5100 41Version: 2.11.0

Helical

If the starting-point and endpoint do not lie in a plane that is parallel to the workingplane, a helical movement
is performed.

TIP: moveCircle3D
The ST-function moveCircle3D is a more powerful way to define a circle or helix. It covers 3D-arcs
and multiturn circles.

Example:

The following example results in the path that is shown in Figure “ExampleG00G02”. The block N10 uses
Radius Programming to define a clockwise arc from X0 Y0 to X10 Y10 with radius 10. Because the radius is
positive, the center point c1 of the shorter arc is chosen. In block N30 the center point c2 of the longer arc is
used because the radius is negative. The block N50 uses Centerpoint Programming, where the center
c3=[60,0,0] is the sum of the starting-point [50,0,0] and [I,J,K]=[10,0,0]. The block N70 defines
a full circle with center point C04 because the starting-point and endpoint are equal. The block N90 defines a
helical arc with center point C05 and height 30 (in Z-direction).
N01 G00 X0 Y0
N10 G02 X10 Y10 U10 F6000
N20 G00 X30 Y0
N30 G02 X40 Y10 U-10
N40 G00 X50 Y0
N50 G02 X60 Y10 I10
N60 G00 X80 Y0
N70 G02 J10
N80 G00 X110 Y0
N90 G02 J10 X120 Y10 Z30
M30

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100 110 120 130

c1

c2

c3

c4

Z=0

c5

Z=10

Z=20

Z=30

Figure “ExampleG00G02”.

G03 anticlockwise circular interpolation

Command G3 or G03
Cancellation G00 [} 39], G01 [} 40] or G02

Set the interpolation mode to “circular/ helical, counterclockwise”. This interpolation behaves similar to G02.
The interpolation mode applies to this block and all succeeding blocks until it is reset by G00, G01 or G02.

Centerpoint Programming I<vx> J<vy> K<vz>

Defines the center point for circular movements. See G2, G3 for details. The center point is defined as
currentPoint + [vx,vy,vz]. The current length unit is used for vx, vy, vz. The parameters I, J, K are
optional and have a 0 default value.

Radius Programming U<v>

GST Reference Manual

TF510042 Version: 2.11.0

In the context of G2 or G3 the radius is set to |v|. The current length unit is used for v. If v is positive, the
shorter arc is used to interpolate between the current and the next point. If v is negative, the longer one is
used. See G2, G3 for details.

G303

With G303 an circular arc (a CIP circle) can be programmed, that can be freely located in space.

The CIP circle can also be used to program a circle anywhere in space. For this purpose, it is necessary to
program not only an end point but also some other point on the path.

So that the circle can be described unambiguously, it is necessary, that the three points (the starting point is
given implicitly) must not be collinear. It is thus not possible to program a full circle in this way.

I, J and K are available as path point parameters. By default, their values are relative to the starting point of a
circular path.

G90
N10 G01 F2000 X0 Y0 Z0 // P1 (start point): X, Y, Z,
N20 G303 I30 J-15 K15 X60 Y0 Z30 // P2 (path point): I, J, K
 // P3 (end point): X, Y, Z
N30 M02

Requirements G303

TwinCAT GST
TwinCAT V3.1.4024.40 GST 3.1.8.62

GST Reference Manual

TF5100 43Version: 2.11.0

4.4.8 Dwell Time (G04)
Command G4 or G04
Cancellation End of block
Parameter F or X

Suspend machining for a given duration. The duration is defined by either X or F in the current time unit.
(See unit for details.)

Example:

The following example assumes that the current time unit is set to seconds. On one execution of the
program the machine moves to X10, waits for 1.5 seconds and then moves to X20.
N10 G01 X10 F6000
N20 G04 F1.5
N30 G01 X20
M02

4.4.9 Accurate Stop (G09,G60)
The accurate stop instruction is used, for example, when sharp contour corners must be manufactured. At
the contour transition the set path velocity is reduced to zero and then increased again. This ensures that the
programmed position is approached precisely.

G09 blockwise Accurate Stop - Nonmodal

Command G9 or G09
Cancellation End of block

G09 acts only on the set value side.

G60 Accurate Stop - Modal

Command G60
Cancellation G00 [} 39]

4.4.10 Delete Distance to go (G31)
Command G31
Cancellation End of block

G31 (“delete distance to go”) is activated block by block via the NC program. This command enables
deleting of the residual distance of the current geometry from the PLC with the function block ItpDelDtgEx
[} 207]. In other words, if the command is issued while the block is processed, the motion is stopped with the
usual deceleration ramps. The NC program then processes the next block. An error message is generated if
the PLC command is not issued during the execution of a block with "delete distance to go" selected.

G31 always effects an implicit decoding stop, i.e. an exact positioning always occurs at the end of the block.

Example:
N10 G01 X0 Y0 F6000
N20 G31 G01 X2000
N30 G01 X0
N40 M02

Requirements

Development Environment Target System
TwinCAT V3.1.4024.20 PC or CX (x86 or x64)

GST Reference Manual

TF510044 Version: 2.11.0

4.4.11 Zero Offest Shifts (G53,G54...59)

G53 zero shift suppression

Command G53 (default setting)
Cancellation G54..G57

Deactivate any zero offset shift translation. This adjustment is the default. The deactivation becomes active
also for the current block. See sections Zero Offset Shift [} 83] and G58/ G59 for details.

G54..G57 adjustable zero shift

Command G54
G55
G56
G57

Cancellation G53
or selection of another configurable zero shift

Activates the translation that is associated with the given G-Code (TZ54…TZ57). Also activates the
translations of G58 and G59. The translations apply to the current block and all succeeding blocks until
changed. See section Zero Offset Shift [} 83] for details.

G58, G59 programmable zero shift

Command G58 or G59
Cancellation G53

Set the translation that is associated with the given G-Code. The new translation value is given by the
parameters X,Y,Z, which are mandatory. By default, the associated translations are zero. See section Zero
Offset Shift [} 83] for details.

Example:

The resulting MCS (machine coordinate system) path and the applied translations of this example are shown
in Figure “ExampleG54G58G59”.

• The first line sets the translation that is associated with G54 to [0,5,0].
• The next line sets the programmed translation of G58 to [0,10,0]. Since zero-offset-shifts are still

disabled (default G53), the PCS (program coordinate system) and MCS (machine coordinate system)
match.

• Accordingly, the block N20 results in a linear movement from MCS (machine coordinate system)
coordinate [0,0,0] to [20,0,0].

• The next line activates G54 and programs a linear movement along N30, whereby G54 becomes active
before the movement. The programmed PCS (program coordinate system) coordinate [40,0,0] is
mapped to the MCS (machine coordinate system) coordinate [40,15,0].

• The next line sets the programmed transformation G59 to [0,5,0]. Thereby, the effective translation
changes from [0,15,0] to [0,20,0]. Since the current MCS (machine coordinate system)
coordinate must not be affected by this change, the current PCS (program coordinate system)
coordinate is set to [40,-5,0], implicitly.

• The succeeding ST-function frameGet stores these coordinates in [pcsX,pcsY,pcsZ].
• The next line merely programs the X-coordinate of the end of segment N50. Therefore, the PCS

(program coordinate system) coordinate of the end of segment N50 is [60,-5,0], which is mapped to
the MCS (machine coordinate system) coordinate [60,15,0]. In other words: The translation G59 is
active, but does not become apparent due to the adaption of the current PCS (program coordinate
system) coordinate. (See section Applying Transformations [} 99] for details.)

GST Reference Manual

TF5100 45Version: 2.11.0

• It becomes apparent by the last line, which sets the PCS (program coordinate system) coordinate of
the end of segment N60 to [80,0,0]. This coordinate is mapped to the MCS (machine coordinate
system) coordinate [80,20,0].
!zeroOffsetShiftSet(g:=54, x:=0, y:=5, z:=0);
N10 G58 X0 Y10 Z0
N20 G01 X20 Y0 F6000
N30 G54 X40 Y0
N40 G59 X0 Y5 Z0
!VAR pcsX, pcsY, pcsZ : LREAL; END_VAR
!frameGet(x=>pcsX, y=>pcsY, z=>pcsZ);
N50 X60
N60 X80 Y0
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N20

N30

N50
N60

G54
G58

G54
G58

G59

G54
G58

G59

Figure “ExampleG54G58G59”.

4.4.12 Working Plane and Feed Direction (G17, G18, G19, P)

G17 working plane XY

Command G17 (default setting)
Cancellation G18 or G19

Select XY-plane as workingplane, i.e. the workingplane normal is set to [0,0,1]. This workingplane is the
default workingplane.

G18 working plane ZX

Command G18
Cancellation G17 or G19

Select ZX-plane as workingplane, i.e. the workingplane normal is set to [0,1,0].

G19 working plane YZ

Command G19
Cancellation G17 or G18

Select YZ-plane as workingplane, i.e. the workingplane normal is set to [1,0,0].

P Specification of the feed direction

P<v>

Switch tool orientation. The value of v must be 1 or -1. If v is negative, the tool points in the direction of the
working plane normal. Otherwise, it points into the opposite direction.

GST Reference Manual

TF510046 Version: 2.11.0

Example:

The resulting MCS-path (MCS: machine coordinate system) of the following example is shown in
Figure “ExampleP”. The first line of the program defines Tool 1 to have a length of 10. G18 activates the XZ-
workingplane.

N10: The end of segment N10 is not subject to any tool compensation as D0 is active.

N20: For segment N20 tool 1 is active with a positive tool orientation. To compensate the
tool length the translation [0,10,0] is applied. (See section Transformations [} 97]
for details.) Thereby, the PCS (program coordinate system) endpoint [20,10,0] of
N20 is mapped to the MCS (machine coordinate system) endpoint [20,20,0]. The
MCS (machine coordinate system) point and the applied transformation are shown in
Figure “ExampleP”.

N30: In block N30 the tool orientation is switched, which sets the translation to [0,-10,0].
This translation is applied to the PCS (program coordinate system) endpoint of N30
resulting in the MCS (machine coordinate system) endpoint [30,0,0].

N20..N90: The blocks N60..N90 are similar to N20..N50, except that the Y-coordinate is not
programmed. Therefore, the tool length compensation does not become apparent,
although it is active. That behavior happens because the current PCS (program
coordinate system) point is always adapted on a changed transformation. (See section
Applying Transformations [} 99] for details.)

!toolSet(index:=1, tooltype:=tooltypeDrill, length:=10);
G18
N10 X10 Y10 D0 F6000
N20 X20 Y10 D1
N30 X30 Y10 P-1
N40 X40 Y10 P1
N50 X50 Y10 D0
N60 X60 D1
N70 X70 P-1
N80 X80 P1
N90 X90 D0
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N10

N20 N30

N40

N50

N60 N70 N80 N90

Figure “ExampleP”.

4.4.13 Inch/metric dimensions (G70, G71, G700, G710)

G70 dimensions in inches

Command G70

GST Reference Manual

TF5100 47Version: 2.11.0

Cancellation G71, G700 or G710

Set the unit for lengths to inch. The new unit also applies to the current block. G70 is equivalent to the call
unitLengthSet(unitLengthInch). The unit for velocity is not affected. See UnitLength [} 84] and G71
for details.

G71 dimensions in millimeters

Command G71
Cancellation G70, G700 or G710

Set the unit for lengths to millimeter. The new unit also applies to the current block. G71 is equivalent to the
call unitLengthSet(unitLengthMillimeter). The unit for velocity is not affected. See UnitLength
[} 84] for details.

Example:

In Figure “ExampleG70G71” the path of the following example is shown, which uses the unit millimeter.

• The first line of the program sets the unit for lengths to inch. This unit is used in the same line to
interprete X2 in inch. Thus, the path N10 ends at position [50.8 mm, 0 mm, 0 mm].

• Accordingly, the next line moves the tool along N20 towards [50.8 mm, 25.4 mm, 0 mm].
• The last line sets the unit to millimeter. Therefore, the path N30 ends at position [80 mm, 25.4 mm,
0 mm]. Accordingly, the segment N30 is a horizontal line.
N10 G01 X2 G70 F6000
N20 G01 Y1
N30 G01 X80 Y25.4 G71
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X [mm]

Y [mm]

70 80 90 100

30

N20

N30

N10

Figure “ExampleG70G71”.

G700 dimensions in inches with calculation of the feed

Command G700
Cancellation G70, G71 or G700

Like G70, but also applies to the interpretation of velocity. The new unit comes into effect in the current block.
G700 is equivalent to the calls unitLengthSet(unitLengthInch) and
unitVelocitySet(unitLengthInch,unitTimeMinute).

G710 dimensions in millimeters with calculation of the feed

Command G710
Cancellation G70, G71 or G700

GST Reference Manual

TF510048 Version: 2.11.0

Like G71, but also applies to the interpretation of velocity. The new unit comes into effect in the current block.
G710 is equivalent to the calls unitLengthSet(unitLengthMillimeter) and
unitVelocitySet(unitLengthMillimeter,unitTimeMinute).

Example:

The path of the following example is shown in Figure “ExampleG700G710”.

• The first line defines a linear movement to [1 in, 1 in, 0 in] with a velocity of 100 in/min.
• The second line sets the length unit to mm, but does not affect the velocity unit. It defines a movement

to [30 mm, 10 mm, 0 mm] with a velocity of 50 in/min.
• The last line also sets the velocity unit to mm/min. Therefore, there is a movement to
[40 mm, 20 mm, 0 mm] with a velocity of 1000 mm/min.
N10 G700 G01 X1 Y1 F100
N20 G71 G01 X50 Y10 F50
N30 G710 G01 X80 Y20 F1000

10 20 30 40 50

0

0

10

20

-10
-10 60

X [mm]

Y [mm]

70 80 90 100

30

N20 N30N10

F=100 in/min

F=50 in/min

F=1000 mm/min

Figure “ExampleG700G710”.

4.4.14 Dimensional Notation (G90, G91)

G90 absolute dimensions

Command G90 (default setting)
Cancellation G91

Switches to absolute coordinates. X, Y, Z are interpreted as absolute PCS (program coordinate system)
coordinates. This adjustment is the default. The switch becomes active in its own block.

G91 relative dimensions

Command G91
Cancellation G90

Switches to relative coordinates. X, Y, Z are interpreted to be relative to the current point, i.e. the next point is
computed as the sum of [X,Y,Z] and the current point. The switch has an effect for its own block.

Implement Offsets Manually
Using G91 and in this way switching to relative coordinates any Tool Offsets and Zero Shifts that
have been defined earlier are not evaluated within these coordinates and therefore have to be
defined and implemented manually within the framework of the G91-Code.

GST Reference Manual

TF5100 49Version: 2.11.0

Example:

The path of the following example is shown in Figure “ExampleG90G91”. The switch to G90/ G91 takes effect
immediately.
N10 G90 G01 X10 Y20 F6000
N20 X20 Y10
N30 G91 X10 Y10
N40 X10 Y-10
N50 G90 X50 Y20
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

G90
G90G91

Figure “ExampleG90G91”.

4.4.15 M-Functions (M)

M

M<v>

Triggers the M-function v. The timing and behavior depends on the definition of v in the development
environment of TwinCAT.

M2 and M30 are internally defined. Both functions trigger a synchronization with the NC-channel. (See wait()-
function, chapter Synchronization [} 79].) Both functions stop the execution of the GST-program. Due to this
order the interpreter waits for the completion of the NC-channel before it stops.

In addition, M30 also resets all fast M-functions and H, S, T.

There must not be more than one M-function of type handshake in a block.

The M-functions M2 and M30 do not have to be defined by the user in the development environment
of TwinCAT.

Example:

This example assumes the following definitions of M-functions:

M10: Fast before move.

M11: Fast after move.

M12: Fast before move, auto-reset, reset M10, M11.

M20: Handshake before move.

GST Reference Manual

TF510050 Version: 2.11.0

M21: Handshake after move.

M02: Program end.

Figure “ExampleM10M11M12M20M21” visualizes the programmed path and the activation of M-functions.
The fast M-functions M10, M11 are reset by M12, which itself is reset automatically.
N10 G01 X10 F6000
N20 X30 M10 M20
N30 X50 M11 M21
N40 X70
N50 X90 M12
M02

M10,M20 M11,M21 M12

10 20 30 40 50

0

0

10

-10
-10 60

X

Y

70 80 90 100

M10
M11

M20
M21

M12

Figure “ExampleM10M11M12M20M21”.

4.4.16 General Codes (F, N, Q, X, Y, Z, A, B, C)

F

F<v>

Set velocity to v. Applies to the current block and all succeeding blocks until a new velocity is programmed.
The unit for velocity selected currently is used. (See section unitVelocitySet [} 84] for details.) The default
velocity is 0.

The velocity must be set to a nonzero value before a movement is programmed. Otherwise, an
error is issued.

Example:

The first two segments N10 and N20 are processed with a velocity of 6000 mm/min, and the last segment
N30 is processed with a velocity of 3000 mm/min.
N10 G01 X100 F6000
N20 G01 X200
N30 G01 X300 F3000
M02

N

N<v>

Set the block number to v. Typically, the block number is used to monitor the progress of the NC-program.

GST Reference Manual

TF5100 51Version: 2.11.0

Q

Q<i>=<v>

Set the value of axis Q<i> to v where i must lie in the range 1 to 5. The Q-axes use linear interpolation.

The address letters Q and R are handled in a special way for historical reasons.

The address Q<i> has to be followed by a G-expression or by an ST-expression. The G-word
Q1100 is invalid. Use Q1=100, instead.

Example:

The path of the following example is shown in Figure “ExampleQ”. The Q-axes are interpolated linear with the
interpolation of a movement. The last block (N40) results in a linear interpolation of a Q-axis without a
concurrent movement.
N10 G01 X30 Y0 Q1=100 F6000
N20 G02 X50 Y20 I20 Q2=200
N30 G01 X60 Q1=300 Q2=300
N40 Q1=0
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N10

N20

N30 N40

_Q1=0, _Q2=0
_Q1=100, _Q2=0

_Q1=100, _Q2=200 _Q1=300, _Q2=300

_Q1=50, _Q2=0

_Q1=100, _Q2=100 _Q1=0, _Q2=300

Figure “ExampleQ”.

X

X<v>

Sets the X-coordinate of the next point to v. The current length unit is used for v.

Y

Y<v>

Sets the Y-coordinate of the next point to v. The current length unit is used for v.

Z

Z<v>

Sets the Z-coordinate of the next point to v. The current length unit is used for v.

A

A<v>

GST Reference Manual

TF510052 Version: 2.11.0

Sets the A-angle of the next orientation to v. The current angle unit is used for v.

B

B<v>

Sets the B-angle of the next orientation to v. For v the current angle unit is used.

C

C<v>

Sets the C-angle of the next orientation to v. For v the current angle unit is used.

4.5 ST - Structured Text (IEC 61131-3)

4.5.1 Comments

Line Comment

<st-code> // <comment>

Text between ‘//’ and the end of line is treated as comment in ST-Code.

Example:
{
VAR
 i : INT; // this variable is primarily used in FOR-loops for counting
END_VAR
}

/* */ Comment
<st-code> /* <comment>
<comment> */ <st-code>

Text between ‘/*’ and ‘*/’ is treated as comment in ST. This type of comment may be nested up to a depth
of 3. The ‘/*…*/’-style comment may appear anywhere between literals, keywords, identifiers and special
symbols. It may also contain G-Code lines.

Example:

The following example demonstrates the notation of comments in ST-Code. The first comment is placed
within a variable declaration. The second comment encloses an entire ST-loop. The comment contains
further comments and a G-Code line, which itself contains a G-Code comment.
{
VAR i /* used for counting */ : INT; END_VAR

/* The following loop is commented out.
FOR i := 0 TO 10 DO
 /* zigzag pattern */
 ! G01 (linear interpolation) X=i Y{i MOD 2} F6000
 // end of loop
END_FOR;
*/
}

(* *) Comment
<st-code> (* <comment>
<comment> *) <st-code>

GST Reference Manual

TF5100 53Version: 2.11.0

Text between ‘(*’ and ‘*)’ is treated as comment in ST. This type of comment may be nested up to a depth
of 3. It is similar to the /*…*/-style comment.

4.5.2 Literals

Integer Literals

Decimal 18

Binary 2#10010

Octal 8#22

Hexadecimal 16#12

The same integer value in decimal, binary, octal and hexadecimal notation.

Real Literals

Notation of real values

1.0

1.602E-19

Boolean Literals

Notation of Boolean values

0

1

TRUE

FALSE

Typed Literals

<typename>#<literal>

Typed literals where typename is a native type (e.g. Word or LReal) or an enumeration type (to avoid
ambiguities).

Typing of literals is typically not necessary in GST, since the interpreter implements a decent typesystem that
handles untyped literals properly. There are a few exceptions where the type of a literal is significant for
semantics, like in the following example.

Example:

The first assignment assigns the value 16#80 to w, whereas the second one assigns the value 16#8000 to
w.
{
VAR w: word; END_VAR
w := ror(BYTE#1,1);
w := ror(WORD#1,1);
}

GST Reference Manual

TF510054 Version: 2.11.0

String Literals

"abc"

'abc'

Notation of a 2-byte and a 1-byte string, respectively. Note that there is no implicit conversion between both
types. The following escape-sequences can be used within both types of literals:

$L line feed

$N newline

$P form feed

$R carriage return

$t tab

$' or $" quotes

$<2 or 4 hexadecimal digits> character of given code

.

Duration Literals

T#[+/-]<value><unit>[…]<value><unit>

TIME#[+/-] <value><unit>[…]<value><unit>

LT#[+/-]<value><unit>[…]<value><unit>

LTIME#[+/-]<value><unit>[…]<value><unit>

Time literals of type TIME or LTIME. The literal consists of an optional sign (+/-) and a sequence of value/
unit pairs. Value must be an integer, except for the last one that may also be a floating point number.
Values must not be negative and may be arbitraryly large. Units must appear in the following order.

d day

h hour

m minute

s second

ms millisecond

us microsecond

ns nanosecond

An arbitrary subset of units may be used in a literal. For instance, the literal T#1d15ms1500.01us is valid.

GST Reference Manual

TF5100 55Version: 2.11.0

Date Literals

DATE#<yyyy>-<mm>-<dd>

D#<yyyy>-<mm>-<dd>

LDATE#<yyyy>-<mm>-<dd>

LD#<yyyy>-<mm>-<dd>

Date literal of type DATE or LDATE. The literal is interpreted as UTC, i.e. timezone, daylight saving time and
leap seconds are not considered. The year must not be smaller than 1970. The values yyyy, mm and dd
have to be integer values, i.e. D#1980-20-10 is a valid date literal, for example.

Time-of-Day Literals

TIME_OF_DAY#<hh>:<mm>:<ss>

TOD#<hh>:<mm>:<ss>

LTIME_OF_DAY#<hh>:<mm>:<ss>

LTOD#<hh>:<mm>:<ss>

Time-of-day literal of type TOD or LTOD. The literal is interpreted as UTC, i.e. timezone, daylight saving time
and leap seconds are not considered. hh and mm must be integer values. ss may be an integer or a
floatingpoint number, i.e. TOD#7:30:3.1415 is a valid literal, for example.

Date-and-Time Literals

DATE_AND_TIME#<yyyy>-<mm>-<dd>-<hh>:<mm>:<ss>

DT#<yyyy>-<mm>-<dd>-<hh>:<mm>:<ss>

LDATE_AND_TIME#<yyyy>-<mm>-<dd>-<hh>:<mm>:<ss>

LDT#<yyyy>-<mm>-<dd>-<hh>:<mm>:<ss>

Date-and-time literal of type DT or LDT. The literal is interpreted as UTC, i.e. timezone, daylight saving time
and leap seconds are not considered. This literal is a combination of the date literal and the time-of-day
literal. Analogously, the corresponding rules for these two parts apply.

4.5.3 Native Data Types

Bitstring Types

BOOL, BYTE, WORD, DWORD, LWORD

Bitstring types of 1, 8, 16, 32 and 64 bit. Implicit conversion from left to right using zero extension.

Unsigned Integer Types

USINT, UINT, UDINT, ULINT

Unsigned integer types of 8, 16, 32 and 64 bit. Implicit conversion from left to right preserving the value.

Signed Integer Types

SINT, INT, DINT, LINT

Signed integer types of 8, 16, 32 and 64 bit. Implicit conversion from left to right preserving the value. An
unsigned type of n bit is also implicitly converted to a signed type of m bit where the relation m > n must
hold. There is no implicit conversion between bitstring types and integer types.

GST Reference Manual

TF510056 Version: 2.11.0

Floating Point Types

REAL, LREAL

Floating point data types of 32 and 64 bit. Implicit conversion from left to right preserving the value.

String Types

string[<length>]

wstring[<length>]

1-byte and 2-byte strings of given length. If length is omitted, it has 255 as default value.

Character Types

char

wchar

Single 1-byte and 2-byte character of a string. It can be implicitly converted to a string.

Time-Related Types

TIME, LTIME

DATE, LDATE

TIME_OF_DAY, TOD, LTIME_OF_DAY, LTOD

DATE_AND_TIME, DT, LDATE_AND_TIME, LDT

Datatypes for duration, date and time. Internally, all values of these types are represented with a granularity
of 1 nanosecond. Values of date-related types represent the number of nanoseconds since 1.1.1970
(UTC). Leapseconds are ignored. Implicit conversion is allowed from a non-L type to an L type, e.g. from
TIME to LTIME.

4.5.4 Userdefined Types

Derived Types

TYPE

<typeName>: <typeName> := <defaultValue>;

END_TYPE

Definition of a new type as an alias to an existing type. The default value is optional.

Enumeration Types

TYPE

<typeName> : (<enumValue>, …, <enumValue>) := <defaultValue>;

END_TYPE

Definition of an enumeration type. The default value is optional.

Enumeration Types with Defined Values

TYPE

<typeName> : (<enumValue>:=<integer value>, …,

GST Reference Manual

TF5100 57Version: 2.11.0

<enumValue>:=<integer value>) := <defaultValue>;

END_TYPE

Definition of an enumeration type with user-defined values for each element. The default value is optional.

Array Types

TYPE

<typeName>: ARRAY [<from>..<to>,<from>..<to>] OF <typeName> :=

[<defaultValue>, <repetition>(<defaultValue>), …];

END_TYPE

Definition of an array type. The array may be multi-dimensional. The index range is defined for each
dimension. At runtime the boundaries of the array are checked. A boundary violation leads to a runtime-
error. The default values are defined in ascending order starting with the last dimension. A value can be
repeated by placing it into parentheses prefixed with the number of repetitions. If the number of defined
default values does not match the array size, initialization is truncated or padded with the default value of the
element type. In either cases a compile-time warning is issued.

Structure Types

TYPE

<typeName>: STRUCT

 <memberName>: memberType;

 …

END_STRUCT := (<memberName> := <defaultValue>, …);

END_TYPE

Defines a structure type of the given members. Currently, the default value is placed after the type definition.
This positional style is a difference to the ST-standard.

Pointer Types

TYPE

 <typeName>: REF_TO <basetypeName>;

END_TYPE

Defines a pointer type of the given base type.

4.5.5 Control Structures

IF-THEN-ELSIF-ELSE

IF <condition> THEN

 <statements>

ELSIF <condition> THEN

 <statements>

ELSE

 <statements>

GST Reference Manual

TF510058 Version: 2.11.0

END_IF;

Conditional statement. The ELSIF-branch and ELSE-branch are optional. ELSIF can be repeated arbitrarily.

CASE OF

CASE <expression> OF

 <value>, <value>, …, <value>: <statements>

ELSE

 <statements>

END_CASE;

The case-list consists of a comma-separated sequence of values or ranges. Only the first matching case is
executed. The optional ELSE-branch is executed if no case matches.

FOR

FOR <variable> := <expression> TO <expression> BY <expression> DO

 <statements>

END_FOR;

Iterates over the given variable in the defined range (including) using the supplied step-size. If the latter is
omitted, it has 1 as default value.

WHILE

WHILE <condition> DO

 <statements>

END_WHILE;

Pre-checked loop.

REPEAT

REPEAT

 <statement>

UNTIL <condition>

END_REPEAT;

Post-checked loop. The break condition is evaluated after performing the <statements> the loop includes.

EXIT

EXIT;

EXIT can be used within loops to leave the loop. If loops are nested, only the innermost loop is left. If there
is no loop surrounding the EXIT keyword, a compile-time error is issued.

4.5.6 Jump statement
LABEL <label_name>;

 <statements>

GOTO <label_name>;

GST Reference Manual

TF5100 59Version: 2.11.0

The LABEL- and GOTO statements allow jumps in the G-code.

LABEL <label_name>;

A jump destination with the specified name is included at the specified position using LABEL.
<label_name> must be a valid identifier, like the name of a variable or a function.
A LABEL statement can be used where a statement is expected, except in the context of a CASE statement.
If a LABEL statement is defined in a function, its scope is limited to the function.
If the label statement is in the global code, it is valid only in the global scope.
It is an error if two LABEL statements with the same name are defined in the same scope.

GOTO <label_name>;

Causes the execution of the g-code to continue at the point where the specified LABEL is included.
It is an error if the specified <label_name> is not defined in the scope of the GOTO statement.
In addition, it is not allowed to use GOTO statements within a CASE statement.

Sample
N10 G00 X0 Y0 Z0
N20 G01 X10 F1000
!R1 := 0;

!LABEL jumpPos;
!R2 := R1;
!R1 := R2 + 1;
N30 G01 Y=10*R1

!IF R1 = 1 THEN
 !GOTO jumpPos;
!END_IF

N40 G01 Z =10*r1

!IF R1 = 2 THEN
 !goto jumpPos;
!END_IF

M30

Requirements

TwinCAT GST Interpreter
TwinCAT 3.1.4024.47 GST 3.1.8.67

4.5.7 Userdefined Functions

Function Definition

FUNCTION <name> : <returntype>

VAR_INPUT

 <variable declarations>

END_VAR

VAR_OUTPUT

 <variable declarations>

END_VAR

VAR_IN_OUT

 <variable declarations>

END_VAR

GST Reference Manual

TF510060 Version: 2.11.0

VAR

 <variable declarations>

END_VAR

VAR_EXTERNAL

 <variable declarations>

END_VAR

 <statements>

END_FUNCTION

Declares a function. Thereafter, it is callable by its name. The declaration of the return type is optional. If it is
supplied, the function returns a value of the given type. The return value is defined within the function body
by an assignment to the function name.

The function may have input, output and in-out parameters. The order of declaration is significant. It is used
for nonformal calls. Declared variables are only used within the function body. External variables are
imported from global scope. Variables and parameters are not persistent, i.e. they do not retain their value
between two calls.

Nonformal Function Call

<functionname>(<expression>, …, <expression>)

Nonformal function call. The order of expressions must match the number and order of declared parameters.

Formal Function Call

<functionname>(

 <inputParamName> := <expression>,

 <outputParamName> => <variableName>,

 <inputParamName> := <variableName>)

Formal function call. Parameters are identified by their name. If a declared parameter is not listed, it is
implicitly set to its default value.

Do not Mix Formal with Nonformal
Mixing formal with nonformal function calls leads to invalid GST-syntax.

4.5.8 Standard Functions

4.5.8.1 Type Conversion

Type Conversion (*_TO_*)

<nativeType>_to_<nativeType>(x)

to_<nativeType>(x)

Explicit conversion between the given native types. The second alternative is overloaded for any applicable
type.

For conversion from floatingpoint to integer x is rounded.

GST Reference Manual

TF5100 61Version: 2.11.0

4.5.8.2 Arithmetic and Trigonometric

ABS

ABS(x)

Returns the absolute value of x.

The function is overloaded for any integer type and floatingpoint type. The type of x is used as return type.

SQRT

SQRT(x)

Returns the square root of x.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

RESTRICTION:
Variable x must not be negative.

LN

LN(x)

Returns the natural logarithm of x, i.e. the logarithm to the base e.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

RESTRICTION:
Variable x must be larger than 0.

LOG

LOG(x)

Returns the logarithm of x to the base 10.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

RESTRICTION:
Variable x must be larger than 0.

EXP

EXP(x)

Returns e raised to the power of x.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

SIN

SIN(x)

Returns the sine of x where x is expected to be in radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gSin function (chapter Trigonometric [} 85]).

GST Reference Manual

TF510062 Version: 2.11.0

COS

COS(x)

Returns the cosine of x where x is expected to be in radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gCos function (chapter Trigonometric [} 85]).

TAN

TAN(x)

Returns the tangent of x where x is expected to be in radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gTan function (chapter Trigonometric [} 85]).

ASIN

ASIN(x)

Returns the arc sine of x within the interval [-PI/2,PI/2] radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gASin function (chapter Trigonometric [} 85]).

RESTRICTION:
Variable x must lie within the interval [-1,1].

ACOS

ACOS(x)

Returns the arc cosine of x within the interval [0,PI] radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gACos function (chapter Trigonometric [} 85])..

RESTRICTION:
Variable x must lie within the interval [-1,1].

ATAN

ATAN(x)

Returns the arc tangent of x within the interval [-PI/2,PI/2] radians.

The function is overloaded for any floatingpoint type. The type of x is used as return type.

See also: The gATan function (chapter Trigonometric [} 85])..

ATAN2

ATAN2(y,x)

Returns the arc tangent of y/x within the interval [-PI,PI] radians.

GST Reference Manual

TF5100 63Version: 2.11.0

The function is overloaded for any floatingpoint type. The smallest common type of x and y is used as return
type.

See also: The gATan2 function (chapter Trigonometric [} 85])..

ADD

ADD(x1, x2, …)

Returns the sum of all parameters. The ADD-function can have an arbitrary number of parameters, but has to
have at least one.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

MUL

MUL(x1, x2, …)

Returns the product of all parameters. The MUL-function can have an arbitrary number of parameters, but
has to have at least one. The infix-operator ‘*’ can be used as an alternative.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

SUB

SUB(x,y)

Returns the difference x-y. The infix-operator ‘-’ can be used as an alternative.

The function is overloaded for any integer and floatingpoint type. The smallest common type of x and y is
used as return type.

DIV

DIV(x,y)

Returns the quotient x/y. The infix-operator '/' can be used as an alternative.

The function is overloaded for any integer and floatingpoint type. The smallest common type of x and y is
used as return type. If the return type is an integer type, the result is truncated towards zero.

RESTRICTION:
Variable y must not be zero.

MOD

MOD(x,y)

Returns the remainder of the integer division x/y. The infix-operator ‘MOD’ can be used as an alternative.

The function is overloaded for any integer type. The smallest common type of x and y is used as return type.
The result may also be negative. The equation x = MUL(DIV(x,y),y) + MOD(x,y) holds.

RESTRICTION:
Variable y must not be zero.

EXPT

EXPT(x,y)

GST Reference Manual

TF510064 Version: 2.11.0

Returns x raised to the power of y.

The function is overloaded such that x has a floatingpoint type and y has a floatingpoint type or integer type.
The type of x is used as return type, i.e. returned is a Real or an LReal floating point type. The infix-
operator ‘**’ can be used as an alternative.

RESTRICTION:
If x is negative, then y must be an integer.

RESTRICTION:
If x is zero, then y must be larger than zero.

4.5.8.3 Shift and Rotation

SHL

SHL(x,y)

Returns the bitstring x shifted left by y bits. Zero-bits are inserted at the right side. The least significant bit is
assumed to be rightmost.

The function is overloaded for any bitstring type for x and any integer type for y. The type of x is used as
return type.

CONSTRAINT:
Variable y must not be negative.

SHR

SHR(x,y)

Returns the bitstring x shifted right by y bits. Zero-bits are inserted at the left side. The least significant bit is
assumed to be rightmost.

The function is overloaded for any bitstring type for x and for any integer type for y. The type of x is used as
return type.

CONSTRAINT:
Variable y must not be negative.

ROL

ROL(x,y)

Returns the bitstring x rotated left by y bits. Bits that are shifted out at the left side are inserted at the right
side. The least significant bit is assumed to be rightmost.

The function is overloaded for any bitstring type for x and for any integer type for y. The type of x is used as
return type.

CONSTRAINT:
Variable y must not be negative.

ROR

ROR(x,y)

GST Reference Manual

TF5100 65Version: 2.11.0

Returns the bitstring x rotated right by y bits. Bits that are shifted out at the right side are inserted at the left
side. The least significant bit is assumed to be rightmost.

The function is overloaded for any bitstring type for x and for any integer type for y. The type of x is used as
return type.

CONSTRAINT:
Variable y must not be negative.

4.5.8.4 Logical Operations

AND

AND(x1, x2, …)

Returns the bitwise Logical And of all parameters. Bit i is set in the result if bit i is set in all parameters. The
AND function can have an arbitrary number of parameters, but has to have at least one.

The function is overloaded for any bitstring type. The smallest common bitstring type is used as return type.

OR

OR(x1, x2, …)

Returns the bitwise Logical Or of all parameters. Bit i is set in the result if bit i is set in at least one of all
parameters. The OR function can have an arbitrary number of parameters, but has to have at least one.

The function is overloaded for any bitstring type. The smallest common bitstring type is used as return type.

XOR

XOR(x1, x2, …)

Returns the bitwise Logical Exclusive Or of all parameters. Bit i is set in the result if bit i is set in an uneven
number of all parameters. The XOR function can have an arbitrary number of parameters, but has to have at
least one.

The function is overloaded for any bitstring type. The smallest common bitstring type is used as return type.

NOT

NOT(x)

Returns the bitwise complement of x. Bit i is set in the result if bit i is not set in x.

The function is overloaded for any bitstring type. The type of x is used as return type.

4.5.8.5 Selection (Conditional Expressions)

SEL

SEL(cond,x1,x2)

Returns x1 if cond is false, and x2 otherwise.

MUX

MUX(select, x0, x1, …, xN)

Returns x<select>. If select is 0, x0 is returned. If select is 1, x1 is returned and so forth. The MUX
function can have an arbitrary number of parameters, but has to have at least two.

GST Reference Manual

TF510066 Version: 2.11.0

The function is overloaded for any type for x<i> and for any integer for select. The smallest common type
of x<i> is used as return type.

RESTRICTION:
The variable select must lie within the interval [0,N]. Otherwise, an out-of-bounds error is issued
at runtime.

4.5.8.6 Min, Max and Limit

MAX

MAX(x1, x2, …)

Returns the maximum of all parameters.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

MIN

MIN(x1, x2, …)

Returns the minimum of all parameters.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

LIMIT

LIMIT(min,in,max)

Returns in if it lies in the interval [min,max]. Otherwise, the violated bound (min or max) is returned.

The function is overloaded for any integer and floatingpoint type. The smallest common type of all
parameters is used as return type.

CONSTRAINT:
The min boundary must be smaller than the max boundary.

4.5.8.7 Comparison

GT

GT(x,y)

Returns TRUE if x is larger than y. The smallest common type of x and y is used to perform the comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

GE

GE(x,y)

Returns TRUE if x is not smaller than y. The smallest common type of x and y is used to perform the
comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

EQ

EQ(x,y)

GST Reference Manual

TF5100 67Version: 2.11.0

Returns TRUE if x and y are equal. The smallest common type of x and y is used to perform the comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

LE

LE(x,y)

Returns TRUE if x is not larger than y. The smallest common type of x and y is used to perform the
comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

LT

LT(x,y)

Returns TRUE if x is smaller than y. The smallest common type of x and y is used to perform the
comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

NE

NE(x,y)

Returns TRUE if x and y are not equal. The smallest common type of x and y is used to perform the
comparison.

The function is overloaded for all integer and floatingpoint types. The returntype is BOOL.

4.5.9 R-Parameters

Arithmetic Parameters

The arithmetic parameters, for short known as R-parameters, are interpreter variables that are named by an
expression of the form “R<n>”. Since ‘n’ is an integer in the range 0..999, a total of 1000 R-parameters are
available. The first 900 values R0..R899 of these are local variables for the NC channel. They can only be
accessed by the interpreter of the channel. The R-parameters R900..R999 are declared globally. They exist
only once for each NC, and all channels access the same storage. This kind of accessibility organization
makes it possible to exchange data (e.g. for part tracing, collision avoidance etc.) beyond channel
boundaries.

Assigning a Value to an R-Parameter

Assigning a value to an R-parameter is merely possible within Structured Text. There are two ways of
assigning a value to an R-parameter. The value can be assigned directly or the rSet function can be
employed. The function rSet is suitable to use when the index of the R-parameter to be assigned should not
be determined until runtime.

Structured Text: Assigning an R-Parameter Value Directly

R<n> := LReal;

Example
!R1 := 7;

Structured Text: Assigning an R-Parameter Value with the “rSet” Function

rSet(index := LINT, value := LREAL)

Example
!rSet(1, 7);

GST Reference Manual

TF510068 Version: 2.11.0

Reading an R-Parameter Value

There are two ways of reading an R-parameter. An R-parameter can be used in G-Code directly or it can be
extracted within Structured Text using the rGet function. The function rGet extracts an R-parameter value
according to its index.

Structured Text: Reading an R-Parameter Value with the “rGet” Function

rGet(index := LINT) : LREAL

G-Code Example: Extracting an R-Parameter Value Directly
!R1 := 7;
N10 G01 X=R1 F6000

G-Code Example: Extracting an R-Parameter Value with the “rGet” Function
!R1 := 7;
N10 G01 X={rGet(1)} F6000

Example: Assigning and Extracting
{
VAR
 valueR1 : LREAL;
END_VAR

rSet(1, 7);
valueR1 := rGet(1);

R2 := 10;
R3 := R1 + R2;

!N10 G01 X=R1 Y0 Z=R2 F6000
!N20 G01 X={rGet(3)}

MSG(toString('R1 = ', valueR1, ',R2 = ', rGet(2), ', R3 = ', R3));
}
M02

Output:
R1 = 7.000000, R2 = 10.000000, R3 = 17.000000

R-Parameters in Subroutines (Functions)
Within a subroutine (function) an R-parameter has to be declared via a VAR_EXTERNAL declaration.
Example:
{
FUNCTION myFunction : LREAL
VAR_EXTERNAL
 R45: LREAL;
END_VAR
}

N10 G01 X=R45 F6000

!END_FUNCTION

Requirements

Development Environment Target System
TwinCAT V3.1.4024.4 or 4022.32 PC or CX (x86 or x64)

4.5.10 H, S, and T parameters
The H, S, and T parameters are used to transfer parameters to the PLC during block execution.

GST Reference Manual

TF5100 69Version: 2.11.0

Parameter Data type Use Example
H parameter DINT (32Bit signed) Help parameter N1 G1 X10 Y20 H=1020

S parameter WORD Spindle N2 G1 X20 Y30 S=30

T parameter WORD Tool N3 G1 X30 Y40 T4

• In contrast to the classic interpreter, the H parameter also acts before the movement in the GST
interpreter, see Execution Order [} 38] of a block.

• No R parameter can be assigned to the T parameter.
• For the T parameter, assignment is performed without an assignment operator ('=').

4.6 CNC Functions

4.6.1 Strings and Messages

toString

toString(<arg0>, …, <argN>): STRING

Converts and concatenates the given arguments to one string. This string is limited to 255 characters, which
is the default string length. The toString-function behaves like the print function, except that it yields a
formatted string instead of printing.

The toString-function is especially useful to format a string for the msg(…)-function.

msg

msg(str:= String[81])

Send the given message to the message list of TwinCAT. The message is processed by the NC-channel
synchronously. It appears in the user-interface when all preceeding NC-commands are completed.

To send formatted strings this function can be combined with the toString-function.

The message is restricted to 81 characters. Text exceeding this restriction will be truncated.

Example:

The path of the following example is shown in Figure “ExampleMsg”. It is annotated with the emitted
messages.
{
VAR
 x,y,z: LREAL;
 start: LDT;
END_VAR

!N10 G00 X0 Y0 F300
start := currentLdt();
!N20 G01 X30
msg('N20 completed');
!N30 X60 Y10
frameGet(x=>x,y=>y,z=>z);
msg(toString('Current position: [',x,',',y,',',z,']'));
!N40 X90
sync();
msg(toString('Machining time: ', currentLdt()-start));
}
M02

GST Reference Manual

TF510070 Version: 2.11.0

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N20 completed

N20
N30

N40

Current position: [60.00,10.00,0.00]

Machining time: +18.00

Figure “ExampleMsg”.

4.6.2 Transformations

transRotX/Y/Z

transRotX(angle := LREAL)

transRotY(angle := LREAL)

transRotZ(angle := LREAL)

Rotation around the respective axis by the given angle in the user-defined angle unit. The rotation is pushed
onto the stack of transformations. The angle value is interpreted using the current angle-unit. See section
Transformations [} 97] for details.

Example:

The resulting path of the following example is shown in Figure “ExampleTransRotZ”.

• N10 is programmed with the PCS (program coordinate system) and the MCS (machine coordinate
system) being equal.

• N20 is programmed after a 45-degree rotation around the Z-axis in [0,0,0] has been pushed onto
the stack of transformations. Another rotation of 45 degrees is pushed onto the transformation stack
such that the rotations add up to 90 degree.

• Therefore, the MCS (machine coordinate system) coordinate of the end of segment N30 is [0,30,0].
N10 G01 X30 Y0 F6000
!transRotZ(45);
N20 G01 X30 Y0
!transRotZ(45);
N30 G01 X30 Y0
!transPop();
!transPop();
M02

GST Reference Manual

TF5100 71Version: 2.11.0

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N10

N20

N30

Figure “ExampleTransRotZ”.

transRotA

transRotA(x:=LReal, y:=LReal, z:=LReal, angle:=LReal)

Rotate around vector [x,y,z] by the given angle. The rotation is pushed onto the stack of
transformations. The angle value is interpreted using the current angle-unit. See section Transformations
[} 97] for details.

The vector [x,y,z] must not be the zero vector.

Example:

The resulting path of the following example is shown in Figure “ExampleTransRotA”. The first invocation of
transRotA rotates the PCS (program coordinate system) around the positive Z-axis (right-hand rule) by
45 degree. The second invocation rotates around the negative Z-axis by the same angle, i.e. into the
opposite direction. The combination of both rotations is the identity transformation.
!transRotA(0,0,1,45);
N10 G01 X30 Y0 F6000
!transRotA(0,0,-1,45);
N20 G01 X30 Y0
!transPop();
!transPop();
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N20N10

Figure “ExampleTransRotA”.

transMirrorX/Y/Z

transMirrorX()

GST Reference Manual

TF510072 Version: 2.11.0

transMirrorY()

transMirrorZ()

Mirror with respect to the X-direction, Y-direction or Z-direction relative to the origin of the current PCS
(program coordinate system). The transformation is pushed onto the stack of transformations.

The invocation of a mirror function switches the orientation of the coordinate system from right-
handed to left-handed or vice versa. Most notably, this behavior switches the rotation direction of
circles and the compensation direction of tool radius compensation. By default, the coordinate
system is right-handed.

Example:

The resulting path of the following example is shown in Figure “ExampleTransMirrorX”. The PCS (program
coordinate system) is mirrored along the X-dimension. Thereby, the coordinate system becomes a left-
handed system, within which the rotation direction of G2 is (intentionally) swapped.
N10 G02 X20 Y20 U20 F6000
!transMirrorX();
N20 G02 X-40 Y0 U20
!transPop();
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N20

N10

Figure “ExampleTransMirrorX”.

transScale

transScale(factor:= LReal)

Scales the coordinate system by the factor in the X-dimension, Y-dimension and Z-dimension. The
transformation is pushed onto the stack of transformations.

The factor must be nonzero.

If the factor is negative, the coordinate system is effectively mirrored in the X-dimension, Y-
dimension and Z-dimension. Thus, the orientation of the coordinate system is swapped.

Example:

The resulting path of the following example is shown in Figure “ExampleTransScale”. After scaling by a
factor of 2, the endpoint of segment N20 is mapped to [60,20,0].
N10 G01 X30 Y10 F6000
!transScale(2);
N20 G01 X30 Y10
!transPop();
M02

GST Reference Manual

TF5100 73Version: 2.11.0

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N20

N10

Figure “ExampleTransScale”.

transScaleAxis

transScaleAxis(axisNo := axisIndex, factor := value);

Scales the selected path axis (axisNo) by the factor. The supported axis and indexes are:

• X: 0
• Y: 1
• Z: 2

Q-axes are not supported.

A different axes scaling is only allowed for linear movements, not for circular movements.

Example 1
N10 G01 X30 Y10 F6000
!transScaleAxis(axisNo:= 0, factor:=2.0);
!transScaleAxis(axisNo:= 1, factor:=2.0);
!transScaleAxis(axisNo:= 2, factor:=3.0);
N20 G01 X30 Y10
N30 G03 X40 Y10 I5 J0
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

 N20

N10
N30

Figure “Example 1 TransScaleAxis”.

Example 2
N10 G01 X20 Y5 F6000
!transScaleAxis(axisNo:= 0, factor:=2.0);
!transScaleAxis(axisNo:= 1, factor:=2.0);
!transScaleAxis(axisNo:= 2, factor:=3.0);
N20 G01 X20 Y5
!transScaleAxis(axisNo:= 0, factor:=2.0);

GST Reference Manual

TF510074 Version: 2.11.0

!transScaleAxis(axisNo:= 1, factor:=3.0);
N30 G01 X20 Y5
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N20N10

N30

Figure “Example 2 TransScaleAxis”.

Requirements

Development Environment Target System
TwinCAT V3.1.4024.20 PC or CX (x86 or x64)

transTranslate

transTranslate(x:=LReal, y:=LReal, z:=LReal)

Translate by vector [x,y,z]. The translation is pushed onto the stack of transformations.

Example:

The resulting path of the following example is shown in Figure “ExampleTransTranslate”. After translating by
[40,20,0] the endpoint of segment N20 is mapped to [80,20,0].
N10 G01 X20 Y0 F6000
!transTranslate(40,20,0);
N20 G01 X40 Y0
!transPop();
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N20

N10

Figure “ExampleTransTranslate”.

transPop

transPop()

Pops a transformation from the stack of transformations.

Example:

GST Reference Manual

TF5100 75Version: 2.11.0

The resulting path of the following example is shown in Figure “ExampleTransPop”. This example pushes
the translation [0,20,0] onto the stack, followed by the translation [0,10,0]. Thereby, the effective
translation for N30 is [0,30,0]. The invocation of transPop removes the translation [0,10,0] from the
stack. Thus, the endpoint of segment N40 is translated by [0,20,0]. After removing the last translation
from the stack the endpoint of segment N50 is not translated at all.
N10 G01 X10 Y0 F6000
!transTranslate(0,20,0);
N20 G01 X30 Y0
!transTranslate(0,10,0);
N30 G01 X50 Y0
!transPop();
N40 G01 X70 Y0
!transPop();
N50 G01 X90 Y0
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N20

N10

N30 N40

N50

Figure “ExampleTransPop”.

transDepth

transDepth(): UInt

Yields the depth of the stack of transformations, i.e. the number of active transformations. See
transRestore(…), chapter transformations [} 97], for more details.

transRestore

transRestore(depth:= UInt)

Reduces the stack of transformations to the given depth. This command is typically used in conjunction with
transDepth() to restore an earlier state of the stack.

The current depth of the stack must not be smaller than the given depth.

Example:

The resulting path of the following example is shown in Figure “ExampleTransDepthTransRestore”. A
translation to [40,10,0] is initially pushed onto the transformation stack. The resulting depth is stored in
variable savedDepth. The following code repeatedly performs a linear move to X20 Y0 and a rotation by
45 degree. This resulting path is one half of an octagon, composed of segments N10 to N50. When N50 is
processed, the transformation stack contains the initial translation and 4 rotations by 45 degree. The
invocation of transRestore(savedDepth) restores the stack depth of 1 by removing all rotations. Hence,
only the translation is applied to N60.
!VAR savedDepth : UINT; END_VAR
!transTranslate(40,10,0);
!savedDepth := transDepth();

N10 G01 X20 Y0 F6000

GST Reference Manual

TF510076 Version: 2.11.0

!transRotZ(45);
N20 G01 X20 Y0
!transRotZ(45);
N30 G01 X20 Y0
!transRotZ(45);
N40 G01 X20 Y0
!transRotZ(45);
N50 G01 X20 Y0
!transRestore(savedDepth);
N60 G01 X10 Y0
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N10

N20

N30N40

N50

N60

Figure “ExampleTransDepthTransRestore”.

4.6.3 Circular Movement

moveCircle3d

moveCircle3d(cx:=LREAL, cy:=LREAL, cz:=LREAL, nx:=LREAL, ny:=LREAL, nz:=LREAL, a
ngle:=LREAL, height:=LREAL)

Move circular by rotating around the center cx,cy,cz and the normal vector nx,ny,nz by the given angle. If
height is nonzero, a helix is described. If angle is greater than a full circle, a multiturn circle or a multiturn
helix is described. The rotation is performed according to the right hand rule. Using a negative angle or
flipping the normal will reverse the direction of rotation. The angle value is interpreted using the current angle
unit. The parameters x, y, z, cx, cy, cz are interpreted using the current length unit.

The radius must be nonzero.

Example:

The resulting path of the following example is shown in Figure “ExampleMoveCircle3D”. The invocation of
moveCircle3D describes a helical movement. It starts at the current point that is [40,10,0]. The center
axis of the helix is defined by the point [30,10,0] and direction [gSin(22.5),0,gCos(22.5)].
Compared to the workingplane normal [0,0,1] the axis is tilted by 22.5 degree in X-direction. The angle of
720+90 degree describes a multiturn helix. It exhibits a height of 30 with respect to the center axis. The
endpoint of the helix is not explicitly programmed to avoid redundancy. If the user requires these
coordinates, they can be retrieved by the frameGet(…) function, as demonstrated. The approximate
coordinates are shown in Figure “ExampleMoveCircle3D”.
{
VAR
 x,y,z: LREAL;
END_VAR

!N10 G01 X40 Y10 F6000
moveCircle3D(cx:=30, cy:=10, cz:=0, nx:=gSin(22.5), ny:=0, nz:=gCos(22.5), angle:=720+90, height:=30
);
frameGet(x=>x,y=>y,z=>z);

GST Reference Manual

TF5100 77Version: 2.11.0

}
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30
X=42.94...
Y=19.23...
Z=31.25...

Figure “ExampleMoveCircle3D”.

4.6.4 Centerpoint Correction

centerpointCorrectionSet

centerpointCorrectionSet(on:= bool)

Activates the centerpoint correction for circles. The centerpoint correction will be used for circles that are
defined using centerpoint programming, see G2 and G3 [} 40]. Due to inaccuracies (e.g. rounding errors by
the CAD program), the radius of the starting-point and endpoint with respect to the centerpoint may differ. If
centerpoint correction is active, the center will be moved in such a way that the starting-radius and endradius
are equal to their former average.

A limit for centerpoint correction can be configured with centerpointCorrectionLimitSet(…). If this
limit is exceeded, a runtime error will be reported.

centerpointCorrectionLimitSet

centerpointCorrectionLimitSet(limit:= LREAL)

Sets the precision limit for the centerpoint of circles. If the given limit is exceeded, a runtime error is reported.
The default limit value is 0.1 mm.

4.6.5 Tools
Using tool displacement and rotation
If the Cartesian tool displacement is used in combination with rotation [} 70], then the
compensation will only be correct, if the aggregate (the tool carrier) is also rotated through the same
angle.

toolParamSet

toolParamSet(tidx:= USINT, col:= USINT, val:= LREAL)

Set a parameter of the tool tidx (1..255) to val. The parameter is identified by col (0..15).

COL DESCRIPTION

0 tool number
For giving the tool a number.
Written to the T-parameter in the cyclic channel interface.

GST Reference Manual

TF510078 Version: 2.11.0

1 tool type (10: drill, 20: miller)
The drill is type 10.
The miller is type 20.

2 length
Describes the length of e.g. the drill.

3 -

4 radius

5 length (added to the length value of column 2)
Describes the wear on e.g. the drill. The wear has to be given as a negative value as it
is added to the length.

6 -

7 radius (added to the radius value of column 4)

8 x-shift
Cartesian tool displacement in x-direction.

9 y-shift
Cartesian tool displacement in y-direction.

10 z-shift
Cartesian tool displacement in z-direction.

11 -

12 -

13 Tool type 20 (miller): for free use by the user
14 Tool type 20 (miller): for free use by the user
15 Tool type 20 (miller): for free use by the user

toolParam

toolParam(tidx:= USINT, col:= USINT): LREAL

Yields the given tool parameter.

toolSet

toolSet(index:= USINT, nr:= INT, tooltype:= ToolType, length:= LREAL, radius:=
LREAL, lengthAdd:= LREAL, radiusAdd:= LREAL, offsetX:= LREAL, offsetY:= LREAL,
offsetZ:= LREAL)

Set all parameters of a tool. The index is used in D-words [} 35] to refer to the tool. It must lie in the range 1
to 255. The parameter nr has only informational purpose. Typically, it is a company internal number to
identify a certain tool. The parameter tooltype identifies the kind of tool, like a drill for instance. The
remaining parameters are dimensions, which are visualized in Figure “ToolSetDimensions”. If the tool
orientation is changed towards the negative (see P-word [} 45]), the value length+lengthAdd is implicitly
negated. The parameters length, radius, lengthAdd, radiusAdd, offsetX, offsetY and offsetZ
are interpreted using the current length unit.

GST Reference Manual

TF5100 79Version: 2.11.0

offsetX
offsetY

offsetZ

length+lengthAdd

radius+radiusAdd

X

Y

Z

Tool

Figure “ToolSetDimensions”.

Example:

The example defines tool 1 as a drill of total length 48.5 and tool 2 as a mill with a length of 30 and a
diameter of 5.
!toolSet(index:=1, nr:=4711, tooltype:=tooltypeDrill, length:=50, lengthAdd:=-1.5);
!toolSet(index:=2, nr:=10783, tooltype:=tooltypeMill, length:=30, radius:=2.5);

toolType

Enumeration of tool types.
 tooltypeDrill
 tooltypeMill

tooltypeDrill: Selects a drill as a tool.
tooltypeMill: Selects a mill as a tool.

4.6.6 Synchronization

sync

sync()

Synchronizes the interpreter with the associated NC-channel. The sync()-command blocks until all pending
NC-commands are completed, i.e. until the job-queue of the NC-channel is empty. This command replaces
the former @714-command. Oftentimes, the sync()-command is combined with a preceeding M-function of
type handshake. Then, the sync()-command will block until the M-function is acknowledged by the PLC.

wait

wait()

Waits for a GoAhead-signal from the PLC. The wait()-command blocks until this signal is received. This
command replaces the former @717-command. Compared to a combination of an M-function and sync(),
this kind of synchronization does not result in an empty job queue. Notably, an empty job queue forces the
machine to halt.

The GoAhead-signal may be send from the PLC before the associated wait()-function is called. In
this case the wait()-function does not block.

GST Reference Manual

TF510080 Version: 2.11.0

4.6.7 Query of Axes

queryAxes

queryAxes()

Set the MCS (machine coordinate system) coordinates of the interpreter to the actual coordinates of the
physical axes. The MCS (machine coordinate system) coordinates are automatically translated to PCS (path
coordinate system) coordinates, which are exposed to the programmer. They may also be retrieved by
frameGet(…). A combination of sync() and queryAxes() replaces the former @716-command.

• The queryAxes()-command considers the path axes (X, Y, Z), as well as the auxiliary axes
(Q1..Q5).

The queryAxes()-command should be preceeded by sync() to avoid unexpected behavior.

Example:

The resulting path of the following example is shown in Figure “ExampleQueryAxes”. The example assumes
M20 to be an M-function of type “handshake after”. The PLC is assumed to

• wait for M20,
• move the Y-axis to 20,
• wait for completion of the movement,
• acknowledge M20.

The interpreter sends the line segment N10 to the NC-channel followed by the M-function M20. Then the
invocation of sync() blocks. The NC-channel signals the M-function to the PLC after the line segment N10
has been processed. Then the PLC moves the tool from the end of segment N10 to the beginning of
segment N20 and acknowledges M20. The interpreter resumes operation and invokes queryAxes(), which
sets the internal “current point” to the endpoint of segment N10'. Therefore, the final block sends the line
segment N20 to the NC-channel.
N00
N10 G01 X40 M20 F6000
!sync();
!queryAxes();
N20 G01 X80
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N10

N10'

Performed by PLC

N20

M20 acknowledged; axes queried

M20 signaled to PLC

Figure “ExampleQueryAxes”.

GST Reference Manual

TF5100 81Version: 2.11.0

4.6.8 Current Point

frameGet

frameGet(x:=LREAL, y:=LREAL, z:=LREAL, a:=LREAL, b:=LREAL, c:=LREAL)

Store the current frame of the PCS (program coordinate system) in x, y, z and a, b, c.

Example:

The output of the following example is shown below. The G-Code in the example performs a linear
movement to the PCS (program coordinate system) point [10,20,30]. Then these coordinates are stored
in curX, curY, curZ by frameGet(…). The translation [1,2,3] that is pushed onto the transformation-
stack leads to an adaption of the current PCS (program coordinate system) point such that the MCS
(machine coordinate system) point [10,20,30] remains unchanged. Therefore, the subsequent call of
frameGet(…) retrieves the PCS (program coordinate system) point [9,18,27].
{
VAR
 curX, curY, curZ : LREAL;
END_VAR

!G01 X10 Y20 Z30 F65000

frameGet(x=>curX, y=>curY, z=>curZ);
MSG(toString(curX,' ',curY,' ',curZ,''));

transTranslate(1,2,3);
frameGet(x=>curX, y=>curY, z=>curZ);
MSG(toString(curX,' ',curY,' ',curZ,''));
}
M02

Output:
10.000000 20.000000 30.000000
9.000000 18.000000 27.000000

qAxisGet

qAxisGet(q1:=LREAL, q2:=LREAL, q3:=LREAL, q4:=LREAL, q5:=LREAL)

Store the current values of Q-axes in q1 to q5. The Q-axes are the auxiliary axes.

4.6.9 Tool Radius Compensation

trcApproachDepartSet

trcApproachDepartSet(approachRadius:= LREAL, approachAngle:= LREAL, departRadius
:= LREAL, departAngle:= LREAL)

Configures the approach and depart behavior to use an arc of given radius and angle. If the product of radius
and angle are zero, no approach or depart segment will be inserted.

The resulting configuration is used by G41/G42.

trcOffsetSet

trcOffsetSet(offset:= LREAL)

Configures the amount of segment extension that is used to close gaps. If offset is zero, no extension will
be performed.

The resulting configuration is used by G41/G42.

GST Reference Manual

TF510082 Version: 2.11.0

trcLimitSet

trcLimitSet(limit:= ULINT)

Configures the lookahead that is used for collision elimination.

The resulting configuration is used by G41/G42.

trcParam

trcParam(): TrcParamType

Returns the current configuration as a structure value.

trcParamSet

trcParamSet(param:= TrcParamType)

Configures the tool radius compensation. This function is an alternative that summarizes
trcApproachDepartSet, trcOffsetSet and trcLimitSet. It can be used in combination with
trcParam to load, save and restore different TRC (tool radius compensation) configurations efficiently.

TrcParamType

TrcParamType

This structure contains all configuration parameters of the tool radius compensation. It consists of the
following parameters.
approachRadius: LREAL;
approachAngle: LREAL;
departRadius: LREAL;
departAngle: LREAL;
offset: LREAL;
limit: ULINT;

See trcApproachDepartSet, trcOffsetSet, trcLimitSet for a comprehensive description of the listed
parameters.

collisionElimination

collisionElimination(nx:= LREAL, ny:= LREAL, nz:= LREAL, limit:= ULINT)

Activates collision elimination with respect to the plane of the normal vector nx, ny, nz. Collisions within the
projection of the path onto the plane are eliminated. Supplying a zero vector deactivates collision elimination.
The limit parameter can be used to restrict elimination to the last n segments. By default, elimination is
unlimited.

collisionEliminationFlush

collisionEliminationFlush()

This function can be called during active collision elimination to ignore any conflicts between the path
preceding the call and the path succeeding the call.

4.6.10 Suppression of G-Code Blocks

disableMask

disableMask(): LWORD

Yields the current value of the disable mask. Note that the mask may also be set by the PLC.

GST Reference Manual

TF5100 83Version: 2.11.0

disableMaskSet

disableMaskSet(mask:= LWORD)

Sets the internal disable mask to the given value. The mask is used to suppress execution of G-Code blocks.
The disable mask has 0 default value, i.e. no suppression is active by default. The mask consists of 64 bits.

In a binary notation like 2#1101 bits are numbered from right to left, starting with bit 0. For the value 2#1101
the bits 0, 2 and 3 are set by value one. The remaining bits are not set by exhibiting zero value.

Example:

The resulting path of the following example is shown in Figure “ExampleDisableMaskSet”. The disable mask
is initially set to the binary value 2#1101, which is equal to the decimal value 13. The first G-Code, which is
N10 in the given example, is always executed, independently of the current disable mask because there is
no ‘/’-operator in the N10-line. N20 is only executed if bit 0 is not set. In the case bit 0 is set N20 is
supressed, which is true in the given example. The same holds for N30, since ‘/’ is only a shorthand for ‘/0’.
N40 is not supressed, since bit 1 is not set. The G-Codes N50 and N60 after disableMaskSet(0) are
executed, since no bit in the disable mask is set. In contrast, the call disableMaskSet(-1) sets all bits of
the mask. Consequently, the succeeding G-Codes that are prefixed with a ‘/’, N80 and N90, are disabled.
!disableMaskSet(2#1101);
N10 G01 X10 Y10 F6000
/0 N20 G01 X20 Y0
/ N30 G01 X30 Y0
/1 N40 G01 X40 Y10
!disableMaskSet(0);
/ N50 G01 X50 Y0
/1 N60 G01 X60 Y10
!disableMaskSet(-1);
N70 G01 X70 Y0
/1 N80 G01 X80 Y10
/2 N90 G01 X90 Y20
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N10

N40

N50 N60 N70

disabled disabled

Figure “ExampleDisableMaskSet”.

4.6.11 Zero Offset Shift

zeroOffsetShiftSet

zeroOffsetShiftSet(g:= USINT, x:= LREAL, y:= LREAL, z:= LREAL)

Sets the translation for G-Code g where g must be one of the numbers 54, 55, 56 or 57. Alternatively, the
Zero Offset Shift can be set with the PLC Function Block ItpWriteZeroShiftEx [} 248].

GST Reference Manual

TF510084 Version: 2.11.0

Example:

The resulting path of the following example is shown in Figure “ExampleZeroOffsetShiftSet”. The zero offset
shift of G54 is first set to the translation [0,10,0]. It gets active for N20 and any later segment endpoints
until a novel translation is applied. The second invocation of zeroOffsetShiftSet has an immediate
effect. It applies to N30 and any later segment endpoints until a novel translation is applied. The same holds
for the last invocation. However, the block N40 does not program the Y-coordinate. Therefore, the change
does not become apparent for N40. (See section Transformations [} 97] for details.) Because the block N50
programs the Y-coordinate, it applies the recent [0,30,0]-translation.
!zeroOffsetShiftSet(g:=54, x:=0, y:=10, z:=0);
N10 G01 X20 Y0 F6000
N20 G01 G54 X40 Y0
!zeroOffsetShiftSet(g:=54, x:=0, y:=20, z:=0);
N30 G01 X60 Y0
!zeroOffsetShiftSet(g:=54, x:=0, y:=30, z:=0);
N40 G01 X80
N50 G01 X100 Y0
M02

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

 N10

N20 G54 G54 G54 G54

N30

N40

N50

Figure “ExampleZeroOffsetShiftSet”.

4.6.12 Units

unitAngleSet

unitAngleSet(unitAngle:= UnitAngle)

Set the unit for angles to unitAngle. The default is unitAngleDegree. The unit for angles applies to all
NC-related functions like transRotX. It does not apply to ST-standard functions like sin. For this reason
the interpreter offers a set of NC-specific counterparts like gSin that consider the angle unit.

UnitAngle

Enumeration of the following values:
unitAngleRadian: 0…2pi
unitAngleDegree: 0…360
unitAngleGon: 0…400
unitAngleTurn: 0…1

.

unitLengthSet

unitLengthSet(unitLength:= UnitLength)

Set the unit for lengths to unitLength. The default is unitLengthMillimeter. The unit for length
applies to all NC-related functions like G01 or zeroOffsetShiftSet(…).

GST Reference Manual

TF5100 85Version: 2.11.0

UnitLength

Enumeration of the following values:
unitLengthMeter
unitLengthCentimeter
unitLengthMillimeter
unitLengthMicrometer
unitLengthNanometer
unitLengthInch
unitLengthFoot

.

unitTimeSet

unitTimeSet(unitTime:= UnitTime)

Set the unit for time to unitTime. The default is unitTimeSecond. The unit for time applies to all NC-
related functions like G04. It does not apply to ST-standard functions like currentLdt().

UnitTime

Enumeration of the following values:
unitTimeSecond
unitTimeMillisecond
unitTimeMicrosecond
unitTimeMinute
unitTimeHour

.

unitVelocitySet

unitVelocitySet(unitLength:= UnitLength, unitTime:= UnitTime)

Set the unit for velocity to unitLength/unitTime. The default is unitLengthMillimeter/
unitTimeMinute. The unit for velocity applies to all NC-related functions. It is used by the F-parameter for
instance.

4.6.13 Trigonometric (Unit Aware)

gSin

gSin(angle:= LREAL)

• Returns the sine of the given angle where the current angle unit [} 84] is used to interpret the angle.
• The return type is LREAL. This function is not overloaded.

gCos

gCos(angle:= LREAL)

• Returns the cosine of the given angle where the current angle unit [} 84] is used to interpret the
angle.

• The return type is LREAL. This function is not overloaded.

gTan

gTan(angle:= LREAL)

• Returns the tangent of the given angle where the current angle unit [} 84] is used to interpret the
angle.

GST Reference Manual

TF510086 Version: 2.11.0

• The return type is LREAL. This function is not overloaded.

gASin

gASin(val:= LREAL)

• Returns the arcsine of val in the current angle unit [} 84].
• The return type is LREAL. This function is not overloaded.
• The result lies within the interval [-c/4,c/4] where c is the angle of a full circle in the current angle

unit.

CONSTRAINT:
The variable val must reside within the interval [-1,1].

gACos

gACos(val:= LREAL)

• Returns the arccosine of val in the current angle unit [} 84].
• The return type is LREAL. This function is not overloaded.
• The result lies within the interval [0,c/2] where c is the angle of a full circle in the current angle unit.

CONSTRAINT:
The variable val must reside within the interval [-1,1].

gATan

gATan(val:= LREAL)

• Returns the arctangent of val in the current angle unit [} 84].
• The return type is LREAL. This function is not overloaded.
• The result lies within the interval [-c/4,c/4] where c is the angle of a full circle in the current angle

unit.

gATan2

gATan2(y:= LREAL, x:= LREAL)

• Returns the arctangent of y/x in the current angle unit [} 84].
• The return type is LREAL. This function is not overloaded.
• The result lies within the interval [-c/2,c/2] where c is the angle of a full circle in the current angle

unit.

4.6.14 Feed Mode

feedModeSet

feedModeSet(feedMode:= FeedModeType)

FeedModeType

Enumeration of the following values:
fmContour
fmInternalRadius
fmToolCenterPoint

GST Reference Manual

TF5100 87Version: 2.11.0

fmContour: Holds the feedrate at the contour constant.

fmInternalRadius: Reduces the feedrate at internal radii. This results in a constant velocity at the contour.
The velocity at external radii is not increased.

fmToolCenterPoint: Keeps the feedrate of the tool’s center point constant. This means that at internal radii
the velocity at the contour is increased, and that it is correspondingly reduced at external radii.

4.6.15 Feed Interpolation

feedInterpolationSet

feedInterpolationSet(feedInterpolation:= FeedInterpolationType)

FeedInterpolationType

FeedInterpolationType

Enumeration of the following values:
fiConstant
fiLinear

fiConstant: The programmed velocity is applied as fast as possible with the constant feed interpolation
(default).

fiLinear: The linear feed interpolation transfers the velocity linearly over the path from v_start to v_end.

4.6.16 Streaming of Large G-Code Files

runFile

runFile(path:= string)

The size of files that can be executed employing the GST-interpreter is limited. However, sometimes it is
required to execute large files that may have been created e.g. by a CAD-program. Therefore, the user has
the possibility to execute filestreams of native G-Code.

Executes the plain G-Code that is contained in the G-Code file given by path. The function call returns after
all lines in the supplied file have been processed. The function is intended for streaming large G-Code files to
the NC-kernel efficiently.

Native G-Code: No Structured Text Allowed
Note that the supplied G-Code file must not contain any ST-elements, but only plain G-Code.

A G-Code filestream from file 'myNativeGCodeFile.nc' can be called from a GST-program lining up the
following syntax:
!runfile('myNativeGCodeFile.nc');

runFile with R parameters and simple arithmetic expressions

From the TwinCAT V3.1.4024.40 R parameters and simple arithmetic expressions are allowed with runfile.

callRunfileWithRParamsAndExpressions.nc
N0 G0 X0 Y0 Z0
N1 G1 X10 F5000
!R3:=3;
!R5:=5;
!R10:=15;
!r100:=-1.234;
!R888:=98.123;

GST Reference Manual

TF510088 Version: 2.11.0

N2 G1 y={r100}
!runfile(RunfileWithRParamsAndExpressions.nc');
M30

RunfileWithRParamsAndExpressions.nc
G1 X200
G1 Y150
G1 Z234
G1 z = R888 - r100 - r100 / R10
G1 y=100-r888
G1 x=-R10/r5-r3 q1=20-r3*R5

4.6.17 Vertex Smoothing

smoothingSet

smoothingSet(mainType:= SmoothingMainType, subType:= SmoothingSubType, value:= L
Real)

Sets the vertex smoothing behavior according to the given parameters.

SmoothingMainType

Enumeration of the following values:
smoothingNone
smoothingParabola
smoothingBiquadratic
smoothingBezier3
smoothingBezier5
smoothingTwinBezier

smoothingNone: No smoothing.

smoothingParabola: For parabola smoothing a parabola is inserted geometrically into the segment
transition. This ensures a steady velocity transition within the tolerance radius.

smoothingBiquadratic: With biquadratic smoothing there is no step change in acceleration in the axis
components. With the same radius, a smaller input velocity may therefore be required than for parabolic
smoothing.

smoothingBezier3: In case of the 3rd order Bezier curve a step change in acceleration appears in the axis
components when the tolerance sphere is entered. The max. size is limited by the acceleration of the axis
components and the C1 factor.

smoothingBezier5: With 5th order Bezier blending, no step change in acceleration occurs in the axis
components on entry into the tolerance sphere. In other words, the path axis acceleration is always constant
if blending is selected.

smoothingTwinBezier: With the aid of smoothing, it is possible to insert a Bezier spline automatically
between two geometrical entries. It is only necessary to program the radius of the tolerance sphere. This
describes the maximum permissible deviation from the programmed contour in the segment transition. The
advantage of this type of smoothing as opposed to rounding with an arc is that there are no step changes in
acceleration at the segment transitions.

Acute angles at the segment transition
The Bezier splines are generated by default, even at very acute angles. In order to avoid the
dynamic values being exceeded, a considerable reduction velocity is required in this case.
However, since the dynamics are held constant in the spline, the movement across the spline can
be quite slow. In this case it is often practical to start the segment transition with an accurate stop.
The command AutoAccurateStop [} 157] can be used to avoid having to calculate the angles
manually.

SmoothingSubType

Enumeration of the following values:

GST Reference Manual

TF5100 89Version: 2.11.0

smoothingRadius
smoothingDistance
smoothingAdaptive

Example

The example visualizes the effect of using a smoothing parabola. In the first two corners smoothing value 10
and in the third corner smoothing value 50 have been used. Finally, the fourth corner exhibits smoothing
value 0.
N10 G01 X0 Y0 F60000
!smoothingSet(mainType:=smoothingParabola, subType:=smoothingRadius, value:=10);
N20 G01 X100
N30 Y200
!smoothingSet(mainType:=smoothingParabola, subType:=smoothingRadius, value:=50);
N40 X-100
!smoothingSet(mainType:=smoothingParabola, subType:=smoothingRadius, value:=0);
N50 Y0
N60 X0
M02

4.6.17.1 Subtypes

SmoothingRadius (subtype 1)

If subtype 1 is selected, the maximum tolerance radius (RTB) is used for blending. RTB is reduced if and only if
the input or output segment is less than 3*RTB.

GST Reference Manual

TF510090 Version: 2.11.0

SmoothingDistance (subtype 2)

The distance between the programmed segment transition and the vertex of the parabola is specified with
the subtype 2. The tolerance radius (RTB) results from this. If a segment is too short, then the distance is
shortened so that the tolerance radius is a max. of 1/3.

SmoothingAdaptive (subtype 3)

Within the tolerance radius (including constant tolerance radius) the system ensures that the maximum
permissible acceleration is not exceeded. Depending on the deflection angle and the velocity, the maximum
axis acceleration within the smoothing segment may be different. The aim of an adaptive tolerance radius is
maximum acceleration during smoothing. In order to achieve this, the smoothing radius is reduced based on
the programmed velocity and dynamics. In other words, if the programmed velocity is changed, the tolerance
radius can also change. The override has no influence on the radius.

4.6.18 Automatic Accurate Stop

autoAccurateStopSet

autoAccurateStopSet(angle:= LREAL);

The command autoAccurateStopSet is used in conjunction with blending (see smoothingSet) and allows
driving to acute angles with active blending. A limit angle, up to which an accurate stop between 2 segments
must take place, is defined for this in the command autoAccurateStopSet.
!autoAccurateStopSet(angle:= 30.0);

For circle segments, the angle is calculated from the tangents at the points of entry and leaving.

Sample
N10 G0 X0 Y0 Z0

N20 G01 X10 F20000
N30 G01 X15 Y30
N40 G01 X20 Y0

!smoothingSet(mainType:=smoothingParabola,
subType:=smoothingRadius, value:=50);
N50 G01 X30
N60 G01 X35 Y30
N70 G01 X40 Y0

https://infosys.beckhoff.com/content/1031/tf5100_tc3_nc_i/4190500619.html?id=6006763733805499437

GST Reference Manual

TF5100 91Version: 2.11.0

!autoAccurateStopSet(angle:= 46.0);
N80 G01 X50
N90 G01 X55 Y30
N100 G01 X60 Y0

N110 G01 X80

N110 M30

Requirements

Development environment Target system
TwinCAT V3.1.4024.15 PC or CX (x86 or x64)

4.6.19 Spline Interpolation

transBSpline

transBSpline(BreakAngle:=LREAL, BreakLength:=LREAL, MergeDiff:=LREAL,
LineBreakAngle:=LREAL, LineBreakLength:=LREAL, LineMergeDiff:=LREAL)

transBSpline generates a continuous curve from a piecewise linear polyline.
The curve is bounded by the input polyline, the start and end points are interpolated, interior points are the
control points (DeBoor points) of the curve. At least three points are required. A BSpline curve exhibits local
control and is thereby amenable to control point manipulation.
//Enable
transBSpline(BreakAngle := 70, BreakLength := 1000);

//Disable
transBSpline();

Example:

!//BSpline
N10 G00 X18.498 Y0
!transBSpline(BreakAngle:=70.0, BreakLength:=1000.0);
N20 G01 X18.498 Y0 Z0 F6000
N30 X16.572 Y6.543 Z1
N40 X15.616 Y9.715 Z2
N50 X15.121 Y11.275 Z3

GST Reference Manual

TF510092 Version: 2.11.0

N60 X14.838 Y13.196 Z4
N70 X14.982 Y15.085 Z5
N80 X15.595 Y16.485 Z6
N90 X16.396 Y17.490 Z7
N100 X18.653 Y19.243 Z8
N110 X25.07 Y22.526 Z9
N120 X22.228 Y22.997 Z8
N130 X19.569 Y23.174 Z7
N140 X16.488 Y22.884 Z6
N150 X13.634 Y22.228 Z5
N160 X9.533 Y20.793 Z4
N170 X6.668 Y19.009 Z3
N180 X4.224 Y16.877 Z2
N190 X2.376 Y14.61 Z1
N200 X1.068 Y11.959 Z0
! transBSpline();
M02

Parameters

BreakAngle (mandatory): Allows preservation of sharp angle features in the path. The spline will break
when the path deviates more than BreakAngle. The spline will terminate and interpolate the point.

BreakLength (mandatory): Allows preservation of long features in the path. The spline will break for
segments longer than BreakLength. The spline will terminate and interpolate the start and end points of the
long segment.

MergeDiff (optional): The BSpline is comprised of Bezier segments. To potentially improve processing
speed the spline may be compressed by merging. Adjacent segments will be merged together when the
difference in control points is less than MergeDiff. Below adjacent segments are merged into one.

Excessive curvature
Overly aggressive merging can result in excessive contortion and a segment of excessive curvature
will be rejected with a run time error.
Acceptable curvature is derived from path velocity and acceleration.

The BSpline is constructed from a control point polyline formed by G01 segments, eg: CADCAM. To improve
processing speed the control point polyline may be compressed or simplified by merging adjacent segments.

GST Reference Manual

TF5100 93Version: 2.11.0

LineBreakAngle (optional): Merging of adjacent control points will break if the deviation angle exceeds
LineBreakAngle.

LineBreakLength (optional): Merging of adjacent control points will break if the length exceeds
LineBreakLength.

LineMergeDiff (optional): Adjacent control points will be merged if the difference (perpendicular distance) is
less than LineMergeDiff. In the example N30 may be eliminated, simplifying the control polygon.

If the optional parameters aren’t parameterized or if they are 0, no merging will take place.

Excessive curvature
Overly aggressive merging can result in excessive contortion and a segment of excessive curvature
will be rejected with a run time error.
Acceptable curvature is derived from path velocity and acceleration.

Processing order:

If the BreakAngle or BreakLength are 0. No further processing will take place. LineBreakAngle,
LineBreakLength and LineMergeDiff are processed firstly to simplify the control point polyline. BreakAngle
BreakLength and MergeDiff are processed finally to generate the BSpline curve.

Decoder Stops and Handshake M functions:

The BSpline should be terminated with !transBSpline(); prior to either a decoder stop or a M-function
type handshake.
!//BSpline
N10 G00 X18.498 Y0
!transBSpline(BreakAngle:=70.0, BreakLength:=1000.0);
N20 G01 X18.498 Y0 Z0 F6000
N30 X16.572 Y6.543 Z1
N40 X15.616 Y9.715 Z2
N50 X15.121 Y11.275 Z3
N60 X14.838 Y13.196 Z4
N70 X14.982 Y15.085 Z5
N80 X15.595 Y16.485 Z6
N90 X16.396 Y17.490 Z7
N100 X18.653 Y19.243 Z8

GST Reference Manual

TF510094 Version: 2.11.0

N110 X25.07 Y22.526 Z9
!transBSpline();
!sync();
!transBSpline(BreakAngle:=70.0, BreakLength:=1000.0);
N120 X22.228 Y22.997 Z8
N130 X19.569 Y23.174 Z7
N140 X16.488 Y22.884 Z6
N150 X13.634 Y22.228 Z5
N160 X9.533 Y20.793 Z4
N170 X6.668 Y19.009 Z3
N180 X4.224 Y16.877 Z2
N190 X2.376 Y14.61 Z1
N200 X1.068 Y11.959 Z0
! transBSpline();
M02

Compatible G-Codes and functions

G-Codes other than G01 are supported.
G00
G02, G03 (Circle and Helix): The BSpline will terminate before and continue afterwards.
G04
G09, G60
G54 and other transformations
disableMask()
runFile(path:=)
smoothingSet(mainType:=smoothingTwinBezier,subType:=smoothingRadius,value:=)

ToolRadiusCompensation is not supported.

Requirements

Development Environment Target System
TwinCAT V3.1.4024.4 PC or CX (x86 or x64)

4.6.20 Dynamic Override

dynOverrideSet

dynOverrideSet(value:= LREAL)

Set the dynamic override of axes to the given value.

The dynamic override function can be used to implement and evoke percentage changes to the dynamic
axis parameters in the axis group while the NC program is running. Thus, these changes result in new values
for motion dynamics. Without any stop the new dynamic values become valid when the line is executed.

Range of Values

The factor value for dynOverrideSet has to reside within the range 0 < value ≤ 1.0.

Example

Within the example the new dynamic values become valid without any stop. In block N010 the previously set
values are used for deceleration, while the changed values are used for acceleration in block N020.
N010 G01 X100 Y200 F6000
!dynOverrideSet(value:= 0.4);
N020 G01 X500
M02

Example

The command dynOverrideSet can be used to reduce acceleration and jerk e.g. only for one movement.
In the example acceleration and jerk are reduced by 50 percent merely in block N020.

GST Reference Manual

TF5100 95Version: 2.11.0

N010 G01 X100 Y100 F6000
!dynOverrideSet(value:= 0.5);
N020 X0
!dynOverrideSet(value:= 1);
N030 X100
M02

4.6.21 Programming reference

programmingReferenceSet

programmingReferenceSet(value:= ReferenceType)

As an alternative to G90/G91 [} 48], programmingReferenceSet can be used to set the dimensions of the
subsequent movement commands to absolute or relative.

programmingReferenceGet

ReferenceType := programmingReferenceGet()

The currently active dimension for the movement commands can be read out with
programmingReferenceGet.

ReferenceType

Enumeration of the following values:
referenceAbsolute
referenceRelative

Example

programmingRefGet/Set is particularly recommended for functions. At the start of a function, the
currently set dimension can be read out with programmingRefGet before it is set to the dimension of the
function with G90/G91 or programmingRefSet. At the end of the function, programmingRefSet is used
to ensure that the dimension is reset.
{
FUNCTION TestFunction
VAR
 programmingRef : ReferenceType;
END_VAR

 programmingRef := programmingReferenceGet();
 programmingReferenceSet(value:= referenceRelative);

 !N21 G01 X10 Y-10
 !N22 G01 X10 Y-10

 programmingReferenceSet(value:= programmingRef);

END_FUNCTION
}

N10 G00 X0 Y0 Z0
N20 G01 G90 X100 Y20 F6000

!TestFunction();

N30 G01 X100 Y30
M30

Requirement

TwinCAT
TwinCAT V3.1.4024.54

GST Reference Manual

TF510096 Version: 2.11.0

4.6.22 Center Point Reference of Circles

circleCenterReferenceSet

circleCenterReferenceSet(value:= ReferenceType)

• Sets the center reference type for circles that are programmed by G02/G03 using a center point, whose
definition involves the i,j,k-parameters.

• For referenceAbsolute the center point of the circle is defined by the supplied i,j,k-vector.
• For referenceRelative the center point is defined by the sum of the circle starting-point and the

supplied i,j,k-vector. This is the default and usual behavior of G-Code.

circleCenterReferenceGet

ReferenceType := circleCenterReferenceGet()

Returns the currently active center point reference for circles.

circleCenterReferenceGet prerequisite

TwinCAT
TwinCAT V3.1.4024.54

ReferenceType

Enumeration of the following values:
referenceAbsolute
referenceRelative

.

4.6.23 Change in axis dynamics

axisDynamicsSet

axisDynamicsSet(axisNo:= UDINT, acc:= LREAL, dec:= LREAL, jerk:= LREAL);

axisDynamicsSet can be used to change the axis dynamics at runtime.

Function axisDynamicsSet
Parameter <axisNo> Axis in the interpolation group:

X: 0
Y: 1
Z: 2
Q1: 3
...
Q5: 7

Parameter <acc> Value of the maximum permitted acceleration in mm/s^2.
Parameter <dec> Value of the maximum permitted deceleration in mm/s^2.
Parameter <jerk> Value of the maximum permitted jerk in mm/s^3.

Example:
N10 G01 X100 Y200 F6000
!R4:=10000;
!axisDynamicsSet(axisNo:= 0, acc:= 2250, dec:= 2250, jerk:= R4);
N30 G01 X500
N40 M02

GST Reference Manual

TF5100 97Version: 2.11.0

Requirements

Development Environment Target System
TwinCAT V3.1.4024.4 PC or CX (x86 or x64)

4.6.24 Change in path dynamics

pathDynamicsSet

pathDynamicsSet(acc:= LREAL, dec:= LREAL, jerk:= LREAL);

pathDynamicsSet can be used to change the path dynamics at runtime.

Function pathDynamicsSet
Parameter <acc> Value of the maximum permitted acceleration in mm/s^2.

Must be set >= 1. If set to 0, the default value is used.
Parameter <dec> Value of the maximum permitted deceleration in mm/s^2.

Must be set >= 1. If set to 0, the default value is used.
Parameter <jerk> Value of the maximum permitted jerk in mm/s^3.

Must be set >= 1. If set to 0, the default value is used.

Example:
N10 G01 X100 Y200 F60000
!R4:=10000;
//Set path dynamics
!pathDynamicsSet(acc:=200, dec := 200, jerk := R4);
N30 G01 X500 Y0
//Set path dynamics back to default values and jerk to 12000
!pathDynamicsSet(acc:=0, dec := 0, jerk := 12000);
N50 G01 X100 Y200
//Set path dynamics to default values
!pathDynamicsSet(acc:=0, dec := 0, jerk := 0);
N70 G01 X500 Y0
N80 M02

Requirements

Development Environment Target System
TwinCAT V3.1.4024.12 PC or CX (x86 or x64)

4.7 Transformations
Speaking of GST-Transformations we refer e.g. to rotations or to zero-point-shifts.

The relation between the MCS (machine coordinate system) and the PCS (program coordinate system) is
defined by the effective transformation T. T is the concatenation of the transformations TZ, TU and
TT (T = TZ * TU * TT). Note that the order of concatenation is significant for the transformations do not
commute in general. The transformation TZ represents a (historical) zero offset shift, the transformation TU
represents a user defined transformation and the transformation TT represents a tool transformation. They
are described in detail later.

Figure “TransformationsTzTuTt” visualizes the relation between the MCS (machine coordinate system) and
the PCS (program coordinate system):

• TZ is defined to be a translation by [20,20,0],
• TU is a combination of the translation [30,-10,0], followed by a rotation by 45 degree around the Z-

axis,
• TT is a translation by [0,-10,0].

GST Reference Manual

TF510098 Version: 2.11.0

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

MCS

TZ TU

TT

T

PCS

Figure “TransformationsTzTuTt”.

4.7.1 Modification of the Effective Transformation T and its Effect
Most G-Codes define only the destination point of a movement. Therefore, the interpreter maintains the
current position of the tool. This point can be represented in MCS (machine coordinate system) coordinates
and PCS (program coordinate system) coordinates while the equation
CurrentPointMCS = T * CurrentPointPCS holds. In contrast to the previous implementation, this
transformation equation also holds after a modification of T. This behavior is accomplished by adapting the
CurrentPointPCS. The MCS (machine coordinate system) point is not adapted, as this would affect the
machine. This behavior may be summarized roughly as: When the active transformation is changed, the
current PCS (program coordinate system) point is adapted in a way that the modification shows no effect.

Example:

After N10 the coordinates of the current PCS (program coordinate system) and MCS (machine coordinate
system) point are [20,10,80], since no transformation is active. The translation changes the current PCS
(program coordinate system) point to [28,7,84]. Applying the translation on this point yields the
unchanged MCS (machine coordinate system) point [20,10,80]. Hence, the translation shows no effect,
although it is active. The block N20 programs a movement to the PCS (program coordinate system) point
[25,7,10], which is mapped to the MCS (machine coordinate system) coordinate [17,10,6]. After the
invocation of transPop() the current PCS (program coordinate system) point is set to the current MCS
(machine coordinate system) point.
N10 G01 X20 Y10 Z80 F6000
!transTranslate(-8,3,-4);
N20 G01 X25 Z10
!transPop();
M02

Example:

If the user wants the PCS (program coordinate system) point to remain unchanged, he has to retrieve and
program it, as shown in the following code. However, the desire for an unchanged PCS (program coordinate
system) point typically indicates a bad programming style. Actually, there should be no need for the following
code.
{
VAR
 pcsX, pcsY, pcsZ : LREAL;
END_VAR

// … G-Code …

frameGet(x=>pcsX,y=>pcsY,z=>pcsZ);
// … modify transformations …
!G01 x=pcsX y=pcsY z=pcsZ F6000
}

GST Reference Manual

TF5100 99Version: 2.11.0

4.7.2 Components of the Effective Transformation T

Zero Offset Shift TZ

The TZ-transformation is affected by certain G-Codes. It has no effect if G53 is active. Otherwise, TZ is the
combination of the three translations TZ58, TZ59 and one of {TZ54, …, TZ57}. The former two translations are set
via the G-Codes G58 and G59. The latter translation is selected by the G-Codes G54 to G57. One translation
is associated with each of these 4 G-Codes. It can be set by the PLC or using the ST-function
zeroOffsetShiftSet.

Tool Transformation TT

TT is defined by the currently selected tool. It has no effect if tool 0 (D0) is selected. Otherwise, it is a
translation by [offsetX, offsetY, offsetZ] + (length+lengthAdd) * D where D is the normal
of the current workingplane.

Userdefined Transformation TU

TU is defined by a stack of transformations. The stack of depth N contains elementary transformations
TU1, TU2, …, TU<N> where TU<N> is the topmost transformation. Initially, the stack is empty. The userdefined
transformation is the concatenation of these elementary transformations TU = TU1 * TU2 * … * TU<N>. Note that
the order is significant for the transformations do not commute in general. If the stack is empty, TU is the
identity transformation, which has no transformation effect.

4.7.3 Applying Transformations
A transformation is pushed onto the stack by the following ST-functions. The transformation pushed recently
will be the topmost transformation on the transformation stack. When a transformation is pushed onto the
transformation stack, the stack depth is increased by one and TU is adapted accordingly.
transTranslate(x:= LREAL, y:= LREAL, z:= LREAL);
(* A rotation pushed onto the stack of transformations is interpreted around the respective
axis using the current angle-unit, e.g. degree or radian. *)
transRotX(angle:= LREAL);
transRotY(angle:= LREAL);
transRotZ(angle:= LREAL);
transMirrorX();
transMirrorY();
transMirrorZ();
transScale(factor:= LREAL);

4.7.4 Revoking Transformations
The function transPop() removes the topmost transformation from the transformation stack. When
transPop() removes a transformation from the transformation stack, the stack depth is reduced by one
and TU is adapted accordingly. Commonly, the transPop()-function is used to revoke a temporary
transformation.

Example:

In the following example the translation is applied to N10, N20 and N30. The rotation is only applied to N20
as it is revoked by transPop(). Figure “ExampleRevokingTransformations” shows the resulting MCS
(machine coordinate system) path. Note that the rotation center is [20,0,0] in MCS (machine coordinate
system), which is the origin in PCS (program coordinate system) after the preceeding translation.
!transTranslate(20,0,0);
N10 X10 Y0 F6000
!transRotZ(90);
N20 X20 Y0
!transPop();
N30 X30 Y0
!transPop();
M02

GST Reference Manual

TF5100100 Version: 2.11.0

10 20 30 40 50

0

0

10

20

-10
-10 60

X

Y

70 80 90 100

30

N10

N30
N20

Figure “ExampleRevokingTransformations”.

4.7.5 Restoration of Stack
The function transDepth() yields the current depth of the stack. The function transRestore(depth)
removes transformations from the stack until the given depth is reached. Typically, the two functions are
combined to save and restore the state of the transformation stack.

It is good programming style to do this saving and restoring in the context of userdefined ST-functions.

Example:

Initially, within the following function the depth of the stack is stored in the variable depth. At the end of the
function the initial state is restored by transRestore. Note that restoration only works properly if the stack
depth does not fall below depth within the function. Instead of using transDepth() and
transRestore() the stack depth could also be restored using transPop(). However, it may become
cumbersome to keep pushing and popping of transformations synchronous, especially if transformations are
pushed conditionally.
{
FUNCTION draw
VAR
 depth : UINT;
END_VAR
 depth := transDepth();
transTranslate(10,0,0);
 // … G-Code …
 transRotZ(45);
 // … G-Code …
 transMirrorX();
 // … G-Code …
 transRestore(depth);
END_FUNCTION
}

4.8 Error Reporting
Efficient development of CNC-programs requires decent support by development tools. This support includes
proper reporting of programming errors for both, compile-time errors and runtime errors. An error message
should point directly to the source code the error originates from and give a precise description of the
circumstances under that the error occured (dynamic data). Such individual error messages help a developer
substantially to fix errors in short time. The GST-interpreter yields such error messages, as described in the
following texts.

GST Reference Manual

TF5100 101Version: 2.11.0

4.8.1 Error Messages
In case of an error the interpreter produces a descriptive error message. An error message consists of a
source code coordinate and a description. The source code coordinate links the error to its origin in the GST-
program. It defines a range of source code stretching from the first character of the code range to the last
character of the code range. Both, first and last character, are defined by their file, line and column. Note that
the last character actually points to the first character behind the range, which is a common technical
convention.

Example:

In the following example an integer variable i is declared and initialized. The initialization uses a floatingpoint
literal. Since an implicit conversion from floatingpoint to integer is not allowed in ST, the interpreter produces
the descriptive error message given below when the program is loaded. The error message does not only
report that a type-error has occured, it also gives the precise position: File aaa.nc, line 3, column 14 to 17.
This code range displays the literal ‘1.5’. In addition, the programmed type (real) and the expected type
(int) are reported. With such a detailed error message bugs can be fixed by the developer easily.
{
VAR
 i : int := 1.5;
END_VAR
}
M02

Error message:
aaa.nc: 3.14-3.17: Invalid implicit conversion from type
'<real literal>' to 'int'.

4.8.2 Compile-Time Errors and Runtime Errors
Errors may occur during program loading (so called compile-time errors) or during program execution (so
called runtime errors). Fortunately, most errors are detected at compile-time. This detection includes missing
files, syntax errors, type errors and unexpected identifiers. The developer gets feedback immediately when
he tries to load the program. Thus, a part of unexpected failures during machining is avoided.

However, there are also errors that, by their nature, cannot be detected at compile-time. For instance, this
circumstance includes a division by zero, since the divisor may be computed dynamically. If a runtime error
occurs, the interpreter is stopped safely and an error message is produced. A runtime error message is
similar to a compile-time error message. It even includes a reference to the pertinent source code.

Example:

In the following example the FOR-loop contains a division of 10 by the loop variable i. Since the variable i is
iterated from -3 to 3, this program leads to an error during the 4th iteration, when i has the value 0. This
error is detected at runtime and stops the interpreter. The error message shown below is reported. It points
precisely to the code ‘10/i’ in the example.

FILE aaa.nc:
{
VAR
 i, j : int;
END_VAR

FOR i := -3 TO 3 DO
 j := j + 10/i;
END_FOR;
}
M02

Error message:
aaa.nc: 7.12-7.16: Division by zero

GST Reference Manual

TF5100102 Version: 2.11.0

Example:

At runtime the interpreter also performs checking of array bounds. Consequently, invalid indices do not result
in unpredictable and typically fatal crashes. The runtime error message precisely defines location and origin
of the error at ‘idx’, reports the erroneously supplied index (20) and the valid index range (10..19).

FILE aaa.nc:
{
VAR
 idx : INT;
 a : ARRAY [10..19] OF INT;
END_VAR

FOR idx := 10 TO 20 DO
 a[idx] := i;
END_FOR;
}
M02

Error message:
aaa.nc: 8.5-8.8: Out of bounds. 20 exceeds range 10..19.

4.8.3 Errors in G-Code
Error reporting is also performed for G-Code. This reporting includes compile-time errors and runtime errors.
Runtime error reporting includes invalid use of G-Code, e.g. like a bad definition for a circle.

Example:

In the following example the value of a string variable str is assigned to the address letter X of the G-Code
block. As before the position of the error is precisely identified at ‘=str’ in the code. In addition, the
programmed type and the expected type are reported.

FILE aaa.nc:
{
VAR
 str : string := 'Hello World';
END_VAR
}

G01 X=str F6000
G01 Y100
M02

Error message:
7.5-7.9: Invalid implicit conversion from type 'string[255]'
to 'lreal'

Example:

In the following example a sequence of circular arcs is processed by a FOR-loop. The radius of the arc is 4.
The distance between the starting-point and endpoint of the arc is successively increased within each
iteration. During the 9th iteration the distance exceeds the circle diameter of 8. The reported error message
identifies the origin G2 X=i*10+i U4 and gives information about the diameter and distance between
starting-point and endpoint.

FILE aaa.nc:
{
VAR
 i : INT;
END_VAR

!G00 X0 Y0 Z0
FOR i := 1 TO 10 DO

GST Reference Manual

TF5100 103Version: 2.11.0

 !G01 X=i*10 F6000
 !G02 X=i*10+i U4
END_FOR;
}
M02

Error Message:
aaa.nc: 9.4-10.1: Invalid definition of circle. Distance
between start-point and end-point (=9.000000) is larger than
diameter (=8.000000).

4.8.4 Preprocessing
During preprocessing #include-directives are replaced by the contents of the referenced files. Care has
been taken to maintain information about the origin of source code properly. Therefore, an error that is
caused by code in an included file will refer to that included file and not to the result of preprocessing, as a
simple implementation would do.

Example:

In the following example the file aaa.nc includes the file bbb.nc. In the latter file the variables i and j are
used in G-Codes. Variable i is declared at the beginning of aaa.nc, but j is not. Therefore, the error
message below is issued. As you can see it references the use of variable j in file bbb.nc properly.

FILE aaa.nc:
{
VAR
 i : INT;
END_VAR
}

G00 X0 Y0 Z0

#include "bbb.nc"

G00 X100

M02

FILE bbb.nc:
G01 X=i F6000
G01 Y=j
G01 Z100

Error message:
bbb.nc: 2.6-2.7: Undeclared variable or enumeration value
'j'

4.9 General Command Overview
Preprocessor

Com-
mand

Description

#include
[} 31]

The #include directive inserts the contents of another file. The included file is referenced by its
path. Typically, it is used to “import” commonly used code like e.g. libraries. Its behavior is similar
to the C-Preprocessor.

GST Reference Manual

TF5100104 Version: 2.11.0

Interpolations

Com-
mand

Description Modal or Non-
modal

Default

G00
[} 39]

Interpolation mode: Linear.
Applying maximum velocity ignoring programmed velocity.
Reset by G01, G02, G03.

Modal. Default.

G01
[} 40]

Interpolation mode: Linear.
Applying programmed velocity.
Reset by G00, G02, G03.

Modal. No.

G02
[} 40]

Clockwise interpolation mode: Circular or helical.
Applying current velocity.
Reset by G00, G01, G03.

Modal. No.

G03
[} 40]

Counterclockwise interpolation mode: Circular or helical.
Applying current velocity.
Reset by G00, G01, G02.

Modal. No.

G303
[} 42]

With G303 an circular arc (CIP circle) can be programmed, that
can be freely located in space.

No

G04
[} 43]

Defines a dwell time, i.e. suspends machining for a given
duration.

Nonmodal. No.

Workingplane Selection

Com-
mand

Description Modal or Non-
modal

Default

G17
[} 45]

Selects XY-plane as workingplane. Modal. Default.

G18
[} 45]

Selects ZX-plane as workingplane. Modal. No.

G19
[} 45]

Selects YZ-plane as workingplane. Modal. No.

Delete Distance to go

Com-
mand

Description Modal or Non-
modal

Default

G31
[} 43]

Delete distance to go. Nonmodal. No.

Deactivation and Activation of Tool Radius Compensation

Com-
mand

Description Modal or Non-
modal

Default

G40
[} 35]

Deactivates Tool Radius Compensation (TRC). With/After a G40
command it is mandatory to program at least one geometry
element.

Modal. Default.

G41
[} 35]

Activates Tool Radius Compensation (TRC).
Left.

Modal. No.

G42
[} 35]

Activates Tool Radius Compensation (TRC).
Right.

Modal. No.

GST Reference Manual

TF5100 105Version: 2.11.0

Set, Deactivate and Activate Zero-Offset-Shift Translations

Com-
mand

Description Modal or Non-
modal

Default

G53
[} 44]

Deactivates any zero-offset-shift translation. Modal. Default.

G54..G57
[} 44]

Activates the zero-offset-shift associated with the given G-Code.
Activates the translation G58 and G59.

Modal. No.

G58, G59
[} 44]

Sets the translation associated with the given G-Code. Modal. No.

Command Description
zeroOffsetShift
Set(g:= USInt,
[} 83]
 x:= LReal,
[} 83]
y:= LReal
[} 83],
z:= LReal)
[} 83]

Sets the translation for G-Code g where g must be one of the numbers 54, 55, 56 or 57.

Accurate Stop

Com-
mand

Description Modal or Non-
modal

Default

G09
[} 43]

Accurate stop. Nonmodal. No.

G60
[} 43]

Accurate stop. Modal. No.

Set Unit for Length and Speed

Com-
mand

Description Modal or Non-
modal

Default

G70
[} 46]

Sets the unit for lengths to inch.
Does not affect the unit for velocity.

Modal. No.

G71
[} 46]

Sets the unit for lengths to millimeter.
Does not affect the unit for velocity.

Modal. Default.

G700
[} 46]

Sets the unit for lengths to inch.
Also applies to the interpretation of velocity.

Modal. No.

G710
[} 46]

Sets the unit for lengths to millimeter.
Also applies to the interpretation of velocity.

Modal. Default.

Switch to Absolute or Relative Coordinates

Com-
mand

Description Modal or Non-
modal

Default

G90
[} 48]

Switches to absolute programming. Modal. Default.

G91
[} 48]

Switches to incremental programming. Modal. No.

GST Reference Manual

TF5100106 Version: 2.11.0

IJK

Com-
mand

Description Modal or Non-
modal

Default

I<vx>
J<vy>
K<vz>
[} 40]

Center point is currentPoint + [vx,vy,vz].
Current length unit is used for vx,vy,vz.
I used by G4 defines a duration.

Modal. Default: Center
point is
currentPoin
t + [0,0,0].
The IJK-
parameters are
optional.

M-Functions

Com-
mand

Description

M<v>
[} 49]

Triggers the M-function v.
The timing behavior depends on the definition of v in the development environment of TwinCAT.
There must not be more than one M-function of type handshake in a block.

M2 Predefined M-function.
Signals program end.

M30 Predefined M-function.
Signals program end.

Tool Orientation

Com-
mand

Description Modal or Non-
modal

Default

P<v>
[} 45]

Switches tool orientation. Modal. No.

Set Block Number

Com-
mand

Description

N<v>
[} 50]

Block number.

Set Radius

Com-
mand

Description Modal or Non-
modal

Default

U<v>
[} 40]

Sets the radius within the context of G02 or G03 to |v|. Modal. No.

Set Cartesian Coordinate

Com-
mand

Description

X<v>
[} 50]

Sets the X-coordinate of the next point to v.
Uses current length unit for v.

Y<v>
[} 50]

Sets the Y-coordinate of the next point to v.
Uses current length unit for v.

Z<v>
[} 50]

Sets the Z-coordinate of the next point to v.
Uses current length unit for v.

GST Reference Manual

TF5100 107Version: 2.11.0

Auxiliary Axes

Com-
mand

Description Modal or Non-
modal

Default

Q<i>=<v
> [} 50]

Sets label for auxiliary axis. Modal. No.

Set Orientation Angle

Com-
mand

Description Modal or Non-
modal

Default

A<v>
[} 50]

Sets the A-angle of the next orientation to v.
Uses current length unit for v.

Nonmodal, but
may influence
succeeding
blocks.

No.

B<v>
[} 50]

Sets the B-angle of the next orientation to v.
Uses current length unit for v.

Nonmodal, but
may influence
succeeding
blocks.

No.

C<v>
[} 50]

Sets the C-angle of the next orientation to v.
Uses current length unit for v.

Nonmodal, but
may influence
succeeding
blocks.

No.

Control Structures

Command Description
IF-THEN-ELSIF-ELSE
[} 57]

Conditional statement.

CASE OF [} 57] Conditional statement.

FOR [} 57] Counter-controlled loop.

WHILE [} 57] Head-controlled loop.

REPEAT [} 57] Foot-controlled loop.

EXIT [} 57] Leaving a loop.

Jump statement

Command Description
LABEL-GOTO [} 58] Jump statement.

Trigonometric

Command Description
SIN(x) [} 61] Returns the sine of x; x in radians.

COS(x) [} 61] Returns the cosine of x; x in radians.

TAN(x) [} 61] Returns the tangent of x; x in radians.

ASIN(x) [} 61] Returns the arc sine of x; x in radians.

ACOS(x) [} 61] Returns the arc cosine of x; x in radians.

ATAN(x) [} 61] Returns the arc tangent of x; x in radians.

ATAN2(y, x) [} 61] Returns the arc tangent of y/x; y/x in radians.

GST Reference Manual

TF5100108 Version: 2.11.0

Arithmetic

Command Description
ABS(x) [} 61] Returns the absolute value of x.

SQRT(x) [} 61] Returns the square root of x.

LN(x) [} 61] Returns the natural logarithm of x.

LOG(x) [} 61] Returns the decimal logarithm of x.

EXP(x) [} 61] Returns e raised to the power of x.

ADD(x1, x2, …) [} 61] Returns the sum of all parameters.

MUL(x1, x2, …) [} 61] Returns the product of all parameters.

SUB(x, y) [} 61] Returns the difference x-y.

DIV(x, y) [} 61] Returns the quotient x/y.

MOD(x, y) [} 61] Returns the remainder of the integer division x/y.

EXPT(x, y) [} 61] Returns x raised to the power of y.

Arithmetic Parameters

Command Description
rSet(index := LINT,
value := LREAL)
[} 67]

Assigns an R-parameter value.

rGet(index := LINT)
[} 67]

Extracts an R-parameter value.

Bit Shift and Bit Rotation

Command Description
SHL(x, y) [} 64] Returns the bitstring x shifted left by y bits.

SHR(x, y) [} 64] Returns the bitstring x shifted right by y bits.

ROL(x, y) [} 64] Returns the bitstring x rotated left by y bits.

ROR(x, y) [} 64] Returns the bitstring x rotated right by y bits.

Logical Operations

Command Description
AND(x1, x2, …) [} 65] Returns the bitwise Logical And of all parameters.

OR(x1, y2, …) [} 65] Returns the bitwise Logical Or of all parameters.

XOR(x1, x2, …) [} 65] Returns the bitwise Logical Exclusive Or of all parameters.

NOT(x) [} 65] Returns the bitwise complement of x.

Selection (Conditional Expressions)

Command Description
SEL(cond, x1, x2)
[} 65]

Returns x1 if cond is FALSE, and x2 otherwise.

MUX(select, x0, x1, …
, xN) [} 65]

Returns x<select>.

GST Reference Manual

TF5100 109Version: 2.11.0

Min, Max and Limit

Command Description
MAX(x1, x2, …) [} 66] Returns the maximum of all parameters.

MIN(x1, x2, …) [} 66] Returns the minimum of all parameters.

LIMIT(min, in, max)
[} 66]

Returns in if it lies in the interval [min,max]. Otherwise, the violated bound (min or
max) is returned.

Comparison

Command Description
GT(x, y) [} 66] Returns TRUE if x is larger than y.

GE(x, y) [} 66] Returns TRUE if x is not smaller than y.

EQ(x, y) [} 66] Returns TRUE if x and y are equal.

LE(x, y) [} 66] Returns TRUE if x is not larger than y.

LT(x, y) [} 66] Returns TRUE if x is smaller than y.

NE(x, y) [} 66] Returns TRUE if x and y are not equal.

Strings and Messages

Command Description
toString(<arg0>, …, <argN>): S
TRING [} 69]

Converts and concatenates the given arguments to one string.

msg(str:= String[81]) [} 69] Sends the given message to the message list of TwinCAT.

Transformations

Command Description
transRotX(angle:= LReal) [} 70]
transRotY(angle:= LReal) [} 70]
transRotZ(angle:= LReal) [} 70]

Rotation around the respective axis by the given angle in the user-defined
angle unit.

transRotA(x:= LReal [} 70],
y:= LReal, [} 70]
 z:= LReal [} 70],
angle:= LReal) [} 70]

Rotate around vector [x,y,z] by the given angle.

transMirrorX() [} 70]
transMirrorY() [} 70]
transMirrorZ() [} 70]

Mirror with respect to the X-direction, Y-direction or Z-direction relative to
the origin of the current PCS.

transScale(factor:= LReal) [} 70] Scales the coordinate system by the factor in the X-dimension, Y-
dimension and Z-dimension.

transScaleAxis(axisNo :=
axisIndex, factor := value) [} 70]

Scales the selected path axis (axisNo) by the factor.

transTranslate(x:= LReal, [} 70]
 y:= LReal, [} 70]
z:= LReal) [} 70]

Translate by vector [x,y,z].

transPop() [} 70] Pops a transformation from the stack of transformations.

transDepth(): UInt [} 70] Yields the depth of the stack of transformations, i.e. the number of active
transformations.

transRestore(depth:= UInt)
[} 70]

Reduces the stack of transformations to the given depth.

GST Reference Manual

TF5100110 Version: 2.11.0

Movement

Command Description
moveCircle3d(cx:= LReal, [} 76]
cy:= LReal, [} 76]
 cz:= LReal, [} 76]
 nx:= LReal [} 76],
 ny:= LReal [} 76],
 nz:= LReal [} 76],
 angle:= LReal [} 76],
 height:= LReal) [} 76]

Move circular by rotating around the center cx,cy,cz and the normal
vector nx,ny,nz by the given angle. If height is nonzero, a helix is
described. The rotation is performed according to the right hand rule.

Centerpoint Correction

Command Description
centerpointCorrectionSet(on:=
bool) [} 77]

Activates the centerpoint correction for circles. Used for circles that are
defined by centerpoint programming.

centerpointCorrectionLimitSet(li
mit:= LReal) [} 77]

Sets the precision limit for the centerpoint of circles.

Tools

Command Description
toolParamSet(tidx:= USInt,
[} 77]
col:= USInt [} 77],
 val:= LReal) [} 77]

Set a parameter of the tool tidx (1..255) to val. The parameter is
identified by col (0..15).

toolParam(tidx:= USInt [} 77],
 col:= USInt): LReal [} 77]

Yields the given tool parameter.

toolSet(index:= USInt [} 77],
 nr:= Int [} 77],
 tooltype:= ToolType, [} 77]
 length:= LReal [} 77],
 radius:= LReal, [} 77]
 lengthAdd:= LReal, [} 77]
 radiusAdd:= LReal [} 77],
 offsetX:= LReal [} 77],
 offsetY:= LReal [} 77],
 offsetZ:= LReal) [} 77]

Set all parameters of a tool.

ToolType [} 77] Enumeration of tool types.

Tool Radius Compensation

Command Description
trcApproachDepartSet(approac
hRadius:= LReal [} 81],
 approachAngle:= LReal [} 81],
 departRadius:= LReal, [} 81]
 departAngle:= LReal) [} 81]

Configures the approach and depart behavior to use an arc of given radius
and angle.

trcOffsetSet(offset:= LReal)
[} 81]

Configures the amount of segment extension that is used to close gaps.

trcLimitSet(offset:= LReal) [} 81] Configures the lookahead that is used for collision elimination.

trcParam(): TrcParamType [} 81] Returns the current configuration as a structure value.

GST Reference Manual

TF5100 111Version: 2.11.0

Command Description
trcParamSet(param:= TrcParam
Type) [} 81]

Configures the tool radius compensation. Summarizes
trcApproachDepartSet, trcOffsetSet and trcLimitSet.

TrcParamType [} 81] Structure containing all configuration parameters of the tool radius
compensation.

collisionElimination(nx:= LReal
[} 81],
ny:= LReal, [} 81]
 nz:= LReal [} 81],
 limit:= ULInt) [} 81]

Activates collision elimination with respect to the plane of the normal vector
nx, ny, nz.

collisionEliminationFlush()
[} 81]

To ignore conflicts between the path preceding the call and the path
succeeding the call.

Com-
mand

Description Modal or Non-
modal

Default

G40
[} 35]

Deactivates Tool Radius Compensation (TRC). Modal. Default.

G41
[} 35]

Activates Tool Radius Compensation (TRC). Left. Modal. No.

G42
[} 35]

Activates Tool Radius Compensation (TRC). Right. Modal. No.

Synchronization

Command Description
sync() [} 79] Synchronizes the interpreter with the associated NC-channel.

wait() [} 79] Waits for a GoAhead-signal from the PLC.

Query of Axes

Command Description
queryAxes() [} 80] Set the MCS coordinates of the interpreter to the actual coordinates of the physical

axes.

Current Point

Command Description
frameGet(x:= LReal [} 81],
 y:= LReal [} 81],
z:= LReal [} 81],
a:= LReal [} 81],
 b:= LReal [} 81],
 c:= LReal) [} 81]

Store the current frame of the PCS in x, y, z and a, b, c.

qAxisGet(q1:= LReal, [} 81]
 q2:= LReal [} 81],
 q3:= LReal, [} 81]
q4:= LReal, [} 81]
 q5:= LReal) [} 81]

Store the current values of Q-axes q1 to q5.

Suppression of G-Code Blocks

Command Description
disableMask():= LWord [} 82] Yields the current value of the disable mask.

GST Reference Manual

TF5100112 Version: 2.11.0

Command Description
disableMaskSet(mask:= LWord)
[} 82]

Sets the internal disable mask to the given value.

Units

Command Description
unitAngleSet(unitAngle:= UnitA
ngle) [} 84]

Set the unit for angles to unitAngle.

UnitAngle [} 84] Enumeration of unit angles.

unitLengthSet(unitLength:= Uni
tLength) [} 84]

Set the unit for lengths to unitLength.

UnitLength [} 84] Enumeration of unit lengths.

unitTimeSet(unitTime:= UnitTim
e) [} 84]

Set the unit for time to unitTime.

UnitTime [} 84] Enumeration of unit times.

unitVelocitySet(unitLength:= Un
itLength, [} 84]
 unitTime:= UnitTime) [} 84]

Set the unit for velocity to unitLength/unitTime.

Trigonometric (Unit Aware)

Command Description
gSin(angle:= LReal) [} 85] Returns the sine of the given angle where the current angle unit is used to

interpret the angle.
gCos(angle:= LReal) [} 85] Returns the cosine of the given angle where the current angle unit is used

to interpret the angle.
gTan(angle:= LReal) [} 85] Returns the tangent of the given angle where the current angle unit is

used to interpret the angle.
gASin(val:= LReal) [} 85] Returns the arc sine of val in the current angle unit.

gACos(val:= LReal) [} 85] Returns the arc cosine of val in the current angle unit.

gATan(val:= LReal) [} 85] Returns the arc tangent of val in the current angle unit.

gATan2(y:= LReal, x:= LReal)
[} 85]

Returns the arc tangent of y/x in the current angle unit.

Feed Mode

Command Description
feedModeSet(feedMode:= Feed
ModeType) [} 86]

Set the feed mode.

FeedModeType [} 86] Enumeration of feed mode types.

Feed Mode

Command Description
feedInterpolationSet(feedInterp
olation:= FeedInterpolationTyp
e) [} 86]

Set feed interpolation.

FeedInterpolationType [} 86] Enumeration of feed interpolation types.

GST Reference Manual

TF5100 113Version: 2.11.0

Streaming of Large G-Code Files

Command Description
runFile(path:= string) [} 87] Executes the plain G-Code that is contained in the G-Code file given by

path.

Vertex Smoothing

Command Description
smoothingSet [} 88]
(mainType:= SmoothingMainTy
pe [} 88],
 subType:= SmoothingSubType
[} 88],
 value:= LReal) [} 88]

Set the vertex smoothing behavior.

SmoothingMainType [} 88] Enumeration of smoothing main types.

SmoothingSubType [} 88] Enumeration of smoothing sub types.

autoAccurateStopSet [} 90] Automatic accurate stop.

Dynamic Override

Command Description
dynOverrideSet(value:= LReal)
[} 94]

Set the dynamic override of axes to the given value.

Programming reference

Command Description
programmingReferenceSet
[} 95]

As an alternative to G90/G91, programmingReferenceSet can be used
to set the dimensions of the subsequent movement commands to absolute
or relative.

programmingReferenceGet
[} 95]

The currently active dimension for the movement commands can be read
out with programmingReferenceGet.

ReferenceType [} 95] Enumeration of reference types.

Center Point Reference of Circles

Command Description
circleCenterReferenceSet(value:
= ReferenceType) [} 96]

Sets the center reference type for circles that are programmed by G02/
G03.

ReferenceType [} 96] Enumeration of reference types.

Dynamics Set

Command Description
axisDynamicsSet [} 96] Change in axis dynamics.

pathDynamicsSet [} 97] Change in path dynamics.

Spline Interpolation

Command Description
transBSpline [} 91] Spline interpolation.

GST Reference Manual

TF5100114 Version: 2.11.0

4.10 Comparative Command Overview
Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

ANG [} 146] Nonmodal. Contour line programming (angle).

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

CalcInvRot
[} 147]

Nonmodal. Calculates the inverse rotation of a vector.

CalcRot [} 147] Nonmodal. Calculates the rotation of a vector.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

CDOF [} 191] collisionElimina
tion [} 81]
Supplying a
zero vector.

Modal. Bottleneck detection off.

CDON [} 191] collisionElimina
tion [} 81]
Supplying a
nonzero
vector.

Modal. Bottleneck detection on.

collisionElimina
tionFlush [} 81]

This function can be called during active collision
elimination to ignore any conflicts between the path
preceding the call and the path succeeding the call.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

CFC [} 190] feedModeSet(f
eedMode:= Fe
edModeType)
[} 86]

Modal. Constant velocity at the contour.

CFIN [} 190] feedModeSet(f
eedMode:= Fe
edModeType)
[} 86]

Modal. Constant velocity in the interior circle.

CFTCP [} 190] feedModeSet(f
eedMode:= Fe
edModeType)
[} 86]

Modal. Constant velocity of the tool center point.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

CIP [} 137] G303 [} 42] An circular arc (CIP circle) can be programmed, that can be
freely located in space.

moveCircle3D
[} 76]

Nonmodal. Circular interpolation. Move circular by rotating around the
center cx,cy,cz and the normal vector nx,ny,nz by the
given angle.

GST Reference Manual

TF5100 115Version: 2.11.0

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

CPCOF [} 137] centerpointCor
rectionSet
[} 76]

Modal. Center point correction off.

CPCON [} 137] centerpointCor
rectionSet
[} 76]

Modal. Center point correction on.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

DelDTG [} 158] G31 [} 43] Nonmodal. Delete distance to go.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

DYNOVR
[} 174]

dynOverrideSet
[} 94]

Modal. Dynamic override.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

FCONST
[} 140]

feedInterpolati
onSet(feedInter
polation:= fiCo
nstant) [} 87]

Modal. Constant feed programming.

FLIN [} 140] feedInterpolati
onSet(feedInter
polation:= fiLin
ear) [} 87]

Modal. Linear feed programming.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

G00 [} 135] G00 [} 39] Modal. Rapid traverse.

G01 [} 136] G01 [} 40] Modal. Straight line interpolation.

G02 [} 137] G02 [} 40] Modal. Clockwise circular interpolation.

G03 [} 137] G03 [} 40] Modal. Counterclockwise circular interpolation.

G04 [} 140] G04 [} 43] Nonmodal. Dwell time.

G09 [} 140] G09 [} 43] Nonmodal. Accurate stop.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

G17 [} 129] G17 [} 45] Modal. Plane selection XY.

G18 [} 129] G18 [} 45] Modal. Plane selection ZX.

G19 [} 129] G19 [} 45] Modal. Plane selection YZ.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

G40 [} 185] G40 [} 35] Modal. No miller/ cutter radius compensation.

GST Reference Manual

TF5100116 Version: 2.11.0

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

G41 [} 185] G41 [} 35] Modal. Miller/ cutter radius compensation left.

G42 [} 185] G42 [} 35] Modal. Miller/ cutter radius compensation right.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

G53 [} 141] G53 [} 44] Modal. Zero shift suppression.

G54 [} 141] G54 [} 44] Modal. 1st adjustable zero offset shift.

G55 [} 141] G55 [} 44] Modal. 2nd adjustable zero offset shift.

G56 [} 141] G56 [} 44] Modal. 3rd adjustable zero offset shift.

G57 [} 141] G57 [} 44] Modal. 4th adjustable zero offset shift.

G58 [} 141] G58 [} 44] Modal. 1st programmable zero offset shift.

G59 [} 141] G59 [} 44] Modal. 2nd programmable zero offset shift.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

G60 [} 140] G60 [} 43] Modal. Accurate stop.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

G70 [} 130] G70 [} 46] Modal. Dimensions in inch.

G71 [} 130] G71 [} 46] Modal. Dimensions metric.

G74 [} 135] Nonmodal. Programmed traverse to reference point.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

G90 [} 128] G90 [} 48] Modal. Reference dimension notation.

G91 [} 128] G91 [} 48] Modal. Incremental dimension notation.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

G700 [} 130] G700 [} 46] Modal. Dimensions in inches with calculation of the feed.

G710 [} 130] G710 [} 46] Modal. Dimensions metric with calculation of the feed.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

MOD [} 158] Nonmodal. Modulo movement.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

MSG [} 179] msg [} 69] Nonmodal. Message from the NC program.

GST Reference Manual

TF5100 117Version: 2.11.0

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

NORM [} 190] Nonmodal. Orthogonal approach off the contour and orthogonal
departure from the contour.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

P+ [} 129] P<1> [} 50] Modal. Feed direction positive.

P- [} 129] P<-1> [} 50] Modal. Feed direction negative.
paramAutoAcc
urateStop

autoAccurateSt
opSet [} 90]

Modal. Automatic accurate stop.

paramAxisDyna
mics [} 174]

axisDynamicsS
et [} 96]

Modal. Parameterization of the axis dynamics.

paramC1Reduc
tionFactor
[} 175]

Modal. C1 reduction factor.

paramC2Reduc
tionFactor
[} 175]

Modal. C2 reduction factor.

paramCircularS
moothing
[} 156]

Modal. Circular smoothing.

paramDevAngl
e [} 175]

Modal. C0 reduction - deflection angle.

paramGroupVe
rtex [} 156]

Modal. Circular smoothing (old).

paramGroupDy
namic [} 174]

Modal. Path dynamics (old).

paramPathDyn
amics [} 174]

pathDynamicsS
et [} 97]

Modal. Path dynamics.

paramRadiusPr
ec [} 138]

Modal. Circular accuracy.

paramSplineS
moothing
[} 154]

smoothingSet
[} 88]

Modal. Vertex smoothing. NC: Smoothing with Bezier Splines.

paramVertexS
moothing
[} 151]

smoothingSet
[} 88]

Modal. Smoothing of segment transitions.

transBSpline
[} 91]

Modal. Spline interpolation.

paramVeloJum
p [} 175]

Modal. C0 reduction - maximum step change in velocity.

paramVeloMin
[} 177]

Modal. Minimum velocity.

paramZeroShift
[} 141]

zeroOffsetShift
Set [} 141]

Modal. Parameterization of the configurable zero shift.

PathAxesPos
[} 177]

frameGet,
[} 81]
qAxisGet [} 81]

Nonmodal. Reads the actual position.

GST Reference Manual

TF5100118 Version: 2.11.0

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

ZeroShiftIncOff
[} 141]

Modal. Zero shift is not applied under G91.

ZeroShiftIncOn
[} 141]

Modal. Zero shift is applied under G91.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

AROT [} 147] transRotA
[} 70]

Modal. Rotation additive.

ROT [} 147] transRotX,
transRotY,
transRotZ
[} 70]

Modal. Absolute rotation.

RotExOff
[} 147]

Modal. Extended rotation function off.

RotExOn
[} 147]

Modal. Extended rotation function on.

RotVec [} 147] Nonmodal. Calculation routine for rotating a vector.

RToDwordGetB
it [} 133]

Modal. Converts an R-parameter to DWord and checks whether a
defined bit is set.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

Mirror [} 150] transMirrorX,
transMirrorY,
transMirrorZ
[} 70]

Modal. Mirroring the coordinate system.

transScale
[} 70]

Modal. Scales the coordinate system by the factor in the X-
dimension, Y-dimension and Z-dimension.

transScaleAxis
[} 70]

Modal. Scales the selected path axis (axisNo) by the factor.

transDepth
[} 70]

Nonmodal. Yields the depth of the stack of transformations.

transRestore
[} 70]

Modal. Reduces the stack of transformations to the given depth.

transPop [} 70] Modal. Pops a transformation from the stack of transformations.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

rParam [} 133] rSet(index :=
LINT, value :=
LREAL [} 67])

Nonmodal. Assigning a Value to an R-Parameter.

rParam [} 133] rGet(index :=
LINT) [} 67]

Nonmodal. Reading an R-Parameter Value.

GST Reference Manual

TF5100 119Version: 2.11.0

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

SEG [} 146] Nonmodal. Contour line programming (segment length).

skip
VirtualMoveme
nts [} 178]

Modal. Skip virtual movements.

Command
Classic In-
terpreter

Command
GST Inter-
preter

Modal or Non-
modal

Description

ToolOffsetIncO
ff [} 182]

Modal. Cartesian tool displacement and length compensation is
not applied under G91.

ToolOffsetIncO
n [} 182]

Modal. Cartesian tool displacement and length compensation is
applied under G91.

ToolParam
[} 179]

toolParamSet
[} 77]

Modal. Set a tool parameter. NC: Writing and reading of tool
parameters.

ToolParam
[} 179]

toolParam
[} 77]

Modal. Yields the given tool parameter. NC: Writing and reading of
tool parameters.

ToolParam
[} 179]

toolSet [} 77] Modal. Set all parameters of a tool. NC: Writing and reading of tool
parameters.

TPM [} 144] Nonmodal. Target position monitoring.

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

trcApproachDepartS
et [} 81]

Configures the approach and depart behavior to use an arc of
given radius and angle.

trcOffsetSet [} 81] Configures the amount of segment extension that is used to
close gaps.

trcLimitSet [} 81] Configures the lookahead that is used for collision avoidance.

trcParam [} 81] Returns the current configuration as a structure value.

trcParamSet [} 81] Configures the tool radius compensation.

trcParamType [} 81] This structure contains all configuration parameters of the tool
radius compensation.

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

queryAxes [} 80] Set the MCS (machine coordinate system) coordinates of the
interpreter to the actual coordinates of the physical axes.

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

disableMask [} 82] Yields the current value of the disable mask.

Block Skipping
[} 126]
/

disableMaskSet
[} 82]

Sets the internal disable mask to the given value.

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

L [} 172] Userdefined
Functions [} 59]

Call of a subroutine.

#include [} 31] Directive inserts the contents of another file. Typically, it is used
to “import” commonly used code like e.g. libraries.

GST Reference Manual

TF5100120 Version: 2.11.0

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

runFile [} 87] Streaming of large G-Code files.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@40 [} 133] @40 Kn Rn Rm … Save register on the stack.

@41 [} 133] @41 Rn Rm Save register on the stack.

@42 [} 133] @42 Kn … Rm Rn Restore register from stack.

@43 [} 133] @43 Rm Rn Restore register from stack.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@100 [} 169] @100 K±n @100 Rm Jump statement
[} 58]

Unconditional jump.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@111 [} 169] @111 Rn K/Rn Km … CASE OF Case block.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@121 [} 169] @121 Rn K/Rn Kn IF-THEN-ELSIF-
ELSE;CASE OF [} 57];
GOTO [} 58]

Jump if unequal.

@122 [} 169] @122 Rn K/Rn Kn IF-THEN-ELSIF-
ELSE;CASE OF [} 57];
GOTO [} 58]

Jump if equal.

@123 [} 169] @123 Rn K/Rn Kn IF-THEN-ELSIF-
ELSE;CASE OF [} 57];
GOTO [} 58]

Jump if less or equal.

@124 [} 169] @124 Rn K/Rn Kn IF-THEN-ELSIF-
ELSE;CASE OF [} 57];
GOTO [} 58]

Jump if less.

@125 [} 169] @125 Rn K/Rn Kn IF-THEN-ELSIF-
ELSE;CASE OF [} 57];
GOTO [} 58]

Jump if greater or equal.

@126 [} 169] @126 Rn K/Rn Kn IF-THEN-ELSIF-
ELSE;CASE OF [} 57];
GOTO [} 58]

Jump if greater.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@131 [} 171] @131 Rn K/Rn Kn WHILE [} 57] Loop while equal.

@132 [} 171] @132 Rn K/Rn Kn WHILE [} 57] Loop while unequal.

@133 [} 171] @133 Rn K/Rn Kn WHILE [} 57] Loop while greater.

@134 [} 171] @134 Rn K/Rn Kn WHILE [} 57] Loop while greater or equal.

@135 [} 171] @135 Rn K/Rn Kn WHILE [} 57] Loop while less.

@136 [} 171] @136 Rn K/Rn Kn WHILE [} 57] Loop while less or equal.

GST Reference Manual

TF5100 121Version: 2.11.0

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@141 [} 171] @141 Rn K/Rn Kn REPEAT [} 57] Repeat until equal.

@142 [} 171] @142 Rn K/Rn Kn REPEAT [} 57] Repeat until unequal.

@143 [} 171] @143 Rn K/Rn Kn REPEAT [} 57] Repeat until greater.

@144 [} 171] @144 Rn K/Rn Kn REPEAT [} 57] Repeat until greater or equal.

@145 [} 171] @145 Rn K/Rn Kn REPEAT [} 57] Repeat until less.

@146 [} 171] @146 Rn K/Rn Kn REPEAT [} 57] Repeat until less or equal.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@151 [} 171] @151 Rn K/Rn Kn FOR [} 57] FOR_TO loop.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@161 [} 171] @161 Rn K/Rn Kn FOR [} 57] FOR_DOWNTO loop.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@200 @200 Rn Delete a variable.
@202 @202 Rn Rm Swap two variables.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@302 @302 K/R/Pn K/R/Pn R/Pn Read machine data bit.
@361 [} 177] @361 Rn Km Read machine-related actual

axis value.
@372 @372 Rn Extract the NC-Channel-ID and

store it in a variable.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@402 [} 137] @402 K/R/Pn K/R/Pn K/R/
Pn

circleCenterReferenc
eSet [} 96]

Write machine data bit.

circleCenterReferenc
eGet [} 96]

Returns the current center point
reference for circles.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@610 @610 Rn Rn ABS [} 61] Find the absolute value of a
variable.

@613 @613 Rn Rn SQRT [} 61] Find the square root of a
variable.

@614 @614 Rn Rm Rm SQRT(a^2 + b^2) Find the square root of the sum
of the squares of two
variables !
x := sqrt(a^2 + b^2);.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@620 [} 171] @620 Rn !var := var+1; Increment variable.
@621 @621 Rn !var := var-1; Decrement variable.
@622 @622 Rn Find integer part of a variable.

GST Reference Manual

TF5100122 Version: 2.11.0

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@630 [} 133] @630 Rn Rm SIN [} 61] Find the sine of a variable.

@630 [} 133] @630 Rn Rm gSin [} 85] Find the sine of a variable.

@631 [} 133] @631 Rn Rm COS [} 61] Find the cosine of a variable.

@631 [} 133] @631 Rn Rm gCos [} 85] Find the cosine of a variable.

@632 [} 133] @632 Rn Rm TAN [} 61] Find the tangent of a variable.

@632 [} 133] @632 Rn Rm gTan [} 85] Find the tangent of a variable.

@633 [} 133] @633 Rn Rm Find the cotangent of a variable.

@634 [} 133] @634 Rn Rm ASIN [} 61] Find the arc sine of a variable.

@634 [} 133] @634 Rn Rm gASin [} 85] Find the arc sine of a variable.

@635 [} 133] @635 Rn Rm ACOS [} 61] Find the arc cosine of a
variable.

@635 [} 133] @635 Rn Rm gACos [} 85] Find the arc cosine of a
variable.

@636 [} 133] @636 Rn Rm gATan [} 85] Find the arc tangent of a
variable.

gATan2 [} 85] Returns the arc tangent of y/x.

Command Clas-
sic Interpreter

Versions Command GST In-
terpreter

Description

@714 [} 168] @714 sync() [} 79] Decoder stop.

@716 [} 168] @716 A combination
of sync()
[} 79]and queryAxes(
) [} 80] replaces the
former @716-
command.

Decoder stop with rescan of the
axis positions.

@717 [} 168] @717 wait() [} 79] Decoder stop with external
trigger event.

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

LN(x) [} 61] Returns the natural logarithm of x.

LOG(x) [} 61] Returns the decimal logarithm of x.

EXP(x) [} 61] Returns e raised to the power of x.

ADD(x1, x2, …) [} 61] Returns the sum of all parameters.

MUL(x1, x2, …) [} 61] Returns the product of all parameters.

SUB(x, y) [} 61] Returns the difference x-y.

DIV(x, y) [} 61] Returns the quotient x/y.

MOD(x, y) [} 61] Returns the remainder of the integer division x/y.

EXPT(x, y) [} 61] Returns x raised to the power of y.

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

GT(x, y) [} 66] Returns TRUE if x is larger than y.

GE(x, y) [} 66] Returns TRUE if x is not smaller than y.

EQ(x, y) [} 66] Returns TRUE if x and y are equal.

LE(x, y) [} 66] Returns TRUE if x is not larger than y.

LT(x, y) [} 66] Returns TRUE if x is smaller than y.

GST Reference Manual

TF5100 123Version: 2.11.0

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

NE(x, y) [} 66] Returns TRUE if x and y are not equal.

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

<nativeType>_to_<n
ativeType>(x), [} 60]

to_<nativeType>(x)
[} 60]

Explicit conversion between the given native types.

Logical Operations

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

AND(x1, x2, …) [} 65] Returns the bitwise Logical And of all parameters.

OR(x1, y2, …) [} 65] Returns the bitwise Logical Or of all parameters.

XOR(x1, x2, …) [} 65] Returns the bitwise Logical Exclusive Or of all parameters.

NOT(x) [} 65] Returns the bitwise complement of x.

Min, Max and Limit

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

MAX(x1, x2, …) [} 66] Returns the maximum of all parameters.

MIN(x1, x2, …) [} 66] Returns the minimum of all parameters.

LIMIT(min, in, max
[} 66])

Returns in if it lies in the interval [min,max]. Otherwise, the
violated bound (min or max) is returned.

Rotation

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

ROL(x, y) [} 64] Returns the bitstring x rotated left by y bits.

ROR(x, y) [} 64] Returns the bitstring x rotated right by y bits.

Selection (Conditional Expressions)

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

SEL(cond, x1, x2)
[} 65]

Returns x1 if cond is FALSE, and x2 otherwise.

MUX(select, x0, x1, …
, xN) [} 65]

Returns x<select>.

Shift

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

SHL(x, y) [} 64] Returns the bitstring x shifted left by y bits.

SHR(x, y) [} 64] Returns the bitstring x shifted right by y bits.

GST Reference Manual

TF5100124 Version: 2.11.0

Units

Command Clas-
sic Interpreter

Command GST In-
terpreter

Description

unitAngleSet(unitAn
gle:= UnitAngle
[} 84])

Set the unit for angles to unitAngle.

UnitAngle [} 84] Enumeration of unit angles.

unitLengthSet(unitLe
ngth:= UnitLength)
[} 84]

Set the unit for lengths to unitLength.

UnitLength [} 84] Enumeration of unit lengths.

unitTimeSet(unitTim
e:= UnitTime) [} 84]

Set the unit for time to unitTime.

UnitTime [} 84] Enumeration of unit times.

unitVelocitySet(unitL
ength:= UnitLength,
unitTime:= UnitTime
) [} 84]

Set the unit for velocity to unitLength/unitTime.

Classic Dialect Reference Manual

TF5100 125Version: 2.11.0

5 Classic Dialect Reference Manual

5.1 Basic Principles of NC Programming

5.1.1 Structure of an NC Program
An NC program is a text that is normally stored as a sequence of ASCII codes in a file on the hard disk. It
consists of a sequence of NC blocks separated by line breaks (Return). Usually it is executed by being
interpreted and worked through, character by character and line by line.

Program structure

The NC program is thus composed of three parts

• Program start (optional)
• Number of blocks
• Program end

Program start

At the beginning of an NC program the character "%" can represent the start of the program. The name of
the program is then found following this character. The block for the program start does not necessarily have
to be programmed.

Sample:
% Test1 (program start)
N10 G0 X100 Y100 Z0
M30 (program end)

NC block

Each NC block consists of one or several NC words, or even of none (an empty line), separated by spaces
or tab characters. It is therefore not possible to use a space within a word.

Sample:
N10 G0 X100 Y100 Z0

NC word

The first character of an NC word specifies its meaning. It is either a letter or a special character.

Upper/lower case has, in general, no significance. Uniform use of upper case is, however, recommended for
the sake of better readability. The optional following characters specify the meaning more precisely, or
supply parameters for the execution.

In order to manage with such a limited supply of characters, an expression is not available for every variation
of every function. It is rather the case that the significance and effect of many NC words is determined partly
by the context. This can be a matter of the foregoing words in the block, but it can also depend on previous
NC blocks. In a few cases the effect of NC words even depends on the machine data.

Program end

The end of the program is indicated by an M-function. Either M2 or M30 is used for this.

Effective Duration of Words

Commands such as G0 [} 135] or G17 [} 129], that have effects beyond the end of the block, are known,
according to DIN 66025, as modal. These commands are effective as long as they are neither cancelled nor
altered by another command.

Classic Dialect Reference Manual

TF5100126 Version: 2.11.0

Comments

If either parts of an NC block, or the whole of it, is not to be interpreted, the region concerned is to be placed
within curved brackets.

Sample:
N10 G0 X100 (comment)

Notice A comment ends with the closing bracket, or, at the latest, at the end of the block. This means
that a comment can’t continue over a number of lines. Nested comments are also not possible.

Block numbers

Each block can be identified by a block number. The block number is accompanied by "N" for subordinate
blocks and ":" for main blocks.

Notice The block number is not essential. A block not identified by a block number can not, however,
be used as the target of a jump command. An error message, moreover, can only approximately
report the location of the error (the last block number).

5.1.2 Block Skipping
It is often useful if not all blocks of a program are always executed. This makes it possible to implement
similar processes with a single program.

In such cases, the blocks that belong to one variant are given a block skipping identifier. This must be written
at the start of the block, and consists of a slash "/".

If several variants are required, the slash is extended with line information (0..15), for instance "/12". The line
information (where "/" is equivalent to "/0") selects a bit from a word in the channel interface from the PLC to
the NC. If this bit is set, the block is not interpreted.

In the NC the variable 'mSkipLine' is evaluated for this purpose, which can be found among the inputs in the
cyclic channel interface. The counterpart in the PLC can be found in the outputs under 'nSkipLine' [} 324]
(previously: nSkipBlock) (see TwinCAT PLC library: NCI Interpreter).

If one of a number of variants is to be active, all the other suppressions must be set. Then only those blocks
remain active that have either no identifier, or that have the desired identifier.

Active time of block skipping
The interpreter works an indeterminate number of blocks in advance of the execution. Block
skipping can only operate correctly if it is set early enough (perhaps before the program starts), or if
the interpreter is synchronized with the execution at a suitable location in the program (decoder
stop [} 168]).

5.1.3 Look-Ahead
The actual velocity at the segment transition depends on a range of parameters. These include residual path
length, dynamic parameters for the current segment, and (indirectly) the geometric angle at the segment
transition.

Dynamic look-ahead (referred to as look-ahead below) ensures that the velocity can remain as high as
possible at segment transitions. In the standard configuration 128 geometry entries are considered.

Without look-ahead the velocity is reduced to 0 at each segment transition (G60).

The number of geometry entries taken into account can be set in the DXD parameters [} 27].

Segments with different target velocity

If the target velocity changes from a high velocity level to a lower level (N10 -> N20), the lower velocity will
already have been reached at the start of the segment.

Classic Dialect Reference Manual

TF5100 127Version: 2.11.0

If the target velocity changes from a low velocity level to a higher level (N20 -> N30), the higher velocity is
initiated with the segment transition. The system therefore always ensures that even at the segment
boundary the current velocity does not exceed the programmed velocity.

green: Path velocity
blue: Position
orange: Block numbers
N10 G01 X600 F30000
N20 G01 X700 F15000
N30 G01 X900 F30000
M30

green: Path velocity
blue: Position
orange: Block numbers
N40 G01 X200 F15000
N50 G01 X800 F30000
N60 G01 X900 F15000
M30

Classic Dialect Reference Manual

TF5100128 Version: 2.11.0

5.1.4 Smoothing of Segment Transitions

Overview

Segment transitions with no continuous second differential cause instability in the dynamics unless the path
velocity is reduced to 0 at those points. For dynamically stable segment transition at a finite speed it is
possible to smooth segment transitions with Bezier splines which alter the local geometry and ensure that
the complete path has a continuous second differential.

Tolerance spheres

A tolerance sphere is laid around every segment transition within which the path may deviate from its pre-set
geometry for smoothing purposes. The radius of the tolerance sphere (parameterization [} 320]) is
predetermined by the user and applied modally for all segment transitions that imply no exact positioning or
stop in the segment transitions. The radii of the tolerance spheres are automatically reset adaptively, thus
preventing tolerance spheres from overlapping in the case of small segments.

Dynamic parameters

The smoothing enables faster dynamics. The system-determined maximum segment transition velocity
VeloLink can be influenced by the user insofar as the system parameter C2 velocity reduction C2
(parameterization [} 320]) sets the segment transition velocity to C2x VeloLink. The factor can be changed
online.

General characteristics at segment transitions

When entering the tolerance sphere, the path acceleration is 0 and the path velocity equals the segment
transition velocity. This is maintained within the tolerance sphere. The override is inactive within the
tolerance sphere, i.e. the change of the velocity level caused by the override is interrupted within the
tolerance sphere and continues after the exit from the tolerance sphere.

5.1.5 Co-ordinate System
The names of the axes of a machine tool are specified by DIN 66217. The letters X, Y and Z are allocated to
the axes. These create a right-handed right-angle (Cartesian) coordinate system. In many machines, not all
three axes are present at every location. In these cases individual letters are allocated in some meaningful
way, and the axes that are not present are ignored.

5.1.6 Dimensional Notation
Dimensional data can optionally be referred to an absolute origin or to the current set value.

Classic Dialect Reference Manual

TF5100 129Version: 2.11.0

Absolute dimensions

Command G90 (standard setting)
Cancellation G91

All positional data in absolute dimensions are always given with reference to the currently valid origin.

In terms of tool movement, this means that, under absolute dimensioning, it is the position to which the tool
should move that is described.

Incremental Dimensions

Command G91
Cancellation G90

When dimensions are incremental, positional data is related to the immediately preceding point. In addition
to the path axes, the auxiliary axes (Q1..Q5) are also taken into account.

For the tool movement this means that the incremental dimension describes by how much the tool is moved.

Units

The units for length, angle etc. are described in the following table:

Unit
Positions and lengths mm
Angle degree
Times sec
Feed mm/min

5.1.7 Working Plane and Feed Direction
In order to describe circles (except CIP [} 137]), and for the compensation of cutter radius [} 185] and tool
length [} 182], it is necessary to specify the working plane.

Working Plane XY

Command G17 (standard setting)
Cancellation G18 or G19

The function G17 specifies the XY plane as the working plane and the feed direction as the Z direction.

The function acts as:

• Plane for tool radius compensation [} 185]

• Feed direction for tool length compensation [} 182] (offset)
• Plane for circle interpolation

Changing the working plane
The working plane cannot be changed while tool compensation is active.

Working Plane ZX

Command G18
Cancellation G17 or G19

Classic Dialect Reference Manual

TF5100130 Version: 2.11.0

The function G18 specifies the ZX plane as the working plane and the feed direction as the Y direction.

Working Plane YZ

Command G19
Cancellation G17 or G18

The function G19 specifies the YZ plane as the working plane and the feed direction as the X direction.

Specification of the feed direction

Command P
Parameter + feed direction positive (standard setting)

- feed direction negative

Parameterization of the feed direction is required for tool length compensation. It is used to specify whether
the tool operates above or below the workpiece.

Sample:
N10 G0 X0 Y0 Z0 F6000
N20 D2 P- Z
N30 G01 X100
N40 D0 Z
N50 M30

In this sample the length compensation operates below the workpiece.

5.1.8 Inch/metric dimensions
G70 Dimensions in inches
G71 Dimensions in millimeters (standard setting)
G700 Dimensions in inches with calculation of the feed
G710 Dimensions in millimeters with calculation of the feed

Classic Dialect Reference Manual

TF5100 131Version: 2.11.0

Dimensions in millimeters (G71) is active by default. Information on whether the coordinates have to be
converted is stored in the machine parameters [} 14] (Interpreter tab). The basic dimension system in
millimeters is also set there by default.

The effects of the changeover

If the basic dimension system is not the same as the current dimension system (set with G70 or G71), then
certain parameters and co-ordinates must be converted. The conversion factor required here is stored in the
machine parameters, like the basic dimension system. The changeover has effects on the following
parameters:

• Path information for the path axes (X, Y & Z)
• Path information for the auxiliary axes (Q1..Q5)
• Intermediate point co-ordinates (I, J, K)
• Circle radii (B or U)
• Programmable zero shift
• Rounding radius (circle and spline smoothing)

There are also parameters that always remain in the basic dimension system, and are not converted.
These include the

• adjustable zero shift
• Tool data
• feeds (except under G700 or G710)

Sample 1:

Basic dimension system: inch
...
N10 G71 (metric dimensions)
N20 G01 X100 (conversion is carried out)
N30 G70 (dimensions in inches)
N40 G01 Y100 (conversion is not necessary, because)
.... (the basic dimensions are also inches)

Sample 2:

Basic dimension system: millimeters
...
N10 G71 (metric dimensions)
N20 G01 X100 (conversion is not necessary, because)
 (the basic dimensions are also metric)
N30 G70 (dimensions in inches)
N40 G01 Y100 (conversion is carried out)

Zero shifts (NPV)

Adjustable zero shifts (G54-G57) always remain in the basic dimension system, and are not converted. In
the case of the programmable zero shifts (G58 & G59) the effect depends on the current dimension system
when the shift is selected.

Sample 3:

Basic dimension system: millimeters
...
N10 G71 (mm - default)
N20 G54 (activates adjustable zero offset shift)
N30 G58 X100 (programmable zero offset shift)
N40 G01 X0 F6000 (the axis travels to 100 in the machine co-ordinate system)
N50 G70 (inch)
N60 G01 X0 (zero offset shift is programmed under G71 => zero offset shift remains unchanged)
 (i.e. the axis does not move)
N70 G58 X100 (new programmable zero offset shift - now in inches)
N80 G01 X0 (axis moves out by zero offset shift - to 2540 in the machine co-ordinate system)

Classic Dialect Reference Manual

TF5100132 Version: 2.11.0

5.1.9 Single Block Operation
To test a new NC program, the NCI can be switched to single block mode with the function block
ItpSingleBlock [} 243]. When single block mode is active, the NC program is stopped after each line. The
user has to acknowledge execution of the next line. This can be done by pressing 'NC start (F5)' in the XAE
under the Editor tab or by setting the input 'bTriggerNext' in the PLC function block ItpSingleBlock [} 243].

A distinction is made between two modes:

• Interpreter single block mode
• NC kernel single block mode

The selection of the single block mode is not reset by an ItpResetEx2 [} 232]. This means that if, for example,
the NC kernel single block mode is active, it still remains active after a reset.

Interpreter single block mode

If interpreter single block mode is active, the NC program is stopped after each line in the interpreter. This
remains true even if the line only contains calculations, and no physical movement is programmed.
This enables re-writing of R-parameters, for example.

Interpreter single block mode should be activated before the NC program is started. If this is not possible, an
M-function can be reserved for the activation and combined with a decoder stop.
If interpreter single block mode is activated during processing of the NC program without M-function and
decoder stop, it is impossible to predict when it will be active. Theoretically it is possible that the memories in
the NC kernel (SVB & SAF) are filled and contain more than 100 geometry entries. The single block can only
take effect once these memories have been fully processed.

NC kernel single block mode

Like in interpreter single block mode, in NC kernel single block mode the NC blocks are executed
individually. The difference is that in NC kernel single block mode all entries (e.g., geometry entries) have
already passed through the interpreter. It is therefore not possible to overwrite R-parameters retrospectively,
for example.

This operating mode has the advantage that single block mode can be enabled during processing of the NC
program. If a geometry entry is executed (i.e. the axes are moved) during the activation, the system stops at
the next possible end of segment. This is usually the current segment. For activation after program startup
no M-function with decoder stop is required. However, an M-function with program end identifier (M02, M30)
is required at the end of the program.

If NC kernel single block mode is used in conjunction with blending, block relaying takes place in the
blending sphere. The programmed blending continues to be executed (from TwinCAT V2.10 Build 1301).

Alternatives to activation

We recommend activating single block mode with ItpSingleBlock [} 243].

For reasons of compatibility with previous TwinCAT versions, single block mode can be activated via the
cyclic channel interface.

Single block mode can be selected or deselected in the cyclic channel interface of the PLC. To this end the
variable 'nItpMode' has to be masked correctly in the PLC/NC channel interface.

Set bit 14 (0x4000) to switch on interpreter single block mode. Resetting the bit turns single block mode off
again.

It is also possible to trigger the single block from the PLC by means of this interface. Bit 15 must be set for
this. The effect is the same as activating NC start in the XAE.

Classic Dialect Reference Manual

TF5100 133Version: 2.11.0

5.1.10 Arithmetic Parameters
The arithmetic parameters (known as R-parameters for short) are interpreter variables that are named by an
expression of the form "R<n>". Since 'n' is an integer in the range 0..999, a total of 1000 R-parameters are
available. Of these, the first 900 values (R0..R899) are local variables for the NC channel. They can only be
accessed by the channel’s interpreter. The R-parameters R900..R999 are declared globally. They exist only
once for each NC, and all channels access the same storage. This makes it possible to exchange data (e.g.
for part tracing, collision avoidance etc.) over the channel boundaries.

Mathematical Calculations

The R-parameters (like the axis co-ordinates, feedrates etc.) are declared as variables of type 'double'. This
makes full use of the computer’s arithmetic capacity. The number of places before and after the decimal
point is not restricted by a format specification. The arithmetical resolution does, nevertheless, have a limit.
In practice this is only visible in particularly critical cases. Examples of this include the differences of very
large numbers that are almost equal, or trigonometrical functions in particular ranges of angles.

Assignment of R-Parameters
N100 R5=17.5
N110 R6=-4
N120 R7=2.5 R8=1

As can be seen in the third line, it is quite possible to make more than one assignment in one block. This
speeds interpretation slightly, but it can be more difficult to localize an error in the line.

Calculation formula

A calculation formula is an extension of assignment. It consists of a target parameter, an assignment sign
and a series of values (R-parameters and constants) separated by arithmetical instructions.
N100 R1=R2+R3-17.5*R9/2.5

Such a formula, contrary to normal mathematical practice, is processed strictly from left to right.

The illustrated formula is calculated as follows:

1. The contents of R2 is loaded into the arithmetic unit
2. The contents of R3 is loaded into the arithmetic unit
3. The arithmetic unit carries out the + instruction
4. The value 17.5 is loaded into the arithmetic unit
5. The arithmetic unit carries out the - instruction
6. The contents of R9 is loaded into the arithmetic unit
7. The arithmetic unit carries out the * instruction
8. The value 2.5 is loaded into the arithmetic unit
9. The arithmetic unit carries out the / instruction

10. The content of the arithmetic unit is stored in R-parameter R1

Mathematical functions

The interpreter provides standard computing functions. DIN 66025 does not specify any syntax here. The
computing functions are called via @6xx (see appendix - @-command overview [} 195]).

The trigonometrical functions are always calculated in degrees.

Sample:
N10 R2=0 R3=45
N20 @630 R2 R3

In this sample the sine of R3 is calculated in degrees. The result is then written into R2.

R-parameter access from the PLC

Classic Dialect Reference Manual

TF5100134 Version: 2.11.0

You can read the R-parameters into the PLC, or write the R-parameters from the PLC. Special PLC function
blocks are provided for this purpose

• ItpReadRParams [} 276]

• ItpWriteRParams [} 289]

During writing of the R-parameters, ensure that the interpreter is ahead of the block execution. In other
words, writing of the R-parameters from the PLC should take place before the NC program starts or be linked
to a decoder stop [} 168].

For debugging purposes, all R-parameters can be written to a file at any time. This process can be triggered
via ADS (see ADS interface - channel functions IndexOffset 0x24 & 0x25).

Other functions

RToDwordGetBit

This function converts an R-parameter to a DWord and then checks whether a particular bit is set. The result
is again stored in an R-parameter.

Command RToDwordGetBit[<dest>; <src>; <bit>]
Parameter <dest> R-parameter in which the result is entered
Parameter <src> R-parameter containing the number that is to be

converted and checked
Parameter <bit> Bit to be checked (0..31)

Sample:
N10 R1=7
N20 RToDwordGetBit[R2;R1;0]
R10=31
N30 RToDwordGetBit[R3;R1;R10]

Enter 1 in R2 and 0 in R3.

Initialization of R-parameters

'set RParam' is used to assign a value to a contiguous block of R-parameters.

Command #set RParam(<start index>; <count>; <value>)#
Parameter <start index> Describes the first R-parameter to be written
Parameter <count> Number of R-parameters to be written
Parameter <value> Assigned value

Sample:
N10 G01 X100 Y200 F6000
N15 R2=3000
N20 #set RParam(1; 2; 0.0)# (R2 is overwritten again here)
N30 G01 X500

Saving R-Parameters

If the content of R-parameters [} 133] is required for subsequent use, while in the meantime the R-
parameters are used for a different purpose, it can temporarily be stored in the values stack of the arithmetic
unit.

Two possibilities exist for this:

• enumeration of the R-parameters
• giving the range of R-parameters

Saving the values:

Command @40 <number> R<n> R<m>...

Classic Dialect Reference Manual

TF5100 135Version: 2.11.0

@41 <1st R-parameter> <last R-parameter>

Restoring the values:

Command @42 <number> R<n> R<m>
@43 <last R-parameter> <1st R-parameter>

When restoring the values, call the parameters in reverse order.

Sample 1:
(saving the data)
N100 @40 K4 R800 R810 R823 R4

N110 R800=4711
N120 ...

(restoring the data)
N200 @42 K4 R4 R823 R810 R800

Sample 2:
(saving the data)
N100 @41 R800 R805

N110 R800=4711
N120 ...

(restoring the data)
N200 @43 R805 R800

Stack size
The value stack of the arithmetic unit has limited capacity. If it overflows, the NC program is
interrupted with an error message. That can occur as the value is saved, but can also occur in the
course of subsequent formula evaluation.

5.2 Programming Movement Statements

5.2.1 Referencing
By default, axis referencing (homing) should take place before the 3D-group is formed from the PTP
channel. Or it can be done from the NC program.

If axes are referenced in PTP mode, it can be done for several axes simultaneously. If axes are referenced
from the NC program, it can only be done for one axis at a time.

Command G74
Cancellation End of block

Sample:
N10 G74 X
N20 G74 Y

Referencing with own block
Referencing must be carried out within its own block. G74 may only refer to one axis. This
command is only applicable for the main axes (X,Y,Z).

5.2.2 Rapid Traverse
Command G0
Cancellation G1 [} 136], G2 [} 137] or G3 [} 137]

Classic Dialect Reference Manual

TF5100136 Version: 2.11.0

Rapid traverse is used to position the tool quickly, and is not to be used for machining the workpiece. With
G0 the axes are moved with linear interpolation as fast as possible. The velocity is calculated with MIN
(Rapid Traverse Velocity (G0), Reference Velocity, Maximum Velocity).

If a number of axes are to be driven in rapid traverse, the velocity is determined by that axis that requires the
most time for its movement.

An accurate stop (G60 [} 140]) is cancelled with G0.

The rapid traverse velocity is set individually for each axis. This can be edited in the axis parameters in the
XAE under NCI parameters.

5.2.3 Linear Interpolation
Command G1 or G01 (standard setting)
Cancellation G0 [} 135], G2 [} 137] or G3 [} 137]

Classic Dialect Reference Manual

TF5100 137Version: 2.11.0

Under linear interpolation the tool moves, with feedrate F, along a straight line that can be freely located in
space. The movement of the axes involved is completed at the same moment.

The feedrate (short: feed), F, describes the rate of displacement in millimeters per minute. This value is
effective globally, so that it is not necessary to program it again if the same feed is to be used later for other
geometrical movements.

Sample:
N10 G90
N20 G01 X100.1 Y200 F6000

In this example the axes are moved linearly to the position described. The Z axis is not mentioned in this
program, and therefore retains its old position.

5.2.4 Circular Interpolation
Circular arcs can be programmed in a number of ways. Two types must be distinguished between. One of
these is an arc in the working plane [} 129] (e.g. the XY plane), and the other is an arc that can be freely
located in space (a CIP circle).

Clockwise circular interpolation

Command G2 or G02
Cancellation G0 [} 135], G1 [} 136] or G3 [} 138]

Function G2 describes the path of a clockwise circular arc. This function requires the working plane [} 129]
to have already been defined (G17 [} 129] by default).

In order to describe the circle unambiguously, further parameters are required in addition to the end point. A
choice is available between center point programming and radius programming.

Radius Programming

In radius programming, the radius of the circle is programmed as well as the end point. Either of the letters
'B' or 'U' may be used for the radius.

Since the direction is prescribed with G2, the circle is also unambiguously described. The starting point is
determined by the previous geometrical movements.

Sample 1:
N10 G01 G17 X100 Y100 F6000
N20 G02 X200 B200

Angle programming for >180° angles
If an angle of more than 180° is to be traversed, the radius must be stated negatively.

Full circle programming
The start and the end points must be different so that the center can be calculated. Radius
programming can therefore not be used for programming a full circle. Center point programming
can be used for this purpose.

Centerpoint Programming

Center point programming represents an alternative to the method that has just been described. The
advantage of center point programming is that full circles can also be described in this way.

Under the standard settings, the center point is always given relative to the starting point of the arc. The
parameters I, J, and K are used for this purpose. Here,

• I represents the X-component
• J represents the Y-component and
• K represents the Z-component.

Classic Dialect Reference Manual

TF5100138 Version: 2.11.0

At least one of these parameters is 0 and therefore does not have to be included in the program.

Sample 2:
N10 G01 G17 X100 Y100 F6000
N20 G02 I50 J0 (J is optional) X200
N30 M30 (program end)

Sample 3:
N10 G01 G18 X100 Y100 Z100 F6000
N20 G02 I0 K50 X150 Z150 (quarter circle in ZX plane)
N30 M30

By programming an item of machine data, it is also possible to enter the center point absolutely. The
command @402 is required for write access to a machine data bit.

In the following example, the circle from the first example is programmed using the absolute circle center.

Sample 4:
N10 G01 G17 X100 Y100 F6000
N20 @402 K5003 K5 K1 (center point programming absolute)
N30 G02 I150 J100 X200
N40 @402 K5003 K5 K0 (center point programming relative)
N50 M30

Anticlockwise Circular Interpolation

Command G3 or G03
Cancellation G0 [} 135], G1 [} 136] or G2 [} 137]

The function G3 describes a circular arc anticlockwise. The parameters and entry possibilities are the same
as under G2.

Circular accuracy

Command #set paramRadiusPrec(<param>)#
Parameter param: maximum allowed radius tolerance

0.001 < param < 1.0 (default 0.1)

The 'set paramRadiusPrec' function is used to parameterize the required circular accuracy. This parameter
affects circles programmed with G02 or G03.

With center point programming, an error is generated if the difference in radius length is greater than
<param>.

Centre point correction

Command CPCON (standard setting)
Cancellation CPCOF

In center point programming the circle is overdetermined. For data consistency, the center point is usually
corrected. Normally only a marginal modification of the center point is required. After the center point
correction, the magnitude of the input radius equals the output radius.

It the start and end point are very close together, the center point offset may be large. This may lead to
problems with automatically generated G-Code (postprocessor). For manually written G-Code, the CPCON
setting (center point correction on) is recommended.

CIP circle

Command CIP
Cancellation End of block

Classic Dialect Reference Manual

TF5100 139Version: 2.11.0

The circles discussed so far can only be used in the principal planes. The CIP circle can also be used to
program an arc anywhere in space. For this, it is necessary to program not only an end point but also some
other point on the path.

The 3 points (the starting point is given implicitly) may not be collinear. This is required in order to describe
the circle unambiguously. It is thus not possible to program a full circle in this way.

I, J and K are available as path point parameters. By default, their values are relative to the starting point of a
circular path.

Sample 5:
N10 G01 X100 Y100 F6000
N20 CIP X200 Y200 I50 J50 K50

Notice In order to be able to follow a CIP circle, the cutter radius compensation [} 185] cannot be active.

5.2.5 Helix
If a circular motion is superimposed onto a perpendicular linear movement, a helix is obtained. A helix can
only be programmed in the principal planes. The same parameters as are used for a circle in the principal
plane are used. At the same time the axis that is perpendicular to the plane is driven.

The helix can be used together with the cutter radius compensation [} 185].

Sample:
N10 G01 G17 X100 Y0 Z0 F6000
N20 G03 I-50 Z100
M30

Classic Dialect Reference Manual

TF5100140 Version: 2.11.0

5.2.6 Dwell Time
Command G4 or G04
Cancellation End of block
Parameter F or X

G4 is used to switch on a dwell time. It is used to interrupt workpiece machining between two NC blocks for a
programmed time (in seconds).

Sample:
N10 G01 X100 F6000
N20 G04 X0.5 (pause in sec)
N30 G02 X300
...

Notice The dwell time must be programmed in a dedicated set, and the parameters (X or F) must be
programmed after G04.

5.2.7 Accurate Stop

block-by-block

Command G9 or G09
Cancellation End of block

The accurate stop instruction is used, for example, when sharp contour corners must be manufactured. At
the contour transition the set path velocity is reduced to zero and then increased again. This ensures that the
programmed position is approached precisely.

Notice G09 acts only on the set value side. The actual values can be checked with TPM (target
position monitoring), for example.

modal

Command G60
Cancellation G0 [} 135]

Description:

see above

see also target position monitoring [} 144] (TPM)

5.2.8 Feed interpolation

Constant feed interpolation

Command FCONST (standard setting)
Cancellation FLIN

The programmed velocity is applied as fast as possible with the constant feed interpolation (default).

Classic Dialect Reference Manual

TF5100 141Version: 2.11.0

Sample 1:
N05 FCONST
N10 G01 X1000 F50000
N20 G01 X2500 F80000
N30 G01 X3500 F60000
...

Linear feed interpolation

Command FLIN
Cancellation FCONST

The linear feed interpolation transfers the velocity linearly over the path from v_start to v_end.

Sample 1:
N05 FCONST
N10 G01 X1000 F50000
N15 FLIN
N20 G01 X2500 F80000
N30 G01 X3500 F60000
...

Notice If the velocity on the segment transition has to be reduced more drastically than the
programmed segment velocity, due to the geometry or M function for example, then the linear
velocity is maintained as long as possible. The reduced segment velocity will delayed, only if
required dynamically.

5.2.9 Zero Offset Shifts
A range of zero offset shifts are available in TwinCAT NC I. They describe the distance between the origins
of the workpiece and of the machine.

Classic Dialect Reference Manual

TF5100142 Version: 2.11.0

Zero shift suppression

Command G53 (standard setting)
Cancellation G54 [} 142] to G59 [} 143]

The zero shift is suppressed modally with G53. The suppression affects both the adjustable and the
programmable zero shift.

Adjustable zero shift

Command G54
G55
G56
G57

Cancellation G53 [} 142]
or selection of another configurable zero shift

The commands G54 to G57 can be used within the NC program to switch back and forth between the zero
shifts.

Parameterization

The configurable zero shift can be parameterized in different ways

1. PLC function block ItpWriteZeroShiftEx [} 248] (recommended standard)
2. XAE Interpreter element [} 14]
3. from the DIN-program

The parameters are saved for each interpolation channel. This means that the adjustable zero shifts are
channel dependent.

Notice The selection of a zero shift must be made in its own block. In order for the movement
corresponding to the shift to be actually made it is necessary that at least the axes involved are
named in a following geometrical block.

Sample 1:
N10 G01 X100 Y0 Z0 F6000
N20 G54 (activates adjustable zero offset shift (NPV))
N30 G01 X Y Z
N40 M30

In sample 1 all involved axes are named in line 30. The effect of this is that the zero shifts are applied to all
the axes.

Sample 2:
N10 G01 X100 Y0 Z0 F6000
N20 G54 (activates adjustable zero offset shift (NPV))
N30 G01 X200 Y

In line 30 of sample 2 the X axis is taken to position 200 + shift in the X direction. The Y axis only moves to
accommodate the shift, and the Z axis is not moved.

Parameterization from the DIN program

Command #set paramZeroShift(G<n>; <value x>; <value y>;
<value z>)#

Parameter G<n> Zero shift to be parameterized (G54..G59)
Parameter <value> Coordinates of the zero shift

'#set paramZeroShift(..)#' parameterizes the zero shift but does not activate it. This requires explicit
programming of the G-Code.

Sample 3:

Classic Dialect Reference Manual

TF5100 143Version: 2.11.0

N10 G01 X100 Y0 Z0 F6000
N20 R12=200
N30 #set paramZeroShift(G54; 100.0; R12; -20)#
N40 G54 (activates adjustable zero offset shift (NPV))
N50 G01 X200 Y Z

Programmable zero shift

Command G58 or G59
Cancellation G53 [} 142]

Programmable zero shifts exist in addition to the adjustable ones. This type of zero shift is directly described
from the NC program.

Addition of zero shifts
The programmable zero shift is only effective when the adjustable zero shift is active. This means
that the total shift is the sum of
• set zero shift (G54, G55, G56 or G57)
• first programmable zero shift (G58)
• second programmable zero shift (G59)

Sample 4:
N10 G01 X100 Y0 Z0 F6000
N20 G54 (activates adjustable zero offset shift (NPV))
N30 G58 X0.5 Y0.5 Z0.5 (1st prg. zero offset shift)
N50 X Y Z (movements for the zero offset shift)
...
M30

Behavior with incremental dimension notation

Default behavior

Changing the origin also affects the incremental dimension.

Sample 5:
N10 G01 X100 Y0 Z0 F6000
N20 G54 (activates adjustable zero offset shift (NPV))
N25 G58 X10 Y10 Z0
N30 G91 (Incr. dimensions)
N40 G01 X200 Y0
N50 ...

In N40 Y moves to 10 in the basic coordinate system. A shift in origin also shifts the point of reference for
incremental dimension programming, resulting in a travel path for Y.

In this way a contour, which is fully programmed based on the incremental dimension, can be positioned at
any point through a zero shift.

The behavior of G91 is parameterizable.

Command Description
ZeroShiftIncOn The zero shifts are also applied under G91 once the

axis is named. (standard setting)
ZeroShiftIncOff The zero shift is not applied under G91.

Sample 6:
N10 G01 X100 Y0 Z0 F6000
N15 ZeroShiftIncOff
N20 G54 (activates adjustable zero offset shift (NPV))
N25 G58 X10 Y10 Z0
N30 G91 (Incr. dimensions)
N40 G01 X200 Y
N50 ...

Since 'ZeroShiftIncOff' is set in sample 6 , the X-axis in N40 is moved by 200 mm independently of the new
zero shift. The Y-axis does not move as no target coordinate is programmed for it.

Classic Dialect Reference Manual

TF5100144 Version: 2.11.0

See also ToolOffsetIncOn/Off [} 182]

5.2.10 Target Position Monitoring
Command TPM
Cancellation End of block

The command 'TPM' is used to trigger target position monitoring from the NC program. At the end of the
geometry this always leads to an accurate stop on the set value side and subsequent checking of the target
position window. Block relaying takes place when the monitoring conditions are met for all axes in the group.

Like for PTP, this function is enabled and parameterized individually for each axis. This means that different
limits can be selected for auxiliary axes than for the path axes, for example.

Sample 1:
N10 G01 X100 Y100 F6000
N20 G01 X300 Y100 TPM
...

At the end of the motion of N20, target position monitoring is performed both for the X axis and for Y axis
(provided target position monitoring is enabled for both axes).

Sample 2:
N10 G01 X100 Y100 F6000
N20 G01 X300 Y100
N30 M61 (Type Handshake)
N40 TPM
...

TPM can also be programmed in a dedicated block. In this case the last positioning is checked (of N20 in
this case).

Classic Dialect Reference Manual

TF5100 145Version: 2.11.0

Notice If target position monitoring is enabled for an axis, the target position alarm (PEH) should also
be active. Time monitoring results in a channel error after the timeout (or before), if the axis is not yet
in the target position window. In order to avoid unnecessary channel errors, a sufficiently large
timeout value should be selected (e.g. 5 - 10 s). If no PEH time monitoring is active and the axis is
permanently outside the position window, no block relaying takes place and the NC remains
stationary when viewed from outside. The SAF is in Waiting state (not to be confused with Interpreter
state).

See also accurate stop [} 140] (G09).

Classic Dialect Reference Manual

TF5100146 Version: 2.11.0

5.2.11 Contour definitions

Angle and segment length

In this type of programming the angle and the magnitude (segment length) are always quoted, similarly to
polar co-ordinates.

Parameter Description
ANG Angle in degrees with reference to the abscissa

(-360 ≤ ang ≤ 360)
SEG Magnitude of the segment length

Sample 1:

N10 G01 ANG=45 SEG=424.264 F60000
N20 G01 ANG=0 SEG=400
N30 G01 ANG=-45 SEG=282.843

or
N10 G01 ANG=45 SEG=424.264 F60000
N20 G01 X700 Y300
N30 G01 ANG=-45 SEG=282.843

Restrictions:

• The programming may only be done in the chosen principal plane.
• The length of the segment must be greater than zero, and refers to the projection in the principal plane.

Notice It is additionally possible to program rounding or chamfering. The ANG and SEG parameters
must be programmed in every block. The assignment may use R-parameters, but formulas cannot be
programmed.

Angle and one component in the plane

As above, an angle is programmed, but the length of the segment is no longer specified directly. It is
calculated from a component in the selected principal plane.

Sample 2:

Classic Dialect Reference Manual

TF5100 147Version: 2.11.0

N10 G01 ANG=45 X300

N20 G01 ANG=0 Z700
R10=100
N30 G01 ANG=315
X=R10

Runtime error
If either two components in the plane are quoted or none at all, the result is a runtime error. A
runtime error is also generated if the movement is parallel to the abscissa or to the ordinate, and
there is therefore no intersection.

5.2.12 Rotation
It is also possible to program a rotation as well as the zero shift [} 141]. A distinction is drawn between
absolute and additive rotation.

The rotation can turn the co-ordinate axes (X, Y and Z) in the workpiece coordinate system.

This makes it possible to machine inclined surfaces (in the plane or in space).

Absolute Rotation

Command ROT X<value(x)> Y<value(y)> Z<value(z)>
Cancellation ROT (without parameters)

The rotation instructions must be programmed in their own block. Angles must always be stated in degrees.

Direction of Rotation

A positive angle describes rotation in the direction of the positive co-ordinate axis, the rotation being anti-
clockwise.

Carrying Out the Rotation

The sequence of rotations is of critical importance when a coordinate system is being rotated. In TwinCAT
NC I rotations are always carried out in the following sequence around the global coordinate system:

1. Rotation around the Z-axis,
2. Rotation around the Y-axis,
3. Rotation around the X-axis.

This sequence is maintained even if the parameters are programmed in a different order.

Classic Dialect Reference Manual

TF5100148 Version: 2.11.0

The origin of the tool coordinate system is always used as the center point of the rotation. This means that
the total zero offset shift currently active describes the rotation center.

Additive Rotation

In addition to absolute programming of rotation it is also possible to carry this out additively. The same
conditions apply to this as do to absolute rotation.

Command AROT X <Wert(x)> Y<Wert(y)> Z<Wert(z)>
Cancellation ROT (without parameters)

Sample:
N10 G01 G17 X0 Y0 Z0 F60000
N20 G55
N30 G58 X200 Y0
N50 L47
N60 G58 X200 Y200
N65 ROT Z30
N70 L47
N80 G58 X0 Y200
N90 AROT Z15
N100 L47
N110 M30

L47
N47000 G01 X0 Y0 Z0 (movements for zero shift & rotation)
N47010 G91 (incremental dimensions)
N47020 G01 X100
N47030 G01 Y80
N47040 G03 X-20 Y20 I-20 J0
N47050 G01 X-40
N47060 G01 Y-40
N47070 G01 X-40 Y-30
N47080 G01 Y-30
N47090 G90
N47100 M17

In this example, the same contour is traversed under different rotations. Since the contour (L47) is
programmed in incremental dimensions, and the starting point is described by means of the programmed
zero shift, the rotation is clear to see.

Classic Dialect Reference Manual

TF5100 149Version: 2.11.0

Note:

Once the ROT or AROT command has been programmed, the complete path vector (X, Y & Z) must be
assigned.

Rotation extensions

In the default configuration the whole path vector must be programmed after each ROT command. Since this
is difficult to realize in some applications, this calculation can optionally be performed automatically in the
interpreter. To use this option, 'RotExOn' should be included at the start of the NC program.

Command RotExOn
Cancellation RotExOff

Sample:
N10 RotExOn
...
N100 G54 (activate zero point & point of rotation)
N110 ROT X90
N120 G0 Z3 (preposition the tool)
N130 G01 Z-10 F6000 (lower to cutting depth)
N140 G01 X100
N150 G01 Z3 (raise to preposition)
...
N1000 RotExOff
N1010 M30

Calculate rotation

Command CalcRot[R<s>; R<t>; R<u>]
CalcInvRot[R<s>; R<t>; R<u>]

Parameter The 3 R-parameters describe the vector to be
calculated. The calculation will write the result into
this R-parameter, and the original value will therefore
be overwritten.

The function CalcRot rotates a three-dimensional vector through the current rotation angle. The rotation
angles had been determined by ROT or AROT. The sequence of the calculation is the same as is used for
the rotation itself, that is Z, Y and X.

The CalcInvRot function behaves in precisely the opposite way. The signs of the currently valid rotation
angles are inverted, and the order of calculation is X, Y and Z. In other words, the vector is turned back, so
to speak.

Neither CalcRot nor CalcInvRot generate any geometry, but merely carry out the calculation of the vector.

Sample:
N10 G01 X40 Y10 Z0 F6000 (the axes are moved
without rotation)
N20 R1=40 R2=10 R3=0

N30 ROT Z45

(What is the position to which X, Y, must be taken so that no
movement is executed?)
N40 CalcInvRot[R1; R2; R3]
N50 G01 X=R1 Y=R2 Z=R3 (R1=35.35 R2=-21.21 R3=0)
N60 ...

Command RotVec[R<x>; R<y>; R<z>; R<α>; R<β>; R<γ>]
Parameter The 3 R-parameters (x..z) describe the vector to be

rotated through. The calculation will write the result
into this R-parameter, and the original value will
therefore be overwritten.
The last 3 R-parameters describe the angle.

Classic Dialect Reference Manual

TF5100150 Version: 2.11.0

The function RotVec rotates a three-dimensional vector through the specified angle. The order of the
rotation is Z, Y and X, like for ROT. RotVec is a calculation routine solely for rotating a vector. It has no effect
on ROT or AROT.

5.2.13 Mirror
The mirror functionality changes the sign of named axes. This enables subroutines to be reused.

Mirroring

Command Mirror <opt. X> <opt. Y> <opt. Z>
Cancellation Mirror (without parameters)

The mirror instructions must be programmed in a dedicated block. Mirrored axes must be named without
further parameters.

Sample:
N20 G54
N30 G58 X100 Y100
N40 L100

N50 G58 X-100 Y100
N60 Mirror X
N70 L100

N80 G58 X-50 Y-50
N90 Mirror X Y
N100 L100

N110 G58 X10 Y-10
N120 Mirror Y
N130 L100

N140 Mirror (turn off mirror)
N150 G0 X0 y0
M02

L100
N1000 G0 X200 Y0 Z10 F60000 (move to start pos)
N1020 G01 Z0
N1030 G03 X200 Y100 J50
N1040 G01 X50
N1050 G01 Y400
N1060 G01 X0
N1070 G01 Y0
N1080 G01 X200
N1090 G01 Z10
M17

Classic Dialect Reference Manual

TF5100 151Version: 2.11.0

If a zero shift is present (G54...G59), the mirror functionality depends on the currently programmed
coordinate system.

5.2.14 Smoothing of segment transitions

5.2.14.1 Overview

Overview

In general, at segment transitions polygon functions (G01 blocks) contain kinks within their contour. At these
transitions polygon functions are not steadily differentiable with respect to their spatial coordinate, thus
leading to dynamic-unsteadinesses, if at these transitions the path velocity is not reduced to zero value. To
actually avoid to have to reduce path velocity to zero value segment transitions of polygon functions can be
smoothed out by blending at those transitions.

Classic Dialect Reference Manual

TF5100152 Version: 2.11.0

Execution Supported
Segment
Transitions

Acceleration
of Axis Com-
ponents

Max. Toler-
ance

Adaptive
Tolerance
Radius

Command

Circular
Smoothing
[} 156]

Interpreter Straight line/
straight line

Step change
in
acceleration
(value
parameteriza
ble via the C1
factor)

1/2 of the
input or
output
segment

No paramCircu
larSmoothi
ng(…)

Parabolic
Smoothing
[} 153]
<type>: 2

NC kernel Straight line/
straight line

Step change
in
acceleration
to a constant
level (value
parameteriza
ble via the C1
factor)

1/3 of the
input or
output
segment

Can be
selected

paramVerte
xSmoothing
(…)

Biquadratic
Smoothing
[} 153]
<type>: 3

NC kernel Straight line/
straight line

Constant
acceleration -
the
acceleration
is 0 at the
entry and exit
- no
intermediate
point required

1/3 of the
input or
output
segment

Can be
selected

paramVerte
xSmoothing
(…)

Bézier Curve
of the 3rd
Order [} 153]
<type>: 4

NC kernel All Step change
in
acceleration
to a linear
level (can be
parameterize
d with the C1
factor)

1/3 of the
input or
output
segment

Can be
selected, has
an effect for
straight-line
transitions

paramVerte
xSmoothing
(…)

Bézier Curve
of the 5th
Order [} 154]
<type>: 5

NC kernel All Constant
acceleration -
the
acceleration
is 0 at the
entry and exit
- no
intermediate
point required

1/3 of the
input or
output
segment

Can be
selected, has
an effect for
straight-line
transitions

paramVerte
xSmoothing
(…)

‘Old’ Bézier
Blending
[} 154]
<type>: 1

NC kernel All Constant
acceleration -
the
acceleration
is 0 at the
entry, the exit
and at the
symmetric
intermediate
point

1/4 of the
input or
output
segment

No paramSplin
eSmoothing
(…)
paramVerte
xSmoothing
(…)

Blending takes effect from the transition between the subsequent two segments.

Classic Dialect Reference Manual

TF5100 153Version: 2.11.0

Principle of Blending
The radius of the tolerance sphere can be altered at any time within the NC program and can be
switched off again by setting the radius to 0. Blending remains active until the next reset of the
interpreter or a TwinCAT runtime restart.

5.2.14.2 Parabolic smoothing

Parabola smoothing

Command #set paramVertexSmoothing(<type>; <subtype>;
<radius>)#

Parameter <type> For parabola smoothing: 2
Parameter <subtype> 1: Constant tolerance radius [} 156]

2: Distance between intersection and vertex [} 156]
3: Adaptive tolerance radius [} 156]

Parameter <radius> Max. radius of the tolerance sphere

For parabola smoothing a parabola is inserted geometrically into the segment transition. This ensures a
steady velocity transition within the tolerance radius.

The parabola is only inserted for straight line/straight line transitions.

5.2.14.3 Biquadratic smoothing

Bi-quad smoothing

Command #set paramVertexSmoothing(<type>; <subtype>;
<radius>)#

Parameter <type> For biquadratic smoothing: 3
Parameter <subtype> 1: Constant tolerance radius [} 156]

2: Distance between intersection and vertex [} 156]
3: Adaptive tolerance radius [} 156]

Parameter <radius> Max. radius of the tolerance sphere

With biquadratic smoothing there is no step change in acceleration in the axis components. With the same
radius, a smaller input velocity may therefore be required than for parabolic smoothing.

The operating principle of the subtypes is identical to that of the parabolic subtypes.

5.2.14.4 Bezier curve of the 3rd order

Bezier curve of the 3th order

Command #set paramVertexSmoothing(<type>; <subtype>;
<radius>)#

Parameter <type> for the Bezier curve of the 3th order: 4
Parameter <subtype> 1: Constant tolerance radius [} 156]

2: Distance between intersection and vertex [} 156]
3: Adaptive tolerance radius [} 156]

Parameter <radius> Max. radius of the tolerance sphere

In case of the 3rd order Bezier curve a step change in acceleration appears in the axis components when
the tolerance sphere is entered. The max. size is limited by the acceleration of the axis components and the
C1 factor.

Classic Dialect Reference Manual

TF5100154 Version: 2.11.0

This blending can be used for all segment transitions. The subtypes 2 and 3 only work for straight line /
straight line transitions.

Acute angles at the segment transition
The Bezier splines are generated by default, even at very acute angles. In order to avoid the
dynamic values being exceeded, a considerable reduction velocity is required in this case.
However, since the dynamics are held constant in the spline, the movement across the spline can
be quite slow. In this case it is often practical to start the segment transition with an accurate stop.
The command AutoAccurateStop [} 157] can be used to avoid having to calculate the angles
manually.

5.2.14.5 Bezier curve of the 5th order

Bezier curve of the 5th order

Command #set paramVertexSmoothing(<type>; <subtype>;
<radius>)#

Parameter <type> for the Bezier curve of the 5th order: 5
Parameter <subtype> 1: Constant tolerance radius [} 156]

2: Distance between intersection and vertex [} 156]
3: Adaptive tolerance radius [} 156]

Parameter <radius> Max. radius of the tolerance sphere

With 5th order Bezier blending, no step change in acceleration occurs in the axis components on entry into
the tolerance sphere. In other words, the path axis acceleration is always constant if blending is selected.

This blending can be used for all segment transitions. The subtypes 2 and 3 only work for straight line /
straight line transitions.

Acute angles at the segment transition
The Bezier splines are generated by default, even at very acute angles. In order to avoid the
dynamic values being exceeded, a considerable reduction velocity is required in this case.
However, since the dynamics are held constant in the spline, the movement across the spline can
be quite slow. In this case it is often practical to start the segment transition with an accurate stop.
The command AutoAccurateStop [} 157] can be used to avoid having to calculate the angles
manually.

5.2.14.6 Old Bezier blending type

Functions for compatibility with existing projects
These functions are provided for compatibility reasons. For new projects Bezier curve of the 3rd
order [} 153] or Bezier curve of the 5th order [} 154] should be used.

Old Bezier blending with paramVertexSmoothing

Command #set paramVertexSmoothing(<type>; <subtype>;
<radius>)#

Parameter <type> For Bezier Spline smoothing: 1
Parameter <subtype> For Bezier Spline smoothing: 1
Parameter <radius> radius of the tolerance sphere

Sample 1:
N10 R57=100
#set paramVertexSmoothing(1; 1;R57)#

Classic Dialect Reference Manual

TF5100 155Version: 2.11.0

Old Bezier blending with paramSplineSmoothing

With the aid of smoothing, it is possible to insert a Bezier spline automatically between two geometrical
entries. It is only necessary to program the radius of the tolerance sphere. This describes the maximum
permissible deviation from the programmed contour in the segment transition. The advantage of this type of
smoothing as opposed to rounding with an arc is that there are no step changes in acceleration at the
segment transitions.

The radius of the tolerance sphere can be altered at any time within the NC program, and can be switched
off again by setting the radius to 0. If the radius is not reset to 0, it remains active until the next interpreter
reset or TwinCAT restart.

Command #set paramSplineSmoothing(<radius>)#
Parameter <radius> Radius of the tolerance sphere

or alternatively

#set paramVertexSmoothing(...)

Sample 1:
N10 R57=100
#set paramSplineSmoothing(R57)#

Sample 2:
N10 G01 X0 Y0 F6000
N20 X1000
#set paramSplineSmoothing(100)#
N30 X2000 Y1000
N40 X3000 Y0
M30

The new parameter is valid from the transition between the subsequent two segments. In example 2, the
new value for the tolerance sphere is applicable at the segment transition from N30 to N40. The diagram
below shows a contour with and without spline at the segment transition.

The splines are generated even at very sharp angles by default. In order to avoid the dynamic values being
exceeded, a considerable reduction velocity is required in this case. However, as the dynamics are held
constant, the movement across the spline can be quite slow. In this case it is often practical to start the
segment transition with an accurate stop. In order to avoid manual calculation of the angles, an
'AutoAccurateStop [} 157]' command is available which can also be initiated via the NC program.

Classic Dialect Reference Manual

TF5100156 Version: 2.11.0

5.2.14.7 Subtypes

Constant tolerance radius (subtype 1)

If subtype 1 is selected, the maximum tolerance radius (RTB) is used for blending. RTB is reduced if and only if
the input or output segment is less than 3*RTB.

Distance between intersection and vertex (subtype 2)

The distance between the programmed segment transition and the vertex of the parabola is specified with
the subtype 2. The tolerance radius (RTB) results from this. If a segment is too short, then the distance is
shortened so that the tolerance radius is a max. of 1/3.

Adaptive tolerance radius (subtype 3)

Within the tolerance radius (including constant tolerance radius) the system ensures that the maximum
permissible acceleration is not exceeded. Depending on the deflection angle and the velocity, the maximum
axis acceleration within the smoothing segment may be different. The aim of an adaptive tolerance radius is
maximum acceleration during smoothing. In order to achieve this, the smoothing radius is reduced based on
the programmed velocity and dynamics. In other words, if the programmed velocity is changed, the tolerance
radius can also change. The override has no influence on the radius.

5.2.15 Circular Smoothing
It is possible with the aid of circular smoothing to insert an arc automatically between two straight lines. It is
only necessary to program the radius of the arc.

Classic Dialect Reference Manual

TF5100 157Version: 2.11.0

The radius of the circular smoothing can be altered at any time within the NC program, and can be switched
off again by setting the radius to 0. Rounding must be switched off before the end of the program or a
decoder stop [} 168].

Command #set paramCircularSmoothing(<radius>)#
Parameter <radius> Radius of the circular smoothing arc

Sample:
N10 R57=4.5
#set paramCircularSmoothing(R57)#
…
#set paramCircularSmoothing(0)#
N1000 M02

Notice When combined with cutter radius compensation, please note that first the radius
compensation is calculated, then the circular smoothing is added. The smoothing radius thus refers
to the TCP.

Notice The old command paramGroupVertex continues to be supported. However, it cannot be used
to transfer R parameters.

Syntax:
#set paramGroupVertex(<grp>,<radius>)#

The first parameter describes the group to which the circular smoothing refers. This value is currently always
1. The second parameter is used to specify the circular smoothing radius.

5.2.16 Automatic Accurate Stop
Command #set paramAutoAccurateStop(<angle>)#
Parameter <angle> Limit angle (in degrees) after which an accurate stop

is inserted
Deselect #set paramAutoAccurateStop(0)#

An accurate stop after a defined limit angle is inserted between two segments with the aid of the
'AutoAccurateStop' command.

For circle segments, the angle is calculated from the tangents at the points of entry and leaving.

Sample:
#set paramAutoAccurateStop(45)# (angle in
degrees)
N10 G01 X1000 Y0 Z0 F60000 (start position: X0 Y0 Z0)
N20 X0 Y500
...

An accurate stop is inserted between segments A and B in this example.

Application field:

This command should be used in conjunction with Bezier blending, if acute angles are programmed in the
NC program.

See also:

Classic Dialect Reference Manual

TF5100158 Version: 2.11.0

• Bezier curve of the 3th order [} 153]

• Bezier curve of the 5th order [} 154]

• 'Old' Bezier curve [} 154]

Notice This function has not yet been implemented for segment transitions with a helix.

5.2.17 Delete Distance to Go
Command DelDTG
Cancellation End of block

The DelDTG (delete distance to go) command is activated block by block via the NC program. This
command enables deleting of the residual distance of the current geometry from the PLC with the function
block ItpDelDtgEx [} 207]. In other words, if the command is issued while the block is processed, the motion
is stopped with the usual deceleration ramps. The NC program then processes the next block. An error
message is generated if the PLC command is not issued during the execution of a block with "delete
distance to go" selected.

The "delete distance to go" command always effects an implicit decoding stop, i.e. an exact positioning
always occurs at the end of the block.

Sample:
N10 G01 X0 Y0 F6000
N20 DelDTG G01 X2000
N30 G01 X0

Notice DelDTG must not be active when cutter radius compensation is active.

5.2.18 Modulo Movements
Command MOD[<axis and target modulo position>]
Cancellation End of block
Parameter 1 Axis for modulo operation
Parameter 2 Arithmetic sign for the direction of rotation (optional)
Parameter 3 Modulo position

The modulo position is programmed in the same way as normal positioning.

The MOD command is effective for specific blocks, and must be explicitly programmed for every axis that is
selected for modulo operation. The modulo position's arithmetic sign specifies the direction of rotation.

• Positive sign: The axes moves in the 'larger' direction
• Negative sign: The axes moves in the 'smaller' direction
• Exception: The axis cannot move to modulo -0, since zero has no sign

Classic Dialect Reference Manual

TF5100 159Version: 2.11.0

Sample 1:
N10 G90
N20 G01 MOD[X200] Y30 F600
N30 G01 X200

N20 specifies a move in a positive direction for X to modulo position 200. Y moves to absolute position 30. In
block N30, X is moved absolutely to position 200, i.e. not modulo.

Modulo Operation Applicable to Q-Axes
The Q-axes are the auxiliary axes. The MOD command can be applied to Q-axes. E.g.
N20 G01 MOD[Q4=200] Y30 F600.

Modulo movements of more than 360 degrees

The MOD command also allows movements of more than a 360 degrees to be made.

Modulo position = number of necessary rotations * 360 + modulo position

Sample 2:
N10 G90
N20 G01 X3610 F6000
N30 R1=360
N40 G01 MOD[X=R1+20]

In this example, the X axis moves 360 degrees to modulo position 20.

Restrictions and notes of for modulo movements:
• No radius compensation may be active for the modulo axis.
• No zero shift may be active for the modulo axis.

• During relative programming (G91 [} 128]) the modulo command is not evaluated, so that the axis
referred to in square brackets is treated as if the MOD command had not been given.

Modulo factor

The modulo factor is constant, and is 360.

Classic Dialect Reference Manual

TF5100160 Version: 2.11.0

5.2.19 Auxiliary axes
Auxiliary axes (also known as Q axes) can be added to an interpolation group in addition to the actual path
axes (X, Y & Z). The auxiliary axis can be seen as a type of slave for the path, i.e. it has no direct influence
on the path velocity. In addition to the 3 path axes, 5 auxiliary axes can also be interpolated for each
channel.

The function block 'CfgBuildExt3DGroup [} 198] ' from the library Tc2_NCI, for example, may be used for
adding to the interpolation group from the PLC.

Syntax

The auxiliary axes are addressed as Q1..Q5 from the part program. The numerical value may be assigned
directly, or an R-parameter.

Sample 1:
(start position X=Y=Z=Q1=0)
N10 G01 X100 Q1=47.11 F6000
...

If an NC block is programmed with one or more path axes and an auxiliary axis, both axes start
simultaneously and also reach the destination together.

Swiveling of the auxiliary axes

The term "swiveling of the auxiliary axes" is used if the path length within a motion set is zero. This is often
the case during 'swiveling' of a tool, with the feed angle relative to the contour being changed.

Since the path length is zero, there is no link to the path, and the movements of the auxiliary axes are
calculated via a virtual path. However, this has no influence on the real path of X, Y and Z, but here too all
auxiliary axes are started simultaneously and also arrive at the destination simultaneously.

Here too, the velocity is specified via the F-parameter and now refers to the auxiliary axis with the greatest
travel distance.

Sample 1:
(start position X=Y=Z=Q1=Q2=0)
N10 G01 X100 F6000
N20 Q1=100 Q2=200 F3000
...

In N20, the velocity of Q2 is now 3000 and that of Q1 is 1500, since the travel distance is Q1=Q2/2.

5.2.19.1 Calculation of the velocity
Initially, only the path axes (X, Y and Z) are considered for the calculation of the path velocity.
The path and the travel distance of the individual auxiliary axes result in a fixed coupling ratio for each
auxiliary axis within a segment. The target velocity of the auxiliary axis is thus also known. If this velocity is
greater than the permitted maximum velocity for this auxiliary axis, the path velocity is reduced until the
upper speed limit is adhered to. In other words, exceeding of the velocity limits of the auxiliary axes also has
an indirect effect on the path velocity.

5.2.19.2 Path velocity at segment transitions
The reduction of the path velocity is explained below by means of an example. The contour of a stadium is
particularly suitable for this purpose. The aim is for the feed angle of a tool relative to the path tangent to
remain constant.

On the stadium straight, the orientation of the tool remains constant, i.e. the tool is not turned. In contrast,
the orientation relative to the base coordinate system must be changed continuously within the circle.
Assuming the path velocity in the transition between straight and circle is not reduced to zero, a step change
in velocity is inevitably generated for the swiveling axis (but not for the path axes!).

Classic Dialect Reference Manual

TF5100 161Version: 2.11.0

This step change in velocity of the auxiliary axis is freely parameterizable and depends on the machine.
Extreme cases would be for the path velocity at such segment transitions to be reduced to zero, or for the
velocity not to be reduced at all.

The global axis parameter 'VeloJumpFactor', which can be set individually for each axis, is used for the
parameterization. The resulting velocity and the calculation is described in more detail in the TwinCAT NCI
appendix on page Parameterisation [} 320].

Smoothing of the velocity at segment transitions

As has been described above, step changes in velocity can occur at the segment transitions. The size of
these steps can be affected by the VeloJump parameter.

It is further possible for a tolerance sphere to be specified for every auxiliary axis. This sphere is symmetrical
with the path at a segment transition. On entering this sphere, the velocity of the auxiliary axis is
continuously modified to reach the set velocity at the exit of the sphere. The step changes in velocity are, in
other words, eliminated. This does imply that the auxiliary axis is subject to a positional error when it is within
the sphere. On entering the sphere the change to the new target velocity of the axis starts immediately. This
avoids an overshoot in position, and the position is again precise at the borders of the sphere.

If it happens that the specified sphere is larger than 1/3 of the path, its radius is automatically restricted to
that value.

Classic Dialect Reference Manual

TF5100162 Version: 2.11.0

Selection and Deselection

The tolerance sphere of the auxiliary axis is an axis parameter (IO: 0x108). It can be set in TwinCAT XAE
axis interface Specification Axes.

Parameterization of the axis parameters
The parameters described here only take effect for axes that are in the interpolation group as
auxiliary axes (Q1..Q5). For path axes (x,y,z) the parameters 'Velo Jump Factor', 'Tolerance ball
auxiliary axis' and 'Max. position deviation, aux. axis' have no influence.

Diagnostics

It is possible to record the tolerance sphere of each auxiliary axis and the position error that results from this
for diagnostic purposes. It is also possible to access the variables via ADS. They are to be found in the
"Index offset" specification for Group state (Index group 0x3100 + ID) (IO: 0x54n and 0x56n).

Effect on VeloJump, if the size of the tolerance sphere is reduced

If the size of the tolerance sphere has to be reduced due to the given geometry, the VeloJump parameter is
automatically adjusted for this segment transition. I.e. the path velocity in the transition is reduced more
strongly. So the dynamics of the auxiliary axis is not exceeded for smaller tolerance spheres.

Positional deviation of the auxiliary axis if the tolerance sphere has to be reduced

The parameter 'maximum permitted positional deviation of the auxiliary axis' only takes effect if the tolerance
sphere would have to be reduced due to the geometry.

The aim is to keep the path velocity high despite the smaller tolerance sphere, as long as the resulting
position error does not exceed a threshold value. To this end the velocity of the auxiliary axis is kept constant
and the position error is calculated. If the error is smaller than the maximum positional deviation the velocity
is maintained for this segment transition, and the resulting position error is compensated in the next segment
(the tolerance sphere then becomes unnecessary for this segment transition).

In the event that the position error would exceed the maximum deviation, the reduced tolerance sphere takes
effect, including the VeloJump factor. And the path velocity is reduced if necessary.

Example 1:

Classic Dialect Reference Manual

TF5100 163Version: 2.11.0

Initial conditions:

• Set tolerance sphere: 5
• Max. positional deviation: 1
• The given geometry results in an effective tolerance sphere of 0.2, for example
• The potential positional deviation is 0.3

Resultant behavior:

• The path velocity remains at a constant high level
• The velocity of the auxiliary axis is kept constant
• For this transition no tolerance sphere is required
• The resulting positional deviation is compensated in the subsequent segment

Example2:

Initial conditions:

• Set tolerance sphere: 5
• Max. positional deviation: 1
• The given geometry results in an effective tolerance sphere of 1.2, for example
• The potential positional deviation is 1.1

Resultant behavior:

• The tolerance sphere is adjusted
• The VeloJump parameter is adjusted
• The path velocity is reduced at the segment transition
• There is no positional deviation that has to be compensated

Parameterization

The parameterization of the maximum permitted positional deviation is an Specification Axes. By default this
feature is switched off (deviation = 0.0)

5.3 Supplementary Functions

5.3.1 M-Functions

Task: Signal exchange between NC and PLC

A range of equipment, such as collet chucks, drill drives, transport equipment etc. is best not driven directly
by the NC, but indirectly, using the PLC as an adapting and linking controller. This makes it easy to consider
feedback or safety conditions, without having to adapt the NC program, or even the NC system. The NC’s M-
functions involve digital signal exchange: functions are switched on or off, activated or deactivated. The
transfer of numerical working parameters is not provided for here, but can be implemented in other ways (H-
functions [} 167], T-numbers [} 167] etc.).

5.3.1.1 Available M-functions

Number of M-functions

A total of 160 M-functions are available per channel

M function Meaning
0..159 Freely definable M-functions (except 2, 17, 30)
2 Program end
17 End of subprogram

Classic Dialect Reference Manual

TF5100164 Version: 2.11.0

M function Meaning
30 Program end with deletion of all fast M functions

All M-functions (apart from the 3 pre-defined M-functions - M2, M17, M30) are freely definable. This means
that, depending on the machine type, M8 can be used to switch on a cooling medium or indeed for any other
functionality, for example. The machine manufacturer can select the function as required.

Like any other rules, the rules for reserved M-functions are read when TwinCAT is started. Additionally, an
internal code is generated for these functions in the interpreter, which is responsible for the behavior
described. These 3 M-functions therefore do not have to be described in the table. It makes sense to
parameterize M2 and M30, even if M-functions are used.

Priority of M-Functions in the TwinCAT 3 development environment
If M-functions are defined as well in the m_defs.t<xx> file as in the development environment,
only those M-functions act that are defined in the development environment.

Types of M-functions

Basically, two signal exchange versions are available: fast signal bits, or transfer secured by handshake.

Secured Handshakes

M-functions that require feedback must be processed using bi-directional signal exchange between the NC
and the PLC. If an M-function of type handshake is programmed, the velocity is reduced to 0 at this point.
The PLC uses the ItpIsHskMFunc [} 226] function to check whether an M-function with handshake is present,
in which case the number of the M-function is determined via ItpGetHskMFunc [} 219]. The NC is in a waiting
state and will not process further NC commands until the PLC has acknowledged the M-function. Processing
of the NC program continues once acknowledgement has been received from the PLC (ItpConfirmHsk
[} 206]).

This procedure permits the operation of the equipment controlled by the NC to be securely coordinated with
the equipment controlled by the PLC. It is therefore advisable to acknowledge the M-function for starting the
spindle (e.g. M3) once a minimum speed has been reached.

Since this kind of M-function involves synchronous functions, it is only ever possible for one M-function with
handshake to be active in the NC program.

Fast signal bits

If no feedback is required from the PLC, fast signal bits can be used for activating M-functions. Since the NC
does not have to wait for the PLC with these M-functions, look-ahead [} 126] can combine the segments. In
this way it is possible to apply an M-function without velocity reduction.

A fast M-function can be detected in the PLC via ItpIsFastMFunc. This makes it possible to start any action
from the PLC during a movement (laser on/off, cutter on/off, …). Afterwards the M-function has to be reset
with ItpResetFastMFuncEx. This makes it possible to use the M-function more than once.

A combination of fast signal bits and handshake is also possible. Since a handshake always requires
acknowledgement from the PLC, the velocity has to be reduced to 0 in this case.

5.3.1.2 Resetting of M-functions
Resetting fast signal bits

The signal bits are active until they are reset explicitly, or until an M30 (end of program) or channel reset is
executed.

Resetting with reset list

Each M-function can reset up to 10 fast M-functions. If cooling medium is switched on with M8, for example,
the cooling medium can be switched off again with M9. To this end simply enter M8 in the reset list for M9.

Classic Dialect Reference Manual

TF5100 165Version: 2.11.0

Resetting a Fast M-Function Requires a Fast M-Function
A fast M-function can be reset only by a fast M-function. There is no alternative possibility in this
case to reset a fast M-function by a non-fast handshake M-function.

Automatic reset

During parameterization of the M-function an 'auto-reset flag' can be set. This means that the M-function is
automatically reset at the end of the block.

In order for the PLC to be able to see the signal, the duration of the motion block must be long enough, or
this M-function is combined with a handshake. The handshake may come from the same or a different M-
function.

Reset from the PLC

The fast M-functions can be reset from the PLC via the ItpResetFastMFunc [} 281] function block. For
reasons of transparency, mixed resets using via PLC and NC should be avoided.

Delete all pending M-functions

A channel stop and a channel reset are used to reset all pending M-functions. This is true for the 'handshake'
type M-functions, and also for the fast signal bits. If the NC program is terminated properly with M30, all M-
functions are also cleared.

5.3.1.3 Parameterization of M-functions
The M-functions are parameterized in TwinCAT XAE. A dedicated M-function table is used for each
interpolation channel.

Activation of the TwinCAT configuration is required to enable a configuration of M-functions.

Classic Dialect Reference Manual

TF5100166 Version: 2.11.0

No

Number of M-function to be parameterized. The value must be between 0 and 159

HShake

If a value other than 'None' is entered, the M-function is of type 'Handshake'

• None: No handshake
• BM (Before Move): If a movement is programmed in the same block, the handshake is completed

before the movement
• AM (After Move): If a movement is programmed in the same block, the handshake is completed after

the movement

Fast

If a value other than 'None' is entered, a 'fast signal bit' type M-function is executed

• None: No fast M-function is executed
• BM (Before Move): If a movement is programmed in the same block, the output is completed before

the movement.
• AM (After Move): If a movement is programmed in the same block, the output is completed after the

movement.
• BMAutoReset (Before Move & Automatic Reset): If a movement is programmed in the same block, the

output is completed before the movement. In addition, the M-function is automatically canceled at the
end of the block, i.e. the M-function is active on a per-block basis. In order to ensure that the PLC
recognizes the M-function, the duration of the associated motion block must be long enough (at least 2
PLC cycles), or an additional M-function with handshake should be programmed.

• AMAutoReset (After Move & Automatic Reset): This parameterization is only meaningful if either an M-
function of type handshake is programmed at the same time (or parameterized), or if the M-function is
only used for resetting other M-functions. Without an additional handshake the PLC will usually not be
able to detect this M-function.

• All other combinations can be selected for compatibility reasons.

Reset

Classic Dialect Reference Manual

TF5100 167Version: 2.11.0

Up to 10 M-functions can be entered for cancellation when a reset is called.

Notice In the event that no reset-signal-bit is in fact set, the bits to be cleared are reset immediately
before setting the new signal bits.

Import/Export

The M-functions are parameterized individually for each channel. The parameterization can be transferred to
other channels via the import/export function.

5.3.1.4 Combination of M functions
• Within each line, only one 'handshake' type M function must be programmed!
• Within a single line, up to 10 'signal bit' M functions may be programmed
• A combination of the two options above is allowed

Sample:
N10 G01 X1000 F60000
N20 M10 M11 M12 X2000 (M10 & M11 are signal bits)
(M12 is of type handshake)
M30

Examples of meaningful and practically applicable rule combinations:

• An M-function is to be active for the duration of a movement and then be automatically cleared. Select
'None' in the HShake column and 'BMAutoReset' in the Fast column. The signal bit generated could,
for instance, control a glue application valve.

• An M-function starts a drill motor, and the subsequent movements may only be started after an
appropriate run-up time, and then only when the drill is ready for operation. Select 'BM' in the HShake
column. The PLC acknowledges the request after a certain delay time and only if the frequency
converter is ready for operation.

• A drill motor is started with an M-function. In order not to have to wait for the drive to run up, the M-
function is programmed in the block before the one for the drill movement. In the following movement
(the drill movement itself) it is however still essential to ensure that the drive has reached its full
rotation speed. For this variant either two different M-functions have to be used (lead signal as signal
bit, safety query as handshake) or a Fast 'BMAutoReset' and HShake 'AM' M-function is used.

5.3.1.5 Behavior in case of an error
If a runtime error occurs during the execution of an NC program (e.g. following error monitoring is activated),
the NC program is interrupted. In this case the M functions, provided they are set, remain pending. This
means that the PLC program may have to ensure that M functions are not executed.

5.3.2 H, T and S Parameters
H-, T- and S-parameters are used to transfer parameters from the NC interpreter to the PLC.

In this context the H-parameter stands for auxiliary parameter and is of type DINT (32 bit signed).

The T and S parameters are of type WORD, and stand for Tool and Spindle.

Sample:
H=4711
R1=23
S=R1
T4711

Notice No R-parameter can be assigned for the T-parameter. Furthermore, the assignment is made
without assignment operator ('=').

T- and S-parameters take effect at the start of a block, H-parameters take effect at the end of the
programmed block.

Classic Dialect Reference Manual

TF5100168 Version: 2.11.0

5.3.3 Decoder stop
Code Function
@714 [} 168] Decoder stop

@716 [} 168] Decoder stop with axis position rescan

@717 [} 169] Decoder stop with trigger event, conditional decoder
stop

5.3.3.1 Decoder stop (@714)
The interpreter offers the option to execute a decoder stop in the NC program. In this case the interpreter
waits until a certain external event occurs. Execution of the NC program does not continue until this event
has taken place.

A decoder stop can be used, for instance, to switch block skipping [} 126] on or off from the PLC, or to re-
assign R parameters [} 133].

Two events are available for continuing processing:

• Acknowledgement of an M-function [} 163]
• SAF task is empty

Acknowledgement of an M-function

Decoding of the NC program is interrupted until the M-function [} 163], which is programmed immediately
prior to the decoder stop, is acknowledged. In other words, the M-function must be of type "handshake".

Sample 1:
N10...
N20 M43 (M-function with handshake)
N30 @714 (decoder stop)
N40 ...

SAF task is empty

The decoder stop does not necessarily have to be programmed in conjunction with an M-function. If the SAF
task runs out of travel commands, an event is sent to the interpreter. This event causes the interpreter to
start up again.

Notice The decoder stop must not be programmed when the tool compensation or circle smoothing
are active, because they wouldn`t work anymore.

5.3.3.2 Decoder Stop with Axis Position Rescan (@716)

In addition to the common decoder stop (see Decoder stop (@714) [} 168]), there is a decoder stop at which
the axis positions of the interpolation channel are read again. This stop is required, if, for example, axes are
moved during a tool change via PTP and are subsequently not returned to the old position. Another possible
application is a change in axis configuration via an M function (with handshake).

If a decoder stop with rescan is programmed, it is essential to program an M-function with handshake
immediately before it.

Sample 2:
N10...
N20 M43 (M function with handshake carries out a tool change, for
example)
N30 @716 (Decoder stop with rescan)
N40 ...

Notice The decoder stop must not be programmed when the tool compensation or circle smoothing
are active, because they wouldn`t work anymore.

Classic Dialect Reference Manual

TF5100 169Version: 2.11.0

5.3.3.3 Decoder Stop with external trigger event (@717)
Sometimes the question of whether the NC part of the program must wait or can continue may depend, for
instance, on events in the PLC. With the two types of M-functions [} 163] this can give rise to the following
problems:

• Handshake: Because of the M-function's handshake the path velocity must be brought to zero at the
location where the M-function is programmed, after which confirmation is awaited from the PLC.

• On The Fly (also known as a fast M-function): Because no confirmation from the PLC is waited for,
there is also no way for the partial program to wait for the PLC.

• Even a combination of the two types of M-function does not help here.

Sample:

During positioning with a flying M-function, a process A is initiated by the NC partial program. It is assumed
here that the set of processes in the NC program is typically long enough for process A to be completed in
the PLC. If A is ready, then the NC partial program should execute the next segment with look-ahead. In
case A is not ready, however, then the NC should stop at the end of the segment and wait until process A
has finished. It is exactly this scenario that can be implemented with the command @717. The PLC here
sends the so-called 'GoAhead [} 223]' command when process A has finished.
N10 ...
N20 G0 X0 Y0 Z0
N30 G01 X500 F6000
N40 M70 (flying M-function that triggers process A)
N50 G01 X700
N60 @717 (decoder stop with external trigger event)
N70 G01 X1000
N80 ...

If the GoAhead signal reaches the PLC early enough, then blocks N50 and N70 are linked by look-ahead,
and the path velocity is not then reduced. If the signal arrives during the deceleration phase of N50, then the
velocity is once more increased. Otherwise, the machine waits for the signal from the PLC.

Notice The decoder stop must not be programmed when the tool compensation or circle smoothing
are active, because they wouldn`t work anymore.

The function block 'ItpGoAheadEx' returns the error code 0x410A, if no @717 is present in the interpreter at
the time of the call.

5.3.4 Jumps
Code Function
@100 [} 169] Unconditional jump

@121 [} 170] Jump if unequal

@122 [} 170] Jump if equal

@123 [} 170] Jump if less or equal

@124 [} 170] Jump if less

@125 [} 170] Jump if greater or equal

@126 [} 170] Jump if greater

@111 [} 170] Case block

Unconditional jump

Command @100
Parameter K or R

The parameter describes the jump destination. This must have an indication of direction ('+' or '-').

Sample 1:

Classic Dialect Reference Manual

TF5100170 Version: 2.11.0

N10 ..
...
N120 @100 K-10

In this example, execution continues from line 10 after line 110 has been interpreted. The sign indicates the
direction in which the line to be searched can be found.

Jump if unequal

Command @121
Parameter 1 R<n> Comparison value
Parameter 2 K or R<m> Comparison value
Parameter 3 K Jump destination with direction

indication

Sample 2:
N10 ..
...
R1=14
N120 @121 R1 K9 K-10
N130 ...

Jump if equal

cf. Jump if not equal [} 170]

Jump if less or equal

cf. Jump if not equal [} 170]

Jump if less

cf. Jump if not equal [} 170]

Jump if greater or equal

cf. Jump if not equal [} 170]

Jump if greater

cf. Jump if not equal [} 170]

Case block

Command @111
Parameter 1 R<n> Comparison value
Parameter 2 K or R<m> First comparison value
Parameter 3 K First jump destination
Parameter 4 K or R<m> Second comparison value
...

Sample 3:
N100 R2=12 (R2=13) (R2=14)
N200 @111 R2 K12 K300
K13 K400
K14 K500

N300 R0=300
N310 @100 K5000

N400 R0=400
N410 @100 K5000

N500 R0=500

Classic Dialect Reference Manual

TF5100 171Version: 2.11.0

N510 @100 K5000

N5000 M30

A case block is made in line 200. If R2 = 12 a jump is made to line 300.

If R2 = 13, the jump destination is line 400. If R2 = 14, the jump destination is line 500.

In the event that none of the conditions is satisfied, execution simply continues with the next line (in this
case, line 300).

5.3.5 Loops
The various types of loop are described below.

Code Loop type Aborting condition
@131 While Loop [} 171] while equal
@132 While Loop [} 171] while not equal
@133 While Loop [} 171] while greater
@134 While Loop [} 171] while greater or equal
@135 While Loop [} 171] while less
@136 While Loop [} 171] while less or equal
@141 Repeat Loop [} 172] repeat until equal
@142 Repeat Loop [} 172] repeat until not equal
@143 Repeat Loop [} 172] repeat until greater
@144 Repeat Loop [} 172] repeat until greater or equal
@145 Repeat Loop [} 172] repeat until less
@146 Repeat Loop [} 172] repeat until less or equal
@151 For-To Loop [} 172]
@161 For-DownTo Loop [} 172]

Loops can be nested.

While loops

Command @13<n> where 1<= n <= 6
Parameter 1 R<m> Comparison value
Parameter 2 K or R<k> Comparison value
Parameter 3 K Jump destination for the case that

the condition is not met

A while loop is executed for as long as the condition is satisfied. The test is made at the beginning of the
loop. If the condition is not or no longer met, a jump to the specified line takes place (parameter 3).

At the end of the While loop an unconditional jump (@100 [} 169]) must be programmed. The target of this
jump is the line number of the while loop.

The loop’s exit condition is specified with <n>.

Sample 1:
N100 R6=4
N200 @131 R6 K4 K600 (K600 is the target of the jump, when the condition is no longer satisfied)
N210 ...
N220 @100 K-200

N600 ...

N5000 M30

Classic Dialect Reference Manual

TF5100172 Version: 2.11.0

The loop (lines 200 to 220) is repeated for as long as R6 = 4. Once the condition is no longer satisfied,
execution jumps to line 600.

Repeat loops

Command @14<n> where 1<= n <= 6
Parameter 1 R<m> Comparison value
Parameter 2 K or R<k> Comparison value
Parameter 3 K Jump destination at the start of the

loop

In a repeat loop, the interrogation takes place at the end of the loop. This means that the loop is executed at
least once. The loop is only ended, to continue with the rest of the program, when the condition is satisfied.

Sample 2:
N200 ...
N210 ...

N300 @141 R6 K25 K200

The loop is repeated until R6 = 25. The second constant in line 300 gives the jump target (the start of the
loop).

For-To loops

Command @151 <variable> <value> <constant>

A for-to loop is a counting loop that is executed until the variable equals the value. The test is made at the
beginning of the loop. If that condition is satisfied, execution jumps to the line specified by the constant.

The variable must be incremented (@620) at the end of the loop, and there must be an unconditional jump to
the start of the loop.

Sample 3:
N190 R6=0
N200 @151 R6 K20 K400
N210 ...
N290 @620 R6 (increment R6)
N300 @100 K-200

For-Downto Loops

Command @161 <variable> <value> <constant>

A for-downto loop is a counting loop. The behaviour is similar to that of a for-to loop. The difference is merely
that the variable is decremented (@621) by 1 at the end of the loop.

5.3.6 Subroutine techniques
As in other fields, it is also valuable in NC programming to organize frequently used command sequences as
subroutines. This makes it possible to employ pre-prepared and tested functions in various workpiece
programs.

Subroutines are identified within a program by a number. This number must be unique: there must be only
one subroutine with a particular number (1..>2.000.000.000).

As interpretation proceeds, the calling program is suspended. The text of the subroutine is worked through,
as often as necessary. Processing then returns to the calling program after the call location.

It is of course possible for one subroutine to call another subroutine. This call is executed in a similar way.
This causes a stack of return information to be created. For technical reasons this nesting of subroutines is
presently limited to 20 levels.

Classic Dialect Reference Manual

TF5100 173Version: 2.11.0

Definition of a Subroutine

The code for a subroutine can be written to the same file as the calling program. In this case the subroutine
is linked directly: it is automatically also loaded as the file is read. If it is to be made generally available then
it must be written in its own file that must be located in the CNC directory.

The name of the file begins with the letter 'L', and continues with a string of digits. This digit string must
repeat the subroutine number, without any leading '0's.

The code should contain a label to indicate the starting point of the subroutine. Like the file name, it consists
of the letter 'L' and the digit sequence described above.

The interpreter starts immediately after this label.

Subroutine syntax:
(Datei L2000.NC)
L2000
N100...
N110...
...
N5000 M17 (return command)

Calling a Subroutine

The following syntax must be used to call a subroutine from some block within the NC program. It is
important that the expression "L2000" does not stand at the start of the line, in order to avoid confusion with
a subroutine label.
(syntax of the subroutine call)
N100 L2000

In the following sample the expression "P5" causes the subroutine to be repeated 5 times.
(n-fold subroutine call (here: 5- fold))
N100 L2000 P5

Dynamic subroutine call

In some cases the subroutine to be called is not known until runtime. In this case the subroutine can be
called with an R-parameter, thereby avoiding the need for a CASE instruction. The value for R must be
allocated or calculated in a dedicated line.
(Dynamic call of a subroutine)
N099 R47=R45+1
N100 L=R47

Parameter passing

Parameters are passed to subroutines with the aid of R-parameters [} 133]. Note that R-parameters are not
saved automatically (see Rescuing R-parameters [} 133]).

Use of Parameters

R-parameters can, in general, be freely used within subroutines. This has a number of consequences that
can lead to errors if they are not borne in mind. On the other hand their careful use offers the NC-
programmer a range of useful working techniques.

Results of Subroutines

If an R-parameter is changed without its contents being saved and restored, the change is effective after a
return from the subroutine. If this was not intended, the result can be machine behavior that was not
planned.

This feature can however be deliberately used in order to make the continuation of the processing
dependent on the results of a subroutine. No restriction need be considered here other than those on the R-
parameters.

Sample:

Classic Dialect Reference Manual

TF5100174 Version: 2.11.0

N100 L2000
N110 R2=R3+R4
...
N999 M30

L2000
N10 R3=17.5
N20 R4=1
N99 M17

Values are specified here in a subroutine. The values are then used in the calling program.

Ending a Subroutine

A subroutine is ended with M17.

5.3.7 Dynamic Override
Command DynOvr=<value>

or
DynOvr = R<n>

Cancellation DynOvr=1

Sample:
N10 G01 X100 Y200 F6000
N20 DynOvr=0.4
N30 G01 X500

'DynOvr' can be used to make percentage changes to the dynamic parameters of the axes in the group while
the NC program is running. This also results in new values for the motion dynamics. The new dynamic
values become valid, without any stop, when the line is executed. This means, for the example illustrated
above, that in block 10 the old values will still be used for the deceleration, while the new values will be used
for acceleration in block 20.

Scope of Definition

0 < DynOvr ≤ 1

See also change in path dynamics [} 174].

5.3.8 Altering the Motion Dynamics
Command #set paramPathDynamics
Parameter <acc> Value of the maximum permitted path acceleration in

mm/s^2.
Parameter <dec> Value of the maximum permitted deceleration in mm/

s^2.
Parameter <jerk> Value of the maximum permitted jerk in mm/s^3.

Sample:
N10 G01 X100 Y200 F6000
N15 R4=3000
N20 #set paramPathDynamics(700; 700; R4)#
N30 G01 X500

The 'paramPathDynamics' command can be used to alter the motion dynamics as the NC program is
running. The new dynamic values become effective as from the line in which they are programmed. For the
example illustrated, this means that the whole of block 10 is still treated with the default values. The new
parameters are used for block 30 from the start of the segment.

This command limits all path axes to the parameterized dynamic values, although the path itself can have
higher dynamics, depending on its orientation. The dynamics of auxiliary axes remains unchanged.

See also dynamic override [} 174].

Classic Dialect Reference Manual

TF5100 175Version: 2.11.0

Notice The dynamic values changed via the NC program remain active until the interpreter is next
reset and/or TwinCAT has been restarted.

Notice The old command 'paramGroupDynamics' continues to be valid. However, it cannot be used
to transfer R parameters.

Command #set
paramGroupDynamics(<grp>,<acc>,<dec>,<jerk>)#

Parameter <grp> Group for which the alteration of the motion dynamics
is to be effective. Presently always 1.

Parameter <acc> Value of the maximum permitted path acceleration in
mm/s^2.

Parameter <dec> Value of the maximum permitted deceleration in mm/
s^2.

Parameter <jerk> Value of the maximum permitted jerk in mm/s^3.

Sample:
N10 G01 X100 Y200 F6000
N20 #set paramGroupDynamics(1, 700, 700, 3000)#
N30 G01 X500

Change in axis dynamics

Command #set paramAxisDynamics
Parameter <axis> Axis in the interpolation group:

X: 0
Y: 1
Z: 2
Q1: 3
...
Q5: 7

Parameter <acc> Value of the maximum permitted acceleration in mm/
s^2

Parameter <dec> Value of the maximum permitted deceleration in mm/
s^2.

Parameter <jerk> Value of the maximum permitted jerk in mm/s^3.

Sample:
N10 G01 X100 Y200 F6000
N15 R4=30000
N20 #set paramAxisDynamics(0; 1500; 1400; R4)#
N30 G01 X500

'paramAxisDynamics' can be used to change the axis dynamics at runtime. Generally the behavior is the
same as for 'paramPathDynamics', except that here the dynamics can be specified individually for each axis.

5.3.9 Change of the Reduction Parameters
C0 reduction [} 175]
C1 reduction [} 176]
C2 reduction [} 177]

C0 reduction

In some types of machine it is not absolutely necessary to reduce the path velocity to 0 at knee-points. 2
reduction methods are available

• VeloJump
• DeviationAngle

Classic Dialect Reference Manual

TF5100176 Version: 2.11.0

VeloJump

Command #set paramVeloJump(<C0X>; <C0Y>; <C0Z>)#
Parameter <C0X> Reduction factor for C0 transitions: X axis: C0X ≥ 0.0
Parameter <C0Y> Reduction factor for C0 transitions: Y axis: C0Y ≥ 0.0
Parameter <C0Z> Reduction factor for C0 transitions: Z axis: C0Z ≥ 0.0

The 'paramVeloJump' command can be used to alter the velocity step change factors as the NC program is
running. The new values come into effect via the block execution in the programmed line. You can find
further details of the means of operation in the appendix under Parameterization [} 320].

Sample:
N10 G01 X100 Y200 F6000
N20 R2=4.5
N30 #set paramVeloJump(1.45; R2; R2)#
N40 G01 X500

Resetting parameters
The VeloJump parameters changed via the NC program remain active until the interpreter is next
reset and/or TwinCAT has been restarted.

DeviationAngle (not yet released)

Command #set paramDevAngle(<C0Factor>; <AngleLow>;
<AngleHeigh>)#

Parameter <C0Factor> Path reduction factor for C0 transitions: 1.0 ≥ C0 ≥
0.0

Parameter <AngleLow> Angle in degrees from which reduction takes effect: 0
≤ φ_l < φ_h ≤ π

Parameter <AngleHeigh> Angle in degrees from which reduction to v_link = 0.0
takes effect: 0 ≤ φ_l < φ_h ≤ π

The 'paramDevAngle' command is used to describe the parameters for the C0 reduction. In contrast to the
VeloJump reduction method, in which the velocity step change is influenced directly, in the DeviationAngle
method the velocity step change depends upon the angle. You can find further details of the means of
operation in the appendix under Parameterization [} 320].

Sample:
N10 G01 X100 Y200 F6000
N20 #set paramDevAngle(0.15; 5; 160)#
N30 G01 X500

Resetting parameters
The DeviationAngle parameters changed via the NC program remain active until the interpreter is
next reset and/or TwinCAT has been restarted.

C1 reduction factor

Command #set paramC1ReductionFactor(<C1Factor>)#
Parameter <C1Factor> C1 reduction factor

The 'paramC1ReductionFactor' command is used to change the C1 reduction factor while the NC program is
running.

The new parameter comes into effect at the segment transition at which the reduction factor is programmed.
In the example shown, the new value for the C1 reduction is therefore already effective in the segment
transition from N10 to N30.

A floating point value or an 'R parameter' can be provided as parameter.

You can find further details of the means of operation in the appendix under Parameterization [} 320].

Classic Dialect Reference Manual

TF5100 177Version: 2.11.0

Sample:
N10 G01 X100 Y200 F6000
N20 #set paramC1ReductionFactor(0.45)#
N30 G01 X500

Resetting parameters
The C1 reduction factor changed via the NC program remains active until the interpreter is next
reset and/or TwinCAT has been restarted.

C2 reduction factor

Command #set paramC2ReductionFactor(<C2Factor>)#
Parameter <C2Factor> C2 reduction factor

The 'paramC2ReductionFactor' command is used to change the C2 reduction factor while the NC program is
running.

The command takes effect in the segment transition for which the reduction factor is programmed. In the
example shown, the new value for the C2 reduction is therefore already effective in the segment transition
from N10 to N30.

A floating point value or an 'R parameter' can be provided as parameter.

Sample:
N10 G01 X100 Y200 F6000
N20 #set paramC2ReductionFactor(1.45)#
N30 G01 X500

Resetting parameters
The C2 reduction factor changed via the NC program remains active until the interpreter is next
reset and/or TwinCAT has been restarted.

5.3.10 Change of the Minimum Velocity
Command #set paramVeloMin(<VeloMin>)#
Parameter <VeloMin> Minimum path velocity

The 'paramVeloMin' command can be used to alter the minimum path velocity while the NC program is
running. The new velocity comes into effect via the block execution in the programmed line.

A floating point value or an 'R parameter' can be provided as parameter.

Sample:
N10 G01 X100 Y200 F6000
N20 #set paramVeloMin(2.45)#
N30 G01 X500

Resetting parameters
The minimum velocity changed via the NC program remains active until the interpreter is next reset
and/or TwinCAT has been restarted.

Programming the velocity
The unit of velocity is mm/sec and is therefore equivalent to the usual XAE units.

5.3.11 Read Actual Axis Value
Command @361
Parameter 1 R<n> R parameter to which the actual

axis value is assigned

Classic Dialect Reference Manual

TF5100178 Version: 2.11.0

Parameter 2 K<m> Constant for the axis coordinate
that is to be read
0: X axis
1: Y axis
2: Z axis
3: Q1 axis
4: Q2 axis
. . .
7: Q5 axis

Sample 1:
N10 G0 X0 Y0 Z0 F24000
N30 G01 X1000
N40 @361 R1 K0 (read position of x axis)
N50 R0=X
N60 G01 X=R0+R1
N70 M30

A decoder stop is implicitly executed by @361 command. This ensures that, in this example, the position is
read when block N30 has been processed.

A possible application would be in combination with the deletion of any remaining travel.

Read actual axes value without decoder stop

Command #get PathAxesPos(R<a>; R;
R<c>)#

Parameter 1 R<a> R parameter to which the actual
axes value of the X axis is
assigned

Parameter 2 R R parameter to which the actual
axes value of the Y axis is
assigned

Parameter 3 R<c> R parameter to which the actual
axes value of the Z axis is
assigned

The command #get PathAxesPos()# reads the current actual positions of the path axes (X, Y & Z). It
behaves similarly to @361, with the difference that this command does not trigger an implicit decoder stop.
This means that the programmer must himself ensure that at the time when the command is being
processed in the interpreter the axes have not yet moved, or else a decoder stop (@714) must be
programmed in the block before this command.

#get PathAxesPos()# is an alternative to @361, but it is linked to certain specific conditions.

Sample 2:
@714(optional)
N27 #get PathAxesPos(R0; R1; R20)#

Notice If a path axis is not assigned (e.g. no axis is assigned to Z) the value 0 is passed to the
associated R parameter.

5.3.12 Skip virtual movements
Command #skip VirtualMovements(<parameter>)#
Parameter 0 (default): virtual movements are “completed”.

1: Virtual movements are skipped

Movements of unavailable but programmed main axes (X, Y & Z) can be skipped with the command 'skip
VirtualMovements'.

Sample:

Classic Dialect Reference Manual

TF5100 179Version: 2.11.0

The interpolation group (CfgBuildGroup) contains only assignments for the X and Y axis. The Z axis is not
assigned, but programmed in the parts program.
(Startposition X0 Y0 Z0)
N10 #skip VirtualMovements(1)#
N20 G01 X100 Y200 F6000
N30 G01 Z1000 (virtual movement, because z is not assigned)
N40 G01 X500

Segment N30 is skipped during execution of this program.

5.3.13 Messages from NC program
Command #MSG (<message level>; <mask>; "<text>")#
<message level> • ITP

The message is issued from the interpreter. This
means that the message generally appears well
before the execution in the NC kernel.

• NCK
The message is issued from the NC kernel when
the NC block is executed. This means it appears at
the same time as the block execution (SAF)

<mask> STRING
<text> the text to be displayed

N10 G0 X0 Y0
N20 G01 X100 Y0 F6000

N30 #MSG(NCK; STRING; "this is a text")#

N40 G01 X200 Y-100

The text can not be used to transfer further parameters (e.g. R-parameters).

Internally the message is handled like a note.

5.4 Tool Compensation

5.4.1 Tool Data
The NC has 255 memory locations (D1..D255) available for each channel for tool data. The parameters for
the tool data can be written directly in the XAE. The data is saved as an ASCII file (<channel ID>.wz) which
is kept in the TwinCAT\CNC directory. These files are automatically loaded when TwinCAT is started.

Classic Dialect Reference Manual

TF5100180 Version: 2.11.0

Currently two tool types are supported:

• Drills
• Shaft Cutters

The relevant columns (parameters) for this type of tool are described below.

Drills

Parameter Meaning
0 Tool number

When this D-word is called, a tool number that is
specified here can be given at the same time.

1 Tool type
The drill is type 10.

2 Geometry: Length
Describes the length of the drill.

5 Wear: Length
Describes the wear on the drill. The wear has to be
given as a negative value, since it is added to the
length.

8 Cartesian tool displacement [} 182] in X direction
9 Cartesian tool displacement in Y direction
10 Cartesian tool displacement in Z direction

Shaft Cutters

Parameter Meaning
0 Tool number

When this D-word is called, a tool number that is
specified here can be given at the same time.

1 Tool type
The shaft cutter is type 20

Classic Dialect Reference Manual

TF5100 181Version: 2.11.0

Parameter Meaning
2 Geometry: Length

Length of the shaft cutter.
4 Geometry: Radius
5 Wear: Length
7 Wear: Radius
8 Cartesian tool displacement [} 182] in X direction
9 Cartesian tool displacement in Y direction
10 Cartesian tool displacement in Z direction

Writing of tool data

Editing tool data with the XAE

As already mentioned, the tool data can be written directly from the XAE. To do this, edit the window shown
above.

Parameterization of tool data via the PLC

In addition, tool data can be read and written from the PLC with the function block ItpWriteToolDescEx
[} 247].

Writing tool data from the parts program

In some applications, it is more convenient to write the tool data directly from the part program.

The tool set to be overwritten must not be active during the write process. This means, for example, if tool
radius compensation with parameter set D10 is active, this cannot be overwritten, as long as D10 is still
selected.

Command #set ToolParam(<Zeile>; <Spalte>;<Wert>)#
Parameter <line> Describes the tool parameter line (1..255)

Corresponds to the D number
Parameter <column> Column to be written (0..15)
Parameter <value> Parameter value to be transmitted

Sample:
N10 G0 X0 Y0 Z0
N20 G01 X100 F60000
N30 R1=10 R2=4 R3=20.3
N40 #set ToolParam(10; 0; 5)# #set ToolParam(10;1;20)#
N50 #set ToolParam(R1; R2; R3)#
N60 G41 X200 Y D10
...

Notice No formulas may be transmitted as parameters. Writing of the tool data does not require a
decoder stop.

Reading tool data from the parts program

This command can be used to assign tool data to an R-parameter.

Command #get ToolParam(<line>; <column>;<R-Param>)#
Parameter <line> Writes to the tool parameter line (1..255); this

corresponds to the D number
Parameter <column> Column to be written (0..15)
Parameter <R-Param> R-parameter in which the date is entered

Sample:
N10 G0 X0 Y0 Z0
N20 G01 X100 F60000
N30 R1=10 R2=4

Classic Dialect Reference Manual

TF5100182 Version: 2.11.0

N40 #get ToolParam(10; 0; R5)# #getToolParam(10;1;R20)#
N50 #get ToolParam(R1; R2; R3)#
N60 G41 X200 Y D10
...

Notes:

Notice No formulas may be transmitted as parameters. Reading of the tool data does not require a
decoder stop.

5.4.2 Selecting and Deselecting the Length Compensation
Length compensation can only be selected when G0 [} 135] or G1 [} 136] are in effect. The working plane
[} 129] must be selected to which the length compensation is perpendicular.

The feed direction is specified with P (see working plane and feed direction [} 129]).

To effect the movement corresponding to the length compensation, the axis concerned must at least be
mentioned.

Sample:
N10 G17 G01 X0 Y0 Z0 F6000
N20 D1 X10 Y10 Z
N30 ...
N90 M30

Notice Length correction is automatically selected when cutter radius compensation [} 185] is
selected.To deselect length correction, D0 has to be programmed. It is again here necessary to at
least mention the axis concerned in order to move to the new position.

5.4.3 Cartesian Tool Translation
Cartesian tool displacement refers to an offset between the reference point of the tool carrier and the
reference point of the tool itself. In many cases, these reference points have the same location, so that a 0
can be entered for the tool displacement.

Parameter

The parameters for a translation are entered into the tool data [} 179] in the same way as the tool length etc.
Parameters 8 to 10 are available for this purpose. Here

• P8 always describes the X-component
• P9 always describes the Y-component
• P10 always describes the Z-component

independently of the choice of level.

Classic Dialect Reference Manual

TF5100 183Version: 2.11.0

Selecting and deselecting Cartesian tool displacement

As in the case of length compensation, tool displacement is switched on with D<n> (n>0). In order to travel to
the translated location, the axes must at least be named. This means that the displacement affects the
positioning when the axis is called for the first time. It is also possible for a new final position to be entered
for the axis.

The function is switched off with D0. Here again, it is necessary for the axes at least to be named, if the axes
are to travel to their new co-ordinates.

Sample 1:
N10 G17 G01 X0 Y0 Z0 F6000
N20 D1 X10 Y10 Z (Z-Axis is repositioned)
N30 ...
N90 M30

Sample 2:
N10 G17 G01 X0 Y0 Z0 F6000
N20 D1 X10 Y10 (Z-Axis is not moved)
N30 ...
N90 M30

Using tool displacement and rotation
If the Cartesian tool displacement is used in combination with rotation [} 147], then the
compensation will only be correct if the aggregate (the tool carrier) is also rotated through the same
angle.

Application sample

It often happens that a processing machine's tool carrier contains a number of tools. The appropriate tool is
pneumatically activated according to the kind of machining required. Since, however, the tools are located at
different positions, Cartesian tool displacement is required.

Classic Dialect Reference Manual

TF5100184 Version: 2.11.0

Tool parameters

Parameter Value
0 0..65535
1 10
2 40
5 0
8 100.0
9 0.0
10 50

Behavior with incremental dimension notation

Default behavior

If a new tool offset (and also length compensation) is selected in incremental dimensions (G91), then the
compensation is applied once the axis is named.

Sample 3:
(Tooloffset D1: X10 Y20 Z30)
N10 G01 D1 X100 Y0 Z0 F6000
N20 G91 (incremental dimension)
N30 D2 (Tooloffset D2: X100
Y200 Z300)
N30 Z10
N40 ...

Command Description
ToolOffsetIncOn The tool displacements and length compensations

are also applied under G91 once the axis is named.
(standard setting)

ToolOffsetIncOff The tool displacement and length compensation are
not applied under G91.

Sample 4:
(Tooloffset D1: X10 Y20 Z30)
N05 ToolOffsetIncOff
N10 G01 D1 X100 Y0 Z0 F6000
N20 G91 (incremental dimension)
N30 D2 (Tooloffset D2: X100
Y200 Z300)
N30 Z10
N40 ...

In N10 the Tooloffset is applied to all 3 axes. I.e. the axes move in the machine coordinate system (MCS) to
X110 Y10 Z30.

In N30 the new Tooloffset of the Z-axis is not applied. This results in MCS X110 Y10 Z40.

See also ZeroShiftIncOn/Off [} 141]

Classic Dialect Reference Manual

TF5100 185Version: 2.11.0

5.4.4 Cutter Radius Compensation

5.4.4.1 Miller/Cutter Radius Compensation Off

Miller/Cutter Radius Compensation Off

Command G40 (standard setting)
Cancellation G41 [} 185] or G42 [} 186]

The G40 function switches the miller/cutter radius compensation off. The length radius compensation [} 182]
will still remain active until it is switched off with D0. Between G40 and end of program it is madatory to
program at least one geometry element.

5.4.4.2 Miller/cutter radius compensation left

Miller/cutter radius compensation left

Command G41
Cancellation G40 [} 185]

The function G41 switches on the miller/cutter radius compensation. The tool is located to the left of the
workpiece in the direction of movement.

As has already been seen for the length compensation [} 182], the cutter radius compensation can only be
activated when G0 [} 135] or G1 [} 136] is in effect. The axes of the plane must be driven when the cutter
radius compensation is selected.

Sample:
N10 G17 G01 X0 Y0 Z0 F6000
N20 G41 X10 Y20 Z D1
N30 X30
N40 G40 X10 Y10 Z
N50 M30

Cutter radius compensation does not apply to full circles
The cutter radius compensation does not support full circles. Full circles have to be split into
semicircles, for sample.

Notes:

• The cutter radius compensation should be deactivated before the end of the NC program, in order to
close it properly. Between G40 and end of program it is mandatory to program at least one geometry
element.

• If a decoder stop [} 168] is programmed, cutter radius compensation has to be disabled first.

• For arcs, radius compensation can lead to a change in the path velocity at the contour. See also 'Path
velocity in arcs [} 190]'.

• See Orthogonal contour approach/departure [} 190].

Classic Dialect Reference Manual

TF5100186 Version: 2.11.0

5.4.4.3 Miller/cutter radius compensation right

Miller/cutter radius compensation right

Command G42
Cancellation G40 [} 185]

The function G42 switches on the miller/cutter radius compensation. The tool is located to the right of the
workpiece in the direction of movement.

Cutter radius compensation does not apply to full circles
The cutter radius compensation does not support full circles. Full circles have to be split into
semicircles, for sample.

Notice If a change is to be made from G41 to G42, then a G40 should be programmed between the
two movements.

5.4.4.4 Departure and approach behavior of the miller/cutter radius
compensation

This chapter describes the approach and departure behavior when the miller/cutter radius compensation is
switched on or off. This behavior depends on the start position and cannot be influenced in any other way.

After the radius compensation is switched on, it must be applied. This means the cutter is at one point P1
(without radius compensation) and travels to P2', with the cutter radius being compensated at point P2'.

Point P2' depends on the start position P1 within the plain. A distinction is made between 3 basic cases.
These cases are exemplified below during application of the radius compensation with a programmed G42
(right compensation).

Similar rules apply for the deactivation of the compensation, except that the tangent t is determined at the
end of the path segment, with similar conditions being derived.

Case 1: P1 to the right of the path tangent t

If the starting point P1 is to the right of the path tangent t, P2' is orthogonal to the tangent. This start-up
behavior applies to the range hatched in green.

Classic Dialect Reference Manual

TF5100 187Version: 2.11.0

Case 2: P1 the right of the normal n and to the left of the path tangent t

If the start position P1 is to the right of the normal n and to the left of the path tangent t, P2' is moved. P2'
results from the intersection of the parallel of P1P2 and the offset distance P2P3. Both straight lines are
offset by radius R.

This behavior applies to the range hatched in green.

Classic Dialect Reference Manual

TF5100188 Version: 2.11.0

Case 3: P1 to the left of the normal n and to the left of the path tangent t

If the start position P1 is to the left of the normal n and also to the left of the path tangent t, an additional
circle segment is inserted during approaching of P2'. In order to avoid free cutting at P2, P2' is not orthogonal
to the start tangent of the section P2P3.

The additional circle segment is inserted for all start positions within the hatched green region.

Classic Dialect Reference Manual

TF5100 189Version: 2.11.0

A circle segment follows after the offset

The radius compensation is invariably applied via a straight line. (This must be set in the part program, since
otherwise a runtime error will be generated). The contour can then start with a circle. The rules for starting
and stopping are the same as before, i.e. here too the path tangent of the contour for P2 is determined, and
a distinction is made between the three cases described.

If P2' is always to be approached orthogonal to the path tangent of P2, independent of the starting point, this
can be realized with an additional command (see Orthogonal contour approach/departure [} 190]).

Classic Dialect Reference Manual

TF5100190 Version: 2.11.0

5.4.5 Orthogonal Contour Approach/Departure
Command NORM
Cancellation End of block
Programmable with G40 [} 185]

G41 [} 185]
G42 [} 185]

The 'NORM' command has the effect that the contour is approached orthogonally when cutter radius
compensation is switched on. The actual position of the cutter is irrelevant. When de-selecting, the last
segment with active compensation is also left orthogonally.

Sample:
N10 G17
N20 G01 X0 Y0 Z0 F6000
N30 G42 NORM X100 Y0 D5
N40 X200
N50 G40 NORM X220 Y0
N60 M30

Notice The Norm command has hitherto only been implemented for straight line/straight line
transitions.

5.4.6 Path Velocity in Arcs
When the cutter radius compensation [} 185] is active, the programmed radius changes for arcs. This in turn
alters the velocity. The following commands are used to specify whether the feed value refers to the contour
or the tool center point.

Constant Feed at the Contour

Command CFC (standard setting)
Cancellation CFIN or CFTCP

With CFC (constant feed contour) the feedrate at the contour is held constant.

Constant Feed at the Internal Radius

Command CIN
Cancellation CFC or CFTCP

With CFIN (constant feed internal radius) the feedrate at internal radii is reduced. This results in a constant
velocity at the contour. The velocity at external radii is not increased.

Constant Feed of the Tool Centre Point

Command CFTCP
Cancellation CFC or CFIN

With CFTCP (constant feed tool center point) the feedrate of the tool’s center point is kept constant. This
means that at internal radii the velocity at the contour is increased, and that it is correspondingly reduced at
external radii.

Classic Dialect Reference Manual

TF5100 191Version: 2.11.0

5.4.7 Bottle Neck Detection
If the cutter radius is not considered when a part program is created, the cutter may inadvertently process
the opposite side of the workpiece. This leads to a contour collision with the workpiece, or, in other words, a
bottleneck was programmed.

Command CDON
Cancellation CDOF

In this form, this behavior can only occur in combination with cutter radius compensation (G41/G42). In order
to prevent such contour collisions, monitoring can be switched on from the part program via CDON. For it to
be active, cutter radius compensation must also be selected.

The response of the NCI when a bottleneck is detected can be parameterized via the PLC. 3 cases are
distinguished:

• Error and abort
If a bottleneck is detected, TwinCAT generates a runtime error and aborts the program execution.

• Notification and modification of the contour
If a bottleneck is detected, the contour is modified such that a contour collision is avoided (see Figure
1: blue line). However, this also means that segments may be left out, depending on the program.
Furthermore, a note is entered in the application viewer to say that a bottleneck was detected.

• Notification and contour collision
If a bottleneck is detected, the contour is not changed and no error is generated. Only a message is
entered in the application viewer.

Significant computing resources are required for contour collision monitoring. It should therefore only be
selected if it is actually required. Furthermore, the amount of look-ahead for the bottleneck detection should
be specified. This requires the number of future segments to be determined that are monitored relative to the
n-th segment, in order to check for bottlenecks. The selected number of segments should not be too large,
since this would put unnecessary strain on the system. The value for the look-ahead is also parameterized
from the PLC.

Function blocks for parameterizing the bottleneck detection:

• ItpSetBottleNeckModeEx [} 235]

• ItpGetBottleNeckModeEx [} 211]

• ItpSetBottleNeckLookAheadEx [} 234]

Classic Dialect Reference Manual

TF5100192 Version: 2.11.0

• ItpGetBottleNeckLookAheadEx [} 210]

Sample:
N10 G0 X0 Y0 Z0
N20 CDON
N30 G01 G41 D3 X100 F6000 (cutter radius 30mm)
...
N40 G01 X200
N50 G02 X220 Y-74.641 I0 J-40
N60 G01 X300 Y-104
N70 G01 X230 Y120
N80 G40 D0 Y200
N90 CDOF
...
M30

5.5 Command overview

5.5.1 General command overview
Command Description block-by-block /

modal
Default

ANG [} 146] Contour line programming
(angle)

s

AROT [} 147] Rotation additive m

CalcInvRot [} 147] Calculates the inverse
rotation of a vector

s

CalcRot [} 147] Calculates the rotation of
a vector

s

CDOF [} 191] Bottleneck detection off m Default

CDON [} 191] Bottleneck detection on m

CFC [} 190] Constant velocity at the
contour

m Default

CFIN [} 190] Constant velocity in the
interior circle

m

CFTCP [} 190] Constant velocity of tool
center point

m

CIP [} 137] Circular interpolation s

CPCOF [} 137] Centre point correction off m

CPCON [} 137] Centre point correction on m Default

DelDTG [} 158] Delete Distance to Go s

DYNOVR [} 174] Dynamic Override m

FCONST [} 140] Constant feed
programming

m Default

FLIN [} 140] Linear feed programming m

G00 [} 135] Rapid traverse m

G01 [} 136] Straight line interpolation m Default

G02 [} 137] Clockwise circular
interpolation

m

G03 [} 137] Anticlockwise circular
interpolation

m

G04 [} 140] Dwell time s

G09 [} 140] Accurate stop s

G17 [} 129] Plane selection XY m Default

Classic Dialect Reference Manual

TF5100 193Version: 2.11.0

Command Description block-by-block /
modal

Default

G18 [} 129] Plane selection ZX m

G19 [} 129] Plane selection YZ m

G40 [} 185] No miller/cutter radius
compensation

m Default

G41 [} 185] Miller/cutter radius
compensation left

m

G42 [} 185] Miller/cutter radius
compensation right

m

G53 [} 141] Zero shift suppression m Default

G54 [} 141] 1st adjustable zero shift m

G55 [} 141] 2nd adjustable zero shift m

G56 [} 141] 3rd adjustable zero shift m

G57 [} 141] 4th adjustable zero shift m

G58 [} 141] 1st programmable zero
shift

m

G59 [} 141] 2nd programmable zero
shift

m

G60 [} 140] Accurate stop m

G70 [} 130] Dimensions inch m

G71 [} 130] Dimensions metric m Default

G74 [} 135] Programmed traverse to
reference point

s

G90 [} 128] Reference dimension
notation

m Default

G91 [} 128] Incremental dimension
notation

m

G700 [} 130] Dimensions in inches with
calculation of the feed

m

G710 [} 130] Dimensions metric with
calculation of the feed

m

Mirror [} 150] Mirroring coordinate
system

m

MOD [} 158] Modulo movement s

MSG [} 179] Messages from the NC
program

s

NORM [} 190] orthogonal approach of
and departure from the
contour

s

P+ [} 129] Feed direction positive m Default

P- [} 129] Feed direction negative m

paramAutoAccurateStop
[} 157]

Automatic Accurate Stop m

paramAxisDynamics
[} 174]

Parameterization of the
axis dynamics

m

paramC1ReductionFactor
[} 175]

C1 reduction factor m

paramC2ReductionFactor
[} 175]

C2 reduction factor m

Classic Dialect Reference Manual

TF5100194 Version: 2.11.0

Command Description block-by-block /
modal

Default

paramCircularSmoothing
[} 156]

Circular smoothing m

paramDevAngle [} 175] C0 reduction - deflection
angle

m

paramGroupVertex [} 156] Circular smoothing (old) m

paramGroupDynamic
[} 174]

Pathway dynamics (old) m

paramPathDynamics
[} 174]

Pathway dynamics m

paramRadiusPrec [} 138] Circular accuracy m

paramSplineSmoothing
[} 154]

Smoothing with Bezier
Splines

m

paramVertexSmoothing
[} 151]

Smoothing of Segment
Transitions

m

paramVeloJump [} 175] C0 reduction - max. step
change in velocity

m

paramVeloMin [} 177] Minimum velocity m

paramZeroShift [} 141] Parameterization of the
configurable zero shift

m

PathAxesPos [} 178] Reads the actual position s

ROT [} 147] Absolute rotation m

RotExOff [} 147] Extended rotation function
off

m Default

RotExOn [} 147] Extended rotation function
on

m

RotVec [} 147] Calculation routine for
rotating a vector

s

RParam [} 133] Initialization of R-
parameters

s

RToDwordGetBit [} 133] Converts an R-parameter
to DWord and checks
whether a defined bit is
set

m

SEG [} 146] Contour line programming
(segment length)

s

skip VirtualMovements
[} 178]

Skip virtual movements m

ToolOffsetIncOff [} 182] Cartesian tool
displacement and length
compensation is not
applied under G91

m

ToolOffsetIncOn [} 182] Cartesian tool
displacement and length
compensation is applied
under G91

m Default

ToolParam [} 179] Writing and reading of tool
parameters

m

TPM [} 144] Target position monitoring s

ZeroShiftIncOff [} 141] Zero shift is not applied
under G91

m

Classic Dialect Reference Manual

TF5100 195Version: 2.11.0

Command Description block-by-block /
modal

Default

ZeroShiftIncOn [} 141] Zero shift is applied under
G91

m Default

Address Description
Q<n> [} 160] Axis label for auxiliary axis (1 <= n <= 5)

5.5.2 @-Command Overview
Several variations of these commands are often possible, since K for a constant, R for an R-parameter or P
for an R-parameter used as a pointer can be used for parameters. For example, the notation K/R/Pn should
be understood to mean "either a number or an R-parameter or a pointer".

The following @-commands are available:

Command Versions Function
@40 [} 133] @40 Kn Rn Rm Save register on the stack

@41 [} 133] @41 Rn Rm Save register on the stack

@42 [} 133] @42 Kn Rm Rn Restore register from stack

@43 [} 133] @43 Rm Rn Restore register from stack

@100 [} 169] @100 K±n @100 Rm Unconditional jump

@111 [} 169] @111 Rn K/Rn Km ... Case block

@121 [} 169] @121 Rn K/Rn Kn Jump if unequal

@122 [} 169] @122 Rn K/Rn Kn Jump if equal

@123 [} 169] @123 Rn K/Rn Kn Jump if less or equal

@124 [} 169] @124 Rn K/Rn Kn Jump if less

@125 [} 169] @125 Rn K/Rn Kn Jump if greater or equal

@126 [} 169] @126 Rn K/Rn Kn Jump if greater

@131 [} 171] @131 Rn K/Rn Kn Loop while equal

@132 [} 171] @132 Rn K/Rn Kn Loop while unequal

@133 [} 171] @133 Rn K/Rn Kn Loop while greater

@134 [} 171] @134 Rn K/Rn Kn Loop while greater or equal

@135 [} 171] @135 Rn K/Rn Kn Loop while less

@136 [} 171] @136 Rn K/Rn Kn Loop while less or equal

@141 [} 171] @141 Rn K/Rn Kn Repeat until equal

@142 [} 171] @142 Rn K/Rn Kn Repeat until unequal

@143 [} 171] @143 Rn K/Rn Kn Repeat until greater

@144 [} 171] @144 Rn K/Rn Kn Repeat until greater or equal

@145 [} 171] @145 Rn K/Rn Kn Repeat until less

@146 [} 171] @146 Rn K/Rn Kn Repeat until less or equal

@151 [} 171] @151 Rn K/Rn Kn FOR_TO loop

@161 [} 171] @161 Rn K/Rn Kn FOR_DOWNTO loop
@200 @200 Rn Delete a variable
@202 @202 Rn Rm Swap two variables
@302 @302 K/R/Pn K/R/Pn R/Pn Read machine data bit
@361 [} 177] @361 Rn Km Read machine-related actual axis

value

Classic Dialect Reference Manual

TF5100196 Version: 2.11.0

Command Versions Function
@372 @372 Rn Extract the NC-Channel-ID and

store it in a variable
@402 [} 137] @402 K/R/Pn K/R/Pn K/R/Pn Write machine data bit
@610 @610 Rn Rn Find absolute value of a variable
@613 @613 Rn Rn Find square root of a variable
@614 @614 Rn Rm Rm Find square root of the sum of the

squares of two variables x =
sqrt(a^2 + b^2)

@620 [} 171] @620 Rn Increment variable
@621 @621 Rn Decrement variable
@622 @622 Rn Find integer part of a variable
@630 [} 133] @630 Rn Rm Find sine of a variable

@631 [} 133] @631 Rn Rm Find cosine of a variable

@632 [} 133] @632 Rn Rm Find tangent of a variable

@633 [} 133] @633 Rn Rm Find cotangent of a variable

@634 [} 133] @634 Rn Rm Find arcsine of a variable

@635 [} 133] @635 Rn Rm Find arccosine of a variable

@636 [} 133] @636 Rn Rm Find arctangent of a variable

@714 [} 168] @714 Decoder stop

@716 [} 168] @716 Decoder stop with rescan of the
axis positions

@717 [} 168] @717 Decoder stop with external trigger
event

Machine data

Access to the following machine data is supported:

Byte Bit Action
5003 [} 137] 5 0: IJK words specify the distance

between the center of the circle
and the starting point. 1: IJK are
absolute data giving the center of
the circle.

PLC NCI Libraries

TF5100 197Version: 2.11.0

6 PLC NCI Libraries
Requirements

Overview of PLC NCI libraries Description
PLC Library: Tc2_NCI [} 197] Function blocks for the configuration of the

interpolation group (e.g. formation of the 3D group)
and for operating the interpreter (G-Code (DIN
66025)) such as loading and starting the NC
program.

PLC Library: Tc2_PlcInterpolation [} 294] Programming of multi-dimensional movements from
the PLC (alternative to using G-Code (DIN 66025))

6.1 PLC Library: Tc2_NCI

6.1.1 Configuration
The library Tc2_NCI provides function blocks for general NC axis configuration. This makes it possible to
configure or to reconfigure axes in a simple way directly from the PLC.

Function Block Description
CfgBuild3DGroup [} 197] Groups up to 3 PTP axes into a 3D group

CfgBuildExt3DGroup [} 198] Groups up to 3 PTP axes and 5 auxiliary axes into a
3D group

CfgAddAxisToGroup [} 200] Configures a single axis at a particular location within
a group (PTP, 3D, FIFO)

CfgReconfigGroup [} 200] Removes 3D (or FIFO) axis allocations and returns of
the axes to their personal PTP group

CfgReconfigAxis [} 201] Returns a single axis from, for example, a 3D group,
to its personal PTP group

CfgRead3DAxisIds [} 202] Reads the axis IDs (axis allocation) of a 3D group

CfgReadExt3DAxisIds [} 203] Reads the axis IDs (axis allocation) of a 3D group
with auxiliary axes

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.1.1 CfgBuild3DGroup
CfgBuild3DGroup

bExecute BOOL
nGroupId UDINT
nXAxisId UDINT
nYAxisId UDINT
nZAxisId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

This function block configures a 3D group with up to 3 PTP axes (X, Y and Z).

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGroupId : UDINT;

PLC NCI Libraries

TF5100198 Version: 2.11.0

 nXAxisId : UDINT;
 nYAxisId : UDINT;
 nZAxisId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nGroupId: ID of the 3D group

nXAxisId: ID of the PTP axes

nYAxisId: ID of the PTP axes

nZAxisId: ID of the PTP axes

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.1.2 CfgBuildExt3DGroup
CfgBuildExt3DGroup

bExecute BOOL
nGroupId UDINT
nXAxisId UDINT
nYAxisId UDINT
nZAxisId UDINT
nQ1AxisId UDINT
nQ2AxisId UDINT
nQ3AxisId UDINT
nQ4AxisId UDINT
nQ5AxisId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

This function block configures a 3D group with up to 3 path axes (X, Y and Z). Additionally, up to 5 auxiliary
axes (Q1..Q5) can be configured.

The axis IDs of the PTP axes that are to be included in the interpolation group are applied at the inputs
nXAxisId to nQ5AxisId.

PLC NCI Libraries

TF5100 199Version: 2.11.0

Notice The assignment of the auxiliary axes must start with nQ1AxisId. No gaps between auxiliary
axes are permitted. For example, if nQ3AxisId is to be assigned, nQ2AxisId must also be assigned a
valid Axis ID.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGroupId : UDINT;
 nXAxisId : UDINT;
 nYAxisId : UDINT;
 nZAxisId : UDINT;
 nQ1AxisId : UDINT;
 nQ2AxisId : UDINT;
 nQ3AxisId : UDINT;
 nQ4AxisId : UDINT;
 nQ5AxisId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is executed when a positive edge is encountered.

nGroupId: ID of the 3D group

nXAxisId: Axis IDs of the PTP axes to be included in the interpolation group

nYAxisId: Axis IDs of the PTP axes to be included in the interpolation group

nZAxisId: Axis IDs of the PTP axes to be included in the interpolation group

nQ1AxisId: Axis IDs of the PTP axes to be included in the interpolation group

nQ2AxisId: Axis IDs of the PTP axes to be included in the interpolation group

nQ3AxisId: Axis IDs of the PTP axes to be included in the interpolation group

nQ4AxisId: Axis IDs of the PTP axes to be included in the interpolation group

nQ5AxisId: Axis IDs of the PTP axes to be included in the interpolation group

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100200 Version: 2.11.0

6.1.1.3 CfgAddAxisToGroup
CfgAddAxisToGroup

bExecute BOOL
nGroupId UDINT
nAxisId UDINT
nIndex UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The CfgAddAxisToGroup function block configures a single axis at a particular location within an existing
group (PTP, 3D, FIFO).

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGroupId : UDINT;
 nAxisId : UDINT;
 nIndex : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nGroupId: ID of the target group

nAxisId: ID of the axis to be configured

nIndex: Position of the axis within the group; can have values between 0 and n-1. Depending on the type of
group, n has the following significance: PTP: n = 1, 3D: n = 3, FIFO: n = 8

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.1.4 CfgReconfigGroup
CfgReconfigGroup

bExecute BOOL
nGroupId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

PLC NCI Libraries

TF5100 201Version: 2.11.0

The CfgReconfigGroup function block removes the axis allocation of an existing group (NCI or FIFO),
returning the axes to their personal PTP groups.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGroupId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nGroupId: ID of the group to be resolved

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.1.5 CfgReconfigAxis
CfgReconfigAxis

bExecute BOOL
nAxisId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The CfgReconfigAxis function block returns a single axis from, for example, a 3D group, to its personal PTP
group.

Interface
VAR_INPUT
 bExecute : BOOL;
 nAxisId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nAxisId: ID of the axis to be returned

tTimeOut: ADS Timeout-Delay

PLC NCI Libraries

TF5100202 Version: 2.11.0

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.1.6 CfgRead3DAxisIds
CfgRead3DAxisIds

bExecute BOOL
nGroupId UDINT
pAddr PVOID
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block CfgRead3DAxisIds reads the axis configuration of a 3D group.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGroupId : UDINT;
 pAddr : PVOID;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nGroupId: ID of the 3D group

pAddr: Address of the variable into which the function block writes the axis IDs of the group assignment
(array with three elements of type UDINT)

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

PLC NCI Libraries

TF5100 203Version: 2.11.0

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Sample:
VAR
 (* instance *)
 ReadAxIds : CfgRead3DAxisIds;
 AxIds : ARRAY[1..3] OF UDINT;
END_VAR

ReadAxIds(bExecute := TRUE,
 nGroupId := 4,
 pAddr := ADR(AxIds),
 tTimeOut := T#1s);

AxIds now contains the three axis IDs for the 3D group with the group ID 4.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.1.7 CfgReadExt3DAxisIds
CfgReadExt3DAxisIds

bExecute BOOL
nGroupId UDINT
tTimeOut TIME

↔ stExt3dGroup Reference To NCI_EXT3DGROUP

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block CfgReadExt3DAxisIds reads the axis configuration of the extended 3D group.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGroupId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nGroupId: ID of the 3D group

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 stExt3dGroup : NCI_EXT3DGROUP;
END_VAR

stExt3dGroup: Instance of the structure NCI_EXT3DGROUP (enter axis IDs of the current interpolation
group here)

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

PLC NCI Libraries

TF5100204 Version: 2.11.0

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).
TYPE NCI_EXT3DGROUP :
STRUCT
 nXAxisId : UDINT;
 nYAxisId : UDINT;
 nZAxisId : UDINT;
 nQ1AxisId : UDINT;
 nQ2AxisId : UDINT;
 nQ3AxisId : UDINT;
 nQ4AxisId : UDINT;
 nQ5AxisId : UDINT;
END_STRUCT
END_TYPE

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2 NCI POUs
The TwinCAT library Tc2_NCI contains function blocks for operating the NC interpreter from the PLC.

The following function blocks are included in the library Tc2_NCI.

Function Block Description
ItpConfirmHsk [} 206] Acknowledges an M-function of type handshake

ItpDelDtgEx [} 207] Triggers “Delete Distance to go” in the NC

ItpEnableDefaultGCode [} 208] Executes a user-defined standard G-Code before the
start of each NC program

ItpEStopEx [} 209] Triggers the NCI EStop

ItpGetBlockNumber [} 210] Provides the block number of the NC program for the
cyclic interface

ItpGetBottleNeckLookAheadEx [} 210] Provides the value of the look-ahead for bottleneck
detection

ItpGetBottleNeckModeEx [} 211] Provides the response mode for bottleneck detection

ItpGetChannelId [} 212] Provides the channel ID

ItpGetChannelType [} 213] Provides the channel type of the cyclic interface

ItpGetCyclicLRealOffsets [} 214] Provides the index offset of the LREAL variables
used in the cyclic channel interface

ItpGetCyclicUdintOffsets [} 215] Provides the index offset of the UDINT variables
used in the cyclic channel interface

ItpGetError [} 216] Provides the error number

ItpGetGeoInfoAndHParamEx [} 216] Reads information of the currently active segment
and past and future segments.

ItpGetGroupAxisIds [} 217] Provides the axis IDs that were configured for the
group

ItpGetGroupId [} 218] Provides the group ID

ItpGetHParam [} 219] Provides the current H-parameter from the NC

ItpGetHskMFunc [} 219] Provides the current M-function number of type
handshake

ItpGetItfVersion [} 220] Provides the current version of the cyclic interface

PLC NCI Libraries

TF5100 205Version: 2.11.0

Function Block Description
ItpGetOverridePercent [} 220] Provides the channel override in percent

ItpGetSetPathVelocity [} 221] Returns the current set path velocity

ItpGetSParam [} 221] Provides the current S-parameter from the NC

ItpGetStateInterpreter [} 222] Provides the current interpreter status

ItpGetTParam [} 222] Provides the current T-parameter from the NC

ItpGoAheadEx [} 223] Triggers the GoAhead function (decoder stop with
external trigger event)

ItpHasError [} 224] Determines whether an error is present

ItpIsFastMFunc [} 225] Determines whether the M-function number provided
is present in the form of a fast M-function

ItpIsEStopEx [} 225] Determines whether an EStop is executed or pending

ItpIsHskMFunc [} 226] Determines whether an M-function of type handshake
is present

ItpLoadProgEx [} 227] Loads an NC program using program names

ItpReadCyclicLRealParam1 [} 228] Reads the first LReal parameter from the cyclic
channel interface

ItpReadCyclicUdintParam1 [} 228] Reads the first UDINT parameter from the cyclic
channel interface

ItpReadRParamsEx [} 229] Reads calculation parameters

ItpReadToolDescEx [} 230] Reads the tool description from the NC

ItpReadZeroShiftEx [} 231] Reads the zero shift from the NC

ItpResetEx2 [} 232] Carries out a reset of the interpreter or of the NC
channel

ItpResetFastMFuncEx [} 233] Resets a fast signal bit

ItpSetBottleNeckLookAheadEx [} 234] Sets the value of the look-ahead for bottleneck
detection

ItpSetBottleNeckModeEx [} 235] Sets the response mode when bottleneck detection is
switched on

ItpSetCyclicLRealOffsets [} 237] Sets the index offsets of the LREAL variables used in
the cyclic channel interface

ItpSetCyclicUdintOffsets [} 238] Sets the index offsets of the UDINT variables used in
the cyclic channel interface

ItpSetOverridePercent [} 239] Sets the channel override in percent

ItpSetSubroutinePathEx [} 240] Optionally sets the search path for subroutines

ItpSetToolDescNullEx [} 241] Sets all tool parameters (including number and type)
to zero

ItpSetZeroShiftNullEx [} 242] Set all zero shifts to null

ItpSingleBlock [} 243] Enables or disables the single block mode in the NCI.

ItpStartStopEx [} 244] Starts or stops the interpreter (NC channel)

ItpStepOnAfterEStopEx [} 245] Enables further processing of the parts program after
an NCI EStop

ItpWriteRParamsEx [} 246] Writes calculation parameters

ItpWriteToolDescEx [} 247] Writes the tool description into the NC

ItpWriteZeroShiftEx [} 248] Writes the zero shift into the NC

Block search (for description of the functionality see Blocksearch [} 250])
ItpBlocksearch [} 250] Sets the interpreter to a user-defined location, so that

NC program execution continues from this point.
ItpGetBlocksearchData [} 253] Reads the current state after an NC program

interruption.

PLC NCI Libraries

TF5100206 Version: 2.11.0

Function Block Description
ItpStepOnAfterBlocksearch [} 254] Starts the motion after a block search.

Retrace
ItpEnableFeederBackup [} 255] Enables the backup list for retracing

ItpIsFeederBackupEnabled [} 256] Reads whether the backup list for retracing is active

ItpIsFirstSegmentReached [} 257] Reads whether the start position is reached during
retracing

ItpIsFeedFromBackupList [} 257] Reads whether feeder entries were sent from the
backup list

ItpIsMovingBackwards [} 258] Reads whether backward movement occurs on the
current path

ItpRetraceMoveBackward [} 258] Performs a backward movement on the path

ItpRetraceMoveForward [} 260] Performs a forward movement on the path. This is
called to cancel retracing.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.1 ItpConfirmHsk
ItpConfirmHsk

bExecute BOOL
↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF
↔ sPlcToNci Reference To PLCTONC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpConfirmHsk function block confirms the currently present M-function.

If the channel override is set to 0 or an E-stop is active, no M-functions are acknowledged during this time.
The busy signal of ItpConfirmHsk therefore remains active and must continue to be called.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
 sPlcToNci : PLCTONC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

sPlcToNci: The structure of the cyclic channel interface from the PLC to the NCI. (Type:
PLCTONC_NCICHANNEL_REF [} 326])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

PLC NCI Libraries

TF5100 207Version: 2.11.0

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.2 ItpDelDtgEx
ItpDelDtgEx

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpDelDtgEx triggers residual distance deletion. There is a more detailed description in the
Interpreter [} 158]documentation.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

PLC NCI Libraries

TF5100208 Version: 2.11.0

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.3 ItpEnableDefaultGCode
ItpEnableDefaultGCode

bExecute BOOL
bUseDefaultGCode BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpEnableDefaultGCode enables execution of a user-defined G-Code before the start of
each NC program from the PLC. The default program is executed before the loaded program when the
actual NC program starts.

This function block enables rotation of the coordinate system for all NC programs to be executed, for
example.

The standard G-Code must be stored as “DefaultGCode<Channel-Number>.def” in the TwinCAT\Mc\Nci
directory.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 bUseDefaultGCode : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

bUseDefaultGCode: If this variable is TRUE, the default G-Code is activated through a rising edge at
bExecute. If the variable is FALSE, the default G-Code is deactivated.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

PLC NCI Libraries

TF5100 209Version: 2.11.0

Not Available for GST
This function block is not available if the GST interpreter is employed.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.4 ItpEStopEx
ItpEStopEx

bExecute BOOL
fDec LREAL
fJerk LREAL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpEStopEx triggers the NCI EStop and enables a controlled stop on the path. The limit
values for the deceleration and the jerk are transferred as parameters. If these should be smaller than the
currently active dynamic parameters, the transferring parameters are rejected.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 fDec : LREAL;
 fJerk : LREAL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

fDec: Max. deceleration during stopping. If fDec is smaller than the currently active deceleration, fDec is
rejected. This ensures that the deceleration occurs with the standard ramp as a minimum.

fJerk: Max. jerk during stopping. If fJerk is smaller than the currently active jerk, fJerk is rejected.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

PLC NCI Libraries

TF5100210 Version: 2.11.0

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also ItpStepOnAfterEStopEx [} 245].

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.5 ItpGetBlockNumber

ItpGetBlockNumber is a function that returns the block number of the NC program for the cyclic interface.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetBlockNumber: Block number of the active geometry segment

Sample
VAR
 nBlockNumber : UDINT;
 sNciToPlc AT%I* : NCTOPLC_NCICHANNEL_REF;
END_VAR

nBlockNumber := ItpGetBlockNumber(sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.6 ItpGetBottleNeckLookAheadEx
ItpGetBottleNeckLookAheadEx

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId
UDINT nLookAhead

The function block ItpGetBottleNeckLookAheadEx determines the maximum size of the look-ahead for the
bottleneck detection (contour collision monitoring).

There is a more detailed description in the Interpreter [} 191] documentation.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

PLC NCI Libraries

TF5100 211Version: 2.11.0

bExecute: The command is triggered by a rising edge at this input.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
 nLookAhead : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. If the function block has a timeout error, ‘Error’ is TRUE
and ‘nErrId’ is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

nLookAhead: Value of the look-ahead for bottleneck detection

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.7 ItpGetBottleNeckModeEx
ItpGetBottleNeckModeEx

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId
E_ItpBnMode eBottleNeckMode

The function block ItpGetBottleNeckModeEx reads the behavior in the event of a contour collision
(bottleneck).

There is a more detailed description in the Interpreter [} 191] documentation.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

tTimeOut: ADS Timeout-Delay

PLC NCI Libraries

TF5100212 Version: 2.11.0

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
 eBottleNeckMode : E_ItpBnMode
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

eBottleNeckMode: Enum for the behavior in the event of a contour collision
TYPE E_ItpBnMode:
(
 ItpBnm_Abort := 0,
 ItpBnm_Adjust := 1,
 ItpBnm_Leave := 2
);
END_TYPE

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.8 ItpGetChannelId

ItpGetChannelId is a function that determines the channel ID from the cyclic interface.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetChannelId: Channel ID (type: UDINT)

PLC NCI Libraries

TF5100 213Version: 2.11.0

Sample
VAR
 nChnId : UINT;
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
END_VAR

nChnId := ItpGetChannelId(sNciToPlc);

see also: ItpGetGroupId [} 218]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.9 ItpGetChannelType

ItpGetChannelType is a function that returns the channel type of the cyclic interface.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetChannelType: Channel type (type: E_ItpChannelType)
TYPE E_ItpChannelType :
(
 ItpChannelTypeNone,
 ItpChannelTypeInterpreter,
 ItpChannelTypeKinematic,
 ItpChannelType_InvalidItfVer := 16#4B14 (*ErrTcNciItp_ItfVersion the cyclic channel interface do
es not match to the requested function/fb *)
);
END_TYPE

Sample
VAR
 nChannelType : E_ItpChannelType;
 sNciToPlc AT%I* : NCTOPLC_NCICHANNEL_REF;
END_VAR

nChannelType := ItpGetChannelType(sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100214 Version: 2.11.0

6.1.2.10 ItpGetCyclicLrealOffsets
ItpGetCyclicLRealOffsets

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId
UDINT nIndexOffsetParam1
UDINT nIndexOffsetParam2
UDINT nIndexOffsetParam3
UDINT nIndexOffsetParam4

The function block ItpGetCyclicLRealOffsets is used to read the current configuration of the cyclic channel
interface for LREAL variables.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: the command is executed by a rising edge at this input.

tTimeOut: ADS timeout delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
 nIndexOffsetParam1 : UDINT;
 nIndexOffsetParam2 : UDINT;
 nIndexOffsetParam3 : UDINT;
 nIndexOffsetParam4 : UDINT;
END_VAR

bBusy: this output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: this output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at the inputs.

nErrId: contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

nIndexOffsetParam1: group state (index offset) for parameter 1

nIndexOffsetParam2: group state (index offset) for parameter 2

nIndexOffsetParam3: group state (index offset) for parameter 3

nIndexOffsetParam4: group state (index offset) for parameter 4

See also:

• ItpReadCyclicLRealParam1 [} 228]

• ItpSetCyclicLRealOffsets [} 237]

https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865

PLC NCI Libraries

TF5100 215Version: 2.11.0

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.11 ItpGetCyclicUDintOffsets
ItpGetCyclicUdintOffsets

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId
UDINT nIndexOffsetParam1
UDINT nIndexOffsetParam2
UDINT nIndexOffsetParam3
UDINT nIndexOffsetParam4

The function block ItpGetCyclicUDintOffsets is used to read the current configuration of the cyclic channel
interface for UDINT variables.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: the command is executed by a rising edge at this input.

tTimeOut: ADS timeout delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
 nIndexOffsetParam1 : UDINT;
 nIndexOffsetParam2 : UDINT;
 nIndexOffsetParam3 : UDINT;
 nIndexOffsetParam4 : UDINT;
END_VAR

bBusy: this output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: this output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at the inputs.

nErrId: contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

nIndexOffsetParam1: group state (index offset) for parameter 1

nIndexOffsetParam2: group state (index offset) for parameter 2

nIndexOffsetParam3: group state (index offset) for parameter 3

https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865

PLC NCI Libraries

TF5100216 Version: 2.11.0

nIndexOffsetParam4: group state (index offset) for parameter 4

See also:

• ItpReadCyclicUDintParam1 [} 228]

• ItpSetCyclicUdintOffsets [} 238]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.12 ItpGetError

ItpGetError is a function that returns the error number. A description of the NC error codes can be found
here.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetError: Error number

ItpGetError evaluates the variable 'nItpErrCode' from the cyclic interface.

Sample
VAR
 bItpError : BOOL;
 nErrId : UDINT;
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
END_VAR

bItpError := ItpHasError(sNciToPlc);
IF bItpError THEN
 nErrId := ItpGetError(sNciToPlc);
 …
END_IF

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.13 ItpGetGeoInfoAndHParamEx
ItpGetGeoInfoAndHParamEx

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF ST_ItpPreViewTabEx stTab
UDINT nErrId

https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865

PLC NCI Libraries

TF5100 217Version: 2.11.0

The function block ItpGetGeoInfoAndHParamEx reads informations of the currently active segment and
past and future segments. These include block number, H-parameter and residual path length on the
segment.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 stTab : ST_ItpPreViewTabEx;
 nErrId : UDINT;
END_VAR

stTab: Structure containing the segment data. See ST_ItpPreViewTabEx [} 217].

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in nErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).
TYPE ST_ItpPreViewTabEx :
STRUCT
 nDcTime : UDINT := 0
 nReserved : UDINT := 0;
 arrLines : ARRAY[1..NCI_MAX_PREVIEWTABLINES] OF ST_ItpPreViewTabLine;
END_STRUCT
END_TYPE

nDcTime: Current time stamp in ns. This time stamp can be used e.g. in interplay with the Tc2_NciXFC
library.

arrLines: Array of segment-related information (size 20). The entry at position 11 of the array corresponds to
the currently active segment. Segments that have already been processed are displayed at positions 1-10 of
the array, future segments at positions 12-20. See ST_ItpPreViewTabLine [} 217].
TYPE ST_ItpPreViewTabLine :
STRUCT
 fLength : LREAL := 0.0;
 nBlockNo : UDINT := 0;
 nHParam : UDINT := 0;
 nEntryID : UDINT := 0;
 nReserved : UDINT := 0;
END_STRUCT
END_TYPE

fLength: Remaining segment length. For segments that are not yet active this corresponds to the total
segment length. For past segments the distance moved since the end of the segment is specified.

nBlockNo: Block number programmed by the user

nHParam: Value of the H-parameter [} 167] that is active from the start of the next segment

nEntryID: Command ID generated by the system

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.14 ItpGetGroupAxisIds

PLC NCI Libraries

TF5100218 Version: 2.11.0

ItpGetGroupAxisIds is a function that returns an array of axes IDs that were configured for the group.

VAR_IN_OUT
FUNCTION ItpGetGroupAxisIds

VAR_IN_OUT
 sNciToPlc AT%I* : NCTOPLC_NCICHANNEL_REF;
 nNciAxisIds : ARRAY[1..8] OF DWORD;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

sNciAxisIds: Array of axis IDs

Return value

ItpGetGroupAxisIds: Error number

ItpGetGroupAxisIds evaluates the variable 'nItpErrCode' from the cyclic interface.

Sample
VAR
 nNciAxisIds : ARRAY[1..8] OF DWORD;
 sNciToPlc AT%I* : NCTOPLC_NCICHANNEL_REF;
 nVersionErr : DWORD;
END_VAR

nVersionErr := ItpGetGroupAxisIds(nNciAxisIds, sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.15 ItpGetGroupId

ItpGetGroupId is a function that determines the group ID from the cyclic interface.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetGroupId: Group ID

Sample
VAR
 nGrpId : UINT;
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
END_VAR

nGrpId := ItpGetGroupId(sNciToPlc);

PLC NCI Libraries

TF5100 219Version: 2.11.0

See also: ItpGetChannelId [} 212]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.16 ItpGetHParam

ItpGetHParam is a function that returns the current H-parameter.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetHParam: H parameter

ItpGetHParam evaluates the variable 'nHFuncValue' from the cyclic interface.

Sample
VAR
 nHParam : DINT;
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
END_VAR

nHParam := ItpGetHParam(sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.17 ItpGetHskMFunc

ItpGetHskMFunc supplies the number of the M-function of type handshake.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

PLC NCI Libraries

TF5100220 Version: 2.11.0

Return value

ItpGetHskMFunc: Number of the M-function

ItpGetHskMFunc evaluates the variable 'nHskMFuncNo' from the cyclic interface.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.18 ItpGetItfVersion

ItpGetItfVersion is a function that determines the version number of the cyclic interface.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetItfVersion: Version number of the cyclic interface

Sample
VAR
 nItfVer : UINT;
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
END_VAR

nItfVer := ItpGetItfVersion(sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.19 ItpGetOverridePercent

The ItpGetOverridePercent function returns the axis channel override as a percentage. It is essential to
remember that this is not a value from the NC. The value, which is transferred as set value to the NC, is
evaluated.

VAR_IN_OUT
VAR_IN_OUT
 sPlcToNci : PLCTONC_NCICHANNEL_REF;
END_VAR

PLC NCI Libraries

TF5100 221Version: 2.11.0

sPlcToNci: Structure of cyclic channel interface between PLC and NCI (type: PLCTONC_NCICHANNEL_REF
[} 326])

Return value

ItpGetOverridePercent: Override in percent

Sample
VAR
 sPlcToNci AT%Q*: PLCTONC_NCICHANNEL_REF;
 fOverride : LREAL;
END_VAR

fOverride := ItpGetOverridePercent(sPlcToNci);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.20 ItpGetSetPathVelocity

ItpGetSetPathVelocity is a function that reads the current set path velocity from the cyclic interface.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetSetPathVelocity: Current set path velocity

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.21 ItpGetSParam

ItpGetSParam is a function that returns the current S-parameter.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

PLC NCI Libraries

TF5100222 Version: 2.11.0

Return value

ItpGetSParam: S parameter

ItpGetSParam evaluates the variable 'nSpindleRpm' from the cyclic interface.

Sample
VAR
 nSParam : UINT;
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
END_VAR

nSParam := ItpGetSParam(sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.22 ItpGetStateInterpreter

ItpGetStateInterpreter is a function that returns the interpreter status.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetStateInterpreter: Current interpreter status [} 15]

ItpGetStateInterrpreter evaluates the variable 'nItpState' from the cyclic interface.

Sample
VAR
 nItpState : UDINT;
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
END_VAR

nItpState := ItpGetStateInterpreter(sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.23 ItpGetTParam

PLC NCI Libraries

TF5100 223Version: 2.11.0

ItpGetTParam is a function that returns the current T-parameter.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

ItpGetTParam: T parameter

ItpGetTParam evaluates the variable 'nTool' from the cyclic interface.

Sample
VAR
 nTParam : UINT;
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
END_VAR

nTParam := ItpGetTParam(sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.24 ItpGoAheadEx
ItpGoAheadEx

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpGoAheadEx function block may only be used in association with the decoder stop '@717' [} 168].
There is a more detailed description of this decoder stop in the interpreter documentation [} 125].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

PLC NCI Libraries

TF5100224 Version: 2.11.0

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.25 ItpHasError

ItpHasError is a function that determines whether the interpreter is in an error state.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

If there is an error, the function returns TRUE.

ItpHasError evaluates the variable 'nItpErrCode' from the cyclic interface. If this value does not
equal 0, TRUE is returned.

Sample
VAR
 bItpError : BOOL;
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
END_VAR

bItpError := ItpHasError(sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100 225Version: 2.11.0

6.1.2.26 ItpIsFastMFunc

ItpIsFastMFunc is a function that determines whether the fast M-function is set for the supplied M-function
number.

VAR_IN
FUNCTION ItpIsFastMFunc

VAR_IN
 nFastMFuncNo : INT;
END_VAR

nFastMFuncNo: Number of the M-function that is to be checked.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

The function returns TRUE if the fast bit of the M-function is set.

ItpIsFastMFunc evaluates the variable 'nFastMFuncMask' from the cyclic interface.

Sample
(*this enum is defined by the user *)

TYPE FastMFuncs:
(
 M10_CoolingFluidOn := 10, (*fast M-Funktion M10*)
 M11_CoolingFluidOff := 11,
 M12_FanOn := 12,
 M13_FanOff := 13
);
END_TYPE

VAR
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF
 enFastMFuncs : FastMFuncs;
 bTurnFanOn : BOOL;
END_VAR

bTurnFanOn := ItpIsFastMFunc(M12_FanOn,sNciToPlc);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.27 ItpIsEStopEx

The function ItpIsEStopEx indicates whether an EStop command was triggered.

PLC NCI Libraries

TF5100226 Version: 2.11.0

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

If the return value is TRUE, the function was preceded by an EStop (e.g. ItpEStopEx). The flag does not
provide information as to whether the axes have already stopped or are still on the braking ramp.

After execution of ItpStepOnAfterEStopEx, ItpIsEStopEx returns FALSE again.

ItpIsEStopEx evaluates the cyclic interface.

see also:

ItpEStopEx [} 209]

ItpStepOnAfterEStopEx [} 245]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.28 ItpIsHskMFunc

ItpIsHskMFunc determines whether an M-function of type handshake is present.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

The function returns TRUE if an M-function of type handshake is present.

ItpIsHskFunc evaluates the variable 'nHskMFuncReq' from the cyclic interface.

Sample
VAR
 bMFuncRequest : BOOL;
 sNciToPlc AT%I* : NCTOPLC_NCICHANNEL_REF;
END_VAR

bMFuncRequest := ItpIsHskMFunc(sNciToPlc);

PLC NCI Libraries

TF5100 227Version: 2.11.0

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.29 ItpLoadProgEx
ItpLoadProgEx

bExecute BOOL
sPrg STRING(255)
nLength UDINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 sPrg : STRING(255);
 nLength : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The function block reads the NC program when a rising edge is encountered

sPrg: Name of the NC program that is loaded

nLength: String length of the program name

tTimeOut: ADS Timeout-Delay

The NC program is looked up in directory "TwinCAT\Mc\Nci", if no further information is available. It is
however also possible to give an absolute path.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

PLC NCI Libraries

TF5100228 Version: 2.11.0

Sample
VAR
 in_stItpToPlc AT %I* : NCTOPLC_NCICHANNEL_REF;
 fbLoadProg : ItpLoadProgEx;
 sProgramPath : STRING (255):= 'TestIt.nc';
END_VAR

fbLoadProg(
 bExecute := TRUE,
 sPrg := sProgramPath,
 nLength := LEN(sProgramPath),
 tTimeOut := t#200ms,
 sNciToPlc := in_stItpToPlc
);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.30 ItpReadCyclicLRealParam1

This function reads the first LREAL parameter from the cyclic channel interface. This parameter is configured
previously with ItpSetCyclicLRealOffsets [} 237].

Parameter 2 to 4 are read via the same mechanism (e.g. ItpReadCyclicLRealParam2).

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

Parameter 1 of type LREAL.

See also:

• ItpReadCyclicUdintParam1 [} 228]

• ItpSetCyclicLRealOffsets [} 237]

• ItpGetCyclicLRealOffsets [} 214]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.31 ItpReadCyclicUdintParam1

This function reads the first UDINT parameter from the cyclic channel interface. This parameter is configured
previously with ItpSetCyclicUdintOffsets [} 238].

Parameter 2 to 4 are read via the same mechanism (e.g. ItpReadCyclicUdintParam2).

PLC NCI Libraries

TF5100 229Version: 2.11.0

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

Parameter 1 of type UDINT.

See also:

• ItpReadCyclicLRealParam1 [} 228]

• ItpSetCyclicUdintOffsets [} 238]

• ItpGetCyclicUdintOffsets [} 215]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.32 ItpReadRParamsEx
ItpReadRParamsEx

bExecute BOOL
pAddr PVOID
nIndex DINT
nCount DINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpReadRParamsEx function block reads the NC’s calculation parameters, also known as R-parameters.
A more detailed description of the calculation parameters can be found here [} 133]. A total of 1000 R-
parameters are available, of which the first 900 (0..899) are local, so that they are only visible in the current
NC channel. The other 100 (900..999) R-parameters are global, and are thus visible from anywhere in the
NC.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 pAddr : PVOID;
 nIndex : DINT;
 nCount : DINT;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge starts the read operation.

pAddr: Address of the target variables of the data to be read. Data are written directly from the specified
address, i.e. nIndex is not to be interpreted as offset from pAddr. The data are usually stored in an array of
type LREAL, which has to be defined by the user.

nIndex: Describes the index of the R-parameter to be read from an NC perspective.

nCount: Number of R-parameters to be read

tTimeOut: ADS Timeout-Delay

PLC NCI Libraries

TF5100230 Version: 2.11.0

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.33 ItpReadToolDescEx
ItpReadToolDescEx

bExecute BOOL
nDNo UDINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF
↔ sToolDesc Reference To ToolDesc

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpReadToolDescEx function block reads the tool parameters for the supplied D-word.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nDNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nDNo: D-word for which the tool parameters are to be read. nDNo can have values between 1 and 255.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
 sToolDesc : ToolDesc;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading.

PLC NCI Libraries

TF5100 231Version: 2.11.0

sToolDesc: A structure into which the tool parameters of nDNo are written. The meaning of the parameters
depends on the tool type, and can be found in the tool data [} 179]. (type: NCTOPLC_NCICHANNEL_REF
[} 324])
TYPE ToolDesc:
STRUCT
 nToolNumber : UDINT; (*valid range from 0 .. 65535*)
 nToolType : UDINT;
 fParam : ARRAY [2..15] OF LREAL;
END_STRUCT
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

ItpWriteToolDescEx [} 247]

ItpSetToolDescNullEx [} 241]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.34 ItpReadZeroShiftEx
ItpReadZeroShiftEx

bExecute BOOL
nZsNo UDINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF
↔ sZeroShiftDesc Reference To ZeroShiftDesc

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpReadZeroShiftEx function block reads the zero shift components X, Y and Z for the given zero shift.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nZsNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nZsNo: Number of the zero shift. G54 to G59 are zero shifts at the NC. The valid range of values for 'nZsNo'
is therefore from 54 to 59.

PLC NCI Libraries

TF5100232 Version: 2.11.0

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCITOPLC_NCICHANNEL_REF;
 sZeroShiftDesc : ZeroShiftDesc;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

sZeroShiftDesc: The structure containing the components of the zero shift.
TYPE ZeroShiftDesc:
STRUCT
 fShiftX : LREAL;
 fShiftY : LREAL;
 fShiftZ : LREAL;
END_STRUCT
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

For reasons of compatibility, there are two entries (coarse and fine) for each axis in each zero shift
(e.g. G54). These two entries must be added together. This function block evaluates both the
entries and adds them together automatically.

See also:

ItpWriteZeroShiftEx [} 248]

ItpSetZeroShiftNullEx [} 242]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.35 ItpResetEx2
ItpResetEx2

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

PLC NCI Libraries

TF5100 233Version: 2.11.0

The function block 'ItpResetEx2' executes a channel reset, which deletes all existing tables of the NC
channel. In contrast to the outdated function block ItpReset, an active channel is stopped first, before the
reset is executed. This simplifies programming in the PLC, since no explicit check is necessary to ascertain
whether the axes are still in motion.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

tTimeOut: ADS timeout delay (the bBusy signal can be active for longer than tTimeOut)

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.36 ItpResetFastMFuncEx
ItpResetFastMFuncEx

bExecute BOOL
nMFuncNo UINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The fast M-function nMFuncNo [} 163] is reset with a rising edge at input bExecute. In the event of the M-
function not being available, no error is returned.

This function block represents an alternative to Auto-reset or reset with another M-function (reset list during
parameterization of the M-function). For reasons of transparency, mixed resets using an M-function and this
function block should be avoided.

PLC NCI Libraries

TF5100234 Version: 2.11.0

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nMFuncNo : UINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nMFuncNo: Flying M-function that is to be reset

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.37 ItpSetBottleNeckLookAheadEx
ItpSetBottleNeckLookAheadEx

bExecute BOOL
nLookAhead UDINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpSetBottleNeckLookAheadEx determines the maximum number of segments the system
may look ahead for bottleneck detection (contour collision monitoring). Note that segments, which were
added as a result of radius compensation (e.g. additional segments at acute angles) are taken into account.

There is a more detailed description in the Interpreter [} 191] documentation.

PLC NCI Libraries

TF5100 235Version: 2.11.0

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nLookAhead : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nLookAhead: Specifies the look-ahead value

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Not Available for GST
This function block is not available if the GST interpreter is employed.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.38 ItpSetBottleNeckModeEx
ItpSetBottleNeckModeEx

bExecute BOOL
eBottleNeckMode E_ItpBnMode
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpSetBottleNeckModeEx specifies the behavior in the event of a contour collision
(bottleneck).

There is a more detailed description in the Interpreter [} 191] documentation.

PLC NCI Libraries

TF5100236 Version: 2.11.0

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 eBottleNeckMode: E_ItpBnMode
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

eBottleNeckMode: Enum for the behavior in the event of a contour collision

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])
TYPE E_ItpBnMode:
(
 ItpBnm_Abort := 0,
 ItpBnm_Adjust := 1,
 ItpBnm_Leave := 2
);
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Not Available for GST
This function block is not available if the GST interpreter is employed.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100 237Version: 2.11.0

6.1.2.39 ItpSetCyclicLrealOffsets
ItpSetCyclicLRealOffsets

bExecute BOOL
tTimeOut TIME
nIndexOffsetParam1 UDINT
nIndexOffsetParam2 UDINT
nIndexOffsetParam3 UDINT
nIndexOffsetParam4 UDINT

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpSetCyclicLrealOffsets is used to describe the cyclic channel interface for the 4 freely
configurable LREAL variables. Variables (index offsets) can be selected from the group state.

The functionality is only active if nIndexOffsetParam1 is not equal 0.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
 nIndexOffsetParam1 : UDINT;
 nIndexOffsetParam2 : UDINT;
 nIndexOffsetParam3 : UDINT;
 nIndexOffsetParam4 : UDINT;
END_VAR

bExecute: the command is executed by a rising edge at this input.

tTimeOut: ADS timeout delay

nIndexOffsetParam1: group state (index offset) for parameter 1

nIndexOffsetParam2: group state (index offset) for parameter 2

nIndexOffsetParam3: group state (index offset) for parameter 3

nIndexOffsetParam4: group state (index offset) for parameter 4

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865

PLC NCI Libraries

TF5100238 Version: 2.11.0

• ItpReadCyclicLRealParam1 [} 228]

• ItpGetCyclicLRealOffsets [} 214]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.40 ItpSetCyclicUDintOffsets
ItpSetCyclicUdintOffsets

bExecute BOOL
tTimeOut TIME
nIndexOffsetParam1 UDINT
nIndexOffsetParam2 UDINT
nIndexOffsetParam3 UDINT
nIndexOffsetParam4 UDINT

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpSetCyclicUDintOffsets is used to describe the cyclic channel interface for the 4 freely
configurable UDINT variables. Variables (index offsets) can be selected from the group state.

The functionality is only active if nIndexOffsetParam1 is not equal 0.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
 nIndexOffsetParam1 : UDINT;
 nIndexOffsetParam2 : UDINT;
 nIndexOffsetParam3 : UDINT;
 nIndexOffsetParam4 : UDINT;
END_VAR

bExecute: the command is executed by a rising edge at this input.

tTimeOut: ADS timeout delay

nIndexOffsetParam1: group state (index offset) for parameter 1

nIndexOffsetParam2: group state (index offset) for parameter 2

nIndexOffsetParam3: group state (index offset) for parameter 3

nIndexOffsetParam4: group state (index offset) for parameter 4

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/713086091.html?id=8719040551083133865

PLC NCI Libraries

TF5100 239Version: 2.11.0

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

• ItpReadCyclicUDintParam1 [} 228]

• ItpGetCyclicUdintOffsets [} 215]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.41 ItpSetOverridePercent

The function ItpSetOverridePercent writes the axes channel override into the cyclic interface of the NCI. The
override is passed as a percentage.

VAR_INPUT
FUNCTION ItpSetOverridePercent

VAR_INPUT
 fOverridePercent : LREAL;
END_VAR

fOverridePercent: Axis channel override as a percentage

VAR_IN_OUT
VAR_IN_OUT
 sPlcToNci : PLCTONC_NCICHANNEL_REF;
END_VAR

sPlcToNci: Structure of cyclic channel interface between PLC and NCI (type: PLCTONC_NCICHANNEL_REF
[} 326])

Return value

ItpSetOverridePercent: always TRUE

Sample
VAR
 sPlcToNci AT%Q*: PLCTONC_NCICHANNEL_REF;
 fOverride : LREAL;
END_VAR

fOverride := 47.11;
ItpSetOverridePercent(fOverride, sPlcToNci);

PLC NCI Libraries

TF5100240 Version: 2.11.0

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.42 ItpSetSubroutinePathEx
ItpSetSubroutinePathEx

bExecute BOOL
sPath STRING(80)
nLength UDINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

With ItpSetSubroutinePathEx function block, the search path for subroutines can optionally be set.

If a subroutine still has to be integrated, the file is searched in the following order:

1. optional search path (ItpSetSubroutinePath)
2. path from which the main program was loaded
3. TwinCAT\Mc\Nci directory

Only one optional path can take effect, which remains active until it is overwritten with another path or an
empty string.

After a TwinCAT restart, the path has to be re-assigned.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 sPath : STRING;
 nLength : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

sPath: Optional path for subroutines. Is deactivated with an empty string

nLength: String length

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

PLC NCI Libraries

TF5100 241Version: 2.11.0

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Not Available for GST
This function block is not available if the GST interpreter is employed.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.43 ItpSetToolDescNullEx

FB ItpSetToolDescNullEx overwrites all tool parameters (incl. number & type) of the channel with zero.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge results in overwriting of all tool parameters of the NC channel with zero.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

ItpWriteToolDescEx [} 247]

PLC NCI Libraries

TF5100242 Version: 2.11.0

ItpReadToolDescEx [} 230]

Not Available for GST
This function block is not available if the GST interpreter is employed.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.44 ItpSetZeroShiftNullEx
ItpSetZeroShiftNullEx

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpSetZeroShiftNullEx overwrites all zero shifts of the channel with zero.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge results in overwriting of all zero shifts of the NC channel with zero.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Also refer to:

• ItpWriteZeroShiftEx [} 248],

• ItpReadZeroShiftEx [} 231].

PLC NCI Libraries

TF5100 243Version: 2.11.0

Not Available for GST
This function block is not available if the GST interpreter is employed.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.45 ItpSingleBlock
ItpSingleBlock

bExecuteModeChange BOOL
nMode E_ItpSingleBlockMode
bTriggerNext BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpSingleBlock function block activates or deactivates single block mode in the NCI. Block relaying can
be triggered directly from the PLC with the input 'bTriggerNext'. Alternatively the Start button of the
interpreter (F5) can be used in the XAE.

A more detailed description can be found in the interpreter documentation [} 132].

VAR_INPUT
VAR_INPUT
 bExecuteModeChange : BOOL;
 nMode : E_ItpSingleBlockMode;
 bTriggerNext : BOOL
 tTimeOut : TIME;
END_VAR

bExecuteModeChange: Single block mode (nMode) is activated through a rising edge at this input.

nMode: Operation mode for single block (cf. single block mode):

• ItpSingleBlockOff: single block off
• ItpSingleBlockNck: single block in NC kernel
• ItpSingleBlockIntp: single block in interpreter

ItpSingleBlockIntp is not available if the GST interpreter is used.

bTriggerNext: Block relaying is triggered by a rising edge at this input.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])
TYPE E_ItpSingleBlockMode:
(
 ItpSingleBlockOff := 0,
 ItpSingleBlockNck := 1,
 ItpSingleBlockIntp := 16#4000
);
END_TYPE

PLC NCI Libraries

TF5100244 Version: 2.11.0

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.46 ItpStartStopEx
ItpStartStopEx

bStart BOOL
bStop BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpStartStopEx starts or stops the NC channel.

VAR_INPUT
VAR_INPUT
 bStart : BOOL;
 bStop : BOOL;
 tTimeOut : TIME;
END_VAR

bStart: A positive edge starts the NC channel

bStop: A positive edge stops the NC channel. A stop command deletes all the tables in the NC and brings
the axes to a controlled halt.

The bStop input has a higher priority than the bStart input, so that if both inputs receive a positive
edge, a channel stop will be executed.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

PLC NCI Libraries

TF5100 245Version: 2.11.0

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.47 ItpStepOnAfterEStopEx
ItpStepOnAfterEStopEx

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpStepOnAfterEStopEx enables further processing of the parts program after a
programmed EStopEx.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

PLC NCI Libraries

TF5100246 Version: 2.11.0

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

ItpEStopEx [} 209]

ItpIsEStopEx [} 225]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.48 ItpWriteRParamsEx
ItpWriteRParamsEx

bExecute BOOL
pAddr PVOID
nIndex DINT
nCount DINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpWriteRParamsEx writes R-parameters into the NC.

VAR_INPUT

VAR_INPUT
 bExecute : BOOL;
 pAddr : DWORD;
 nIndex : DINT;
 nCount : DINT;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge starts the write operation.

pAddr: Address of the variables containing the data to be written. Data are used directly from the specified
address, i.e. nIndex is not to be interpreted as offset from pAddr. The data are usually read from an array of
type LREAL, which has to be defined by the user.

nIndex: Describes the index of the R-parameter to be written from an NC perspective.

nCount: Number of R-parameters to be written

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

PLC NCI Libraries

TF5100 247Version: 2.11.0

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Sample
VAR
 arrfRParam90to99 : ARRAY[0..9] OF LREAL;
 fbWriteRParam : ItpWriteRParamsEx;
 n : INT := 0;
 bWriteParam : BOOL := FALSE;
 sNciToPlc AT%I* : NCTOPLC_NCICHANNEL_REF;
END_VAR

FOR n:=0 TO 9 DO
 arrfRParam90to99[n] := 90 + n;
END_FOR

fbWriteRParam(
 bExecute := bWriteParam,
 pAddr := ADR(arrfRParam90to99[0]),
 nIndex := 90,
 nCount := 10,
 tTimeOut := T#200ms,
 sNciToPlc := sNciToPlc);

In this example the parameters R90 to R99 are written from an NC perspective.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.49 ItpWriteToolDescEx
ItpWriteToolDescEx

bExecute BOOL
nDNo UDINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF
↔ sToolDesc Reference To ToolDesc

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpWriteToolDescEx writes a block of tool parameters.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nDNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

PLC NCI Libraries

TF5100248 Version: 2.11.0

nDNo: D-word for which the tool parameters are to be read. nDNo can have values between 1 and 255.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
 sToolDesc : ToolDesc;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

sToolDesc: The structure that contains the new tool parameters. This structure is only accessed for reading.
The meaning of the parameters depends on the tool type, and can be found in the tool data [} 179].
TYPE ToolDesc:
STRUCT
 nToolNumber : UDINT; (*valid range from 0 .. 65535*)
 nToolType : UDINT;
 fParam : ARRAY [2..15] OF LREAL;
END_STRUCT
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

ItpReadToolDescEx [} 230]

ItpSetToolDescNullEx [} 241]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.50 ItpWriteZeroShiftEx
ItpWriteZeroShiftEx

bExecute BOOL
nZsNo UDINT
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF
↔ sZeroShiftDesc Reference To ZeroShiftDesc

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpWriteZeroShiftEx writes the shift components X, Y and Z for the specified zero shift.

PLC NCI Libraries

TF5100 249Version: 2.11.0

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nZsNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nZsNo: Number of the zero shift.

G54 to G59 are zero shifts at the NC. G58 and G59 can only be edited from the NC program. The valid
range of values for 'nZsNo' is therefore from 54 to 57.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc AT%I*: NCTOPLC_NCICHANNEL_REF;
 sZeroShiftDesc : ZeroShiftDesc;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

sZeroShiftDesc: The structure containing the components of the zero shift. This structure is only accessed
for reading.
TYPE ZeroShiftDesc:
STRUCT
 fShiftX : LREAL;
 fShiftY : LREAL;
 fShiftZ : LREAL;
END_STRUCT
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

For reasons of compatibility every zero shift that can be set has two parameters (coarse and fine)
for each axis. When using this function block to write a new zero shift, the new value is written into
the 'fine parameter'. A value of 0.0 is entered into the 'coarse parameter'.

This makes it possible to use a function block such as ItpReadZeroShiftEx [} 231] to read and modify a zero
shift and to send it back to the NC.

See also:

• ItpReadZeroShiftEx [} 231]

• ItpSetZeroShiftNullEx [} 242]

PLC NCI Libraries

TF5100250 Version: 2.11.0

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.2.51 Blocksearch
Blocksearch can be used to interrupt a program for a tool change or at the end of a shift. After the
interruption the program can continue at the previous position.
The diagram illustrates how the block search is used.

6.1.2.51.1 ItpBlocksearch
ItpBlockSearch

bExecute BOOL
nBlockId UDINT
eBlockSearchMode E_ItpBlockSearchMode
eDryRunMode E_ItpDryRunMode
fLength LREAL
sPrgName STRING(255)
nPrgLength UDINT
tTimeOut TIME
sAxesList ST_ItpAxes
sOptions ST_ItpBlockSearchOptions

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId
BOOL bDone

ST_ItpBlockSearchStartPosition sStartPosition

The function block ItpBlocksearch sets the interpreter to the point defined at the inputs.
If Blocksearch is executed during the first segment that contains a movement, the output sStartPosition of
the function block ItpBlocksearch may return wrong values. For this reason, Blocksearch should only be
used from the second segment.

The input values can be taken from function block ItpGetBlocksearchData [} 253] or set manually. Once the
interpreter has been set to the defined location with ItpBlocksearch, the motion can continue with
ItpStepOnAfterBlocksearch [} 254] at the position indicated at output sStartPosition.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nBlockId : UDINT;
 eBlockSearchMode : E_ItpBlockSearchMode;
 eDryRunMode : E_ItpDryRunMode;
 fLength : LREAL;
 sPrgName : STRING(255);
 nPrgLength : UDINT;
 tTimeOut : TIME;

PLC NCI Libraries

TF5100 251Version: 2.11.0

 sAxesList : ST_ItpAxes;
 sOptions : ST_ItpBlockSearchOptions;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nBlockId: Block number or EntryCounter of the segment in the NC program used as starting point.

eBlockSearchMode: Defines whether the specified nBlockId is a block number (e.g. N4711) or continuous
EntryCounter. A prerequisite for using the block number is that it is unique. See ItpBlocksearch [} 251].

eDryRunMode: Defines which program lines are executed and which are skipped. See ItpBlocksearch
[} 252].

fLength: Entry point within the segment selected with nBlockId in percent.

sPrgName: Name or path of the program to be executed.

nPrgLength: Indicates the length of string sPrgName.

tTimeOut: ADS timeout delay

sAxesList: Definition of the axes in the NCI group. See ItpBlocksearch [} 252].

sOptions: Provides information on retrace.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
 bDone : BOOL;
 sStartPosition : ST_ItpBlockSearchStartPosition;
END_VAR

bBusy: Remains TRUE until the function block has executed a command request, but no longer than the
time specified at the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the inputs.

bErr: Becomes TRUE if an error occurs during command execution. The command-specific error code is
contained in ‘nErrId’. Is reset to FALSE by the execution of a command at the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS Return
Codes or in the Overview of NC errors (error codes above 0x4000).

bDone: The output becomes TRUE when the command was executed successfully.

sStartPosition: Indicates the start position from which the NC program continues. The individual axes
should be moved to this position before ItpStepOnAfterBlocksearch [} 254] is executed. See ItpBlocksearch
[} 253]

E_ItpBlockSearchMode

E_ItpBlockSearchMode is used to define in which way the block search is executed.
TYPE E_ItpBlockSearchMode :
(
 ItpBlockSearchMode_Disable := 0,
 ItpBlockSearchMode_BlockNo := 1,

PLC NCI Libraries

TF5100252 Version: 2.11.0

 ItpBlockSearchMode_EntryCounter := 2
);
END_TYPE

ItpBlockSearchMode_Disable: Block search disabled (initial value).

ItpBlockSearchMode_BlockNo: The block search is executed via the block number (e.g. N4711)
programmed by the user in the NC program. A prerequisite is that the user-defined block number is unique.

ItpBlockSearchMode_EntryCounter: The block search is executed via a unique EntryCounter. This
EntryCounter is implicitly unique, but it is not visible to the user in the NC program.

E_ItpDryRunMode

The enumeration E_ItpDryRunMode enumerates those ways how the programmed blocks from the
beginning of the program up to the place searched for shall be handled.
TYPE E_ItpDryRunMode :
(
 ItpDryRunMode_Disable := 0,
 ItpDryRunMode_SkipAll := 1,
 ItpDryRunMode_SkipMotionOnly := 2,
 ItpDryRunMode_SkipDwellAndMotion := 3
);
END_TYPE

ItpDryRunMode_Disable: DryRun disabled (initial value).

ItpDryRunMode_SkipAll: All previous blocks are skipped. R-parameters are written.

ItpDryRunMode_SkipMotionOnly: Only movement blocks are skipped. R-parameters are written, and dwell
times and M-functions are executed.

ItpDryRunMode_SkipDwellAndMotion: Movement blocks and dwell times are skipped. R-parameters are
written and M-functions are executed.

ST_ItpAxes

The structure ST_ItpAxes contains the axes that were in the NCI group during program execution. The
interpolation group should not be built when blocksearch is executed. In order to still have a reference to the
group axes, the structure ST_ItpAxes must be filled with the group axes.
TYPE ST_ItpAxes :
STRUCT
 nAxisIds : ARRAY[1..8] OF UDINT;
END_STRUCT
END_TYPE

nAxisIds: Array of axes that were in the NCI group. The order is nAxisIds[1]=X, nAxisIds[2]=Y,
nAxisIds[3]=Z, nAxisIds[4]=Q1, nAxisIds[5]=Q2… The axis ID can be read from the cyclic axis interface.

St_ItpBlockSearchOptions

The structure contains additional Blocksearch options.
TYPE ST_ItpBlockSearchOptions :
STRUCT
 bIsRetrace : BOOL:= FALSE;
 bRetraceBackward : BOOL:= FALSE;
 bScanStartPos : BOOL:= FALSE;
END_STRUCT
END_TYPE

bIsRetrace: Indicates whether the retrace functionality is active.

bRetraceBackward: Indicates whether backward movement took place on the path.

bScanStartPos: bScanStartPos: Specifies whether or not the current axis positions should be read at the
start of the program. In combination with ST_ItpAxesList, please set this input to TRUE. Setting this input to
FALSE only makes sense for old projects (compatibility reasons).

PLC NCI Libraries

TF5100 253Version: 2.11.0

ST_ItpBlockSearchStartPosition

The structure indicates the position at which the NC program continues after a block search. The user is
responsible for moving the axes to the corresponding positions.
TYPE ST_ItpBlockSearchStartPosition :
STRUCT
 sStartPosition : ARRAY[1..8] OF LREAL;
END_STRUCT
END_TYPE

sStartPosition: Array of axis positions at which the NC program continues.

The order is sStartPosition[1]=X, sStartPosition [2]=Y, sStartPosition [3]=Z, sStartPosition [4]=Q1,
sStartPosition [5]=Q2…

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS Biblio-
theken

Classic Dialect Interpreter: TwinCAT V3.1.0
GST Interpreter: TwinCAT V3.1.4024.20

PC oder CX (x86 oder x64) Tc2_NCI

6.1.2.51.2 ItpGetBlocksearchData
ItpGetBlockSearchData

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId
ST_ItpBlockSearchData sBlockSearchData

The function block ItpGetBlocksearchData reads the current position on the path. Usually this command is
called at standstill. Subsequently ItpBlockSearch [} 250] can be used to set the interpreter to the position
stored in sBlockSearchData.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a positive edge at this input.

bTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
 sBlockSearchData : ST_ItpBlockSearchData;
END_VAR

bBusy: Remains TRUE until the function block has executed a command request, but no longer than the
time specified at the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the inputs.

bErr: Becomes TRUE if an error occurs during command execution. The command-specific error code is
contained in ‘nErrId’. Is reset to FALSE by the execution of a command at the inputs.

PLC NCI Libraries

TF5100254 Version: 2.11.0

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

sBlockSearchData: Contains information on the current position on the path.
TYPE ST_ItpBlockSearchData :
STRUCT
 fLength : LREAL;(* remaining distance of actual movement block in percent*)
 nBlockNo : UDINT;(* number of the actual block *)
 nBlockCounter : UDINT;(* counter value of the actual block *)
 bIsRetrace : BOOL;(* indicates whether Retrace is active*)
 bRetraceBackward : BOOL;(* indicates whether backward movement took place on the path*)
END_STRUCT
END_TYPE

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS Biblio-
theken

Classic Dialect Interpreter: TwinCAT V3.1.0
GST Interpreter: TwinCAT V3.1.4024.20

PC oder CX (x86 oder x64) Tc2_NCI

6.1.2.51.3 ItpStepOnAfterBlocksearch
ItpStepOnAfterBlockSearch

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

Starts the motion after a block search.

The axes first have to be moved to the positions output by ItpBlocksearch [} 250].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a positive edge at this input.

bTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

PLC NCI Libraries

TF5100 255Version: 2.11.0

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS Biblio-
theken

Classic Dialect Interpreter: TwinCAT V3.1.0
GST Interpreter: TwinCAT V3.1.4024.20

PC oder CX (x86 oder x64) Tc2_NCI

6.1.2.52 Retrace

6.1.2.52.1 ItpEnableFeederBackup
ItpEnableFeederBackup

bEnable BOOL
bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpEnableFeederBackup enables storing of the path for retracing. It has to be activated
once before the NC program (G-Code) is started. If the Blocksearch [} 250] functionality is used,
ItpEnableFeederBackup has to be activated before ItpBlocksearch [} 250] is called. Feeder backup is
executed as long as a TwinCAT restart or bEnable = FALSE is triggered with a rising edge at bExecute.

If feeder backup is not enabled, retracing does not work. This can be verified via ItpIsFeederBackupEnabled
[} 256].

VAR_INPUT
VAR_INPUT
 bEnable : BOOL;
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bEnable: TRUE: enables feeder backup, FALSE: disables feeder backup

bExecute: The command is triggered by a positive edge at this input.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

PLC NCI Libraries

TF5100256 Version: 2.11.0

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS-Biblio-
theken

TwinCAT V3.1.0 Classic Interpreter
TwinCAT V3.1.4024.40 GST Interpreter

PC oder CX (x86 oder x64) Tc2_NCI

6.1.2.52.2 ItpIsFeederBackupEnabled
ItpIsFeederBackupEnabled

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bEnabled

BOOL bErr
UDINT nErrId

The function block ItpIsFeederBackupEnabled indicates whether feeder backup is enabled. Feeder backup
must be enabled before reversing can take place. This activates storing of the path.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a positive edge at this input.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bEnabled : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: The bBusy output remains TRUE until the function block has executed a command, with the
maximum duration specified by the time associated with the ‘Timeout’ input. While bBusy = TRUE, no new
instruction will be accepted at the inputs. Please note that it is not the execution of the service but its
acceptance whose time is monitored.

bEnabled: TRUE: Backup list for tracing is enabled, FALSE: Backup list for tracing is disabled

PLC NCI Libraries

TF5100 257Version: 2.11.0

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. If the function block has a timeout error, ‘Error’ is TRUE
and ‘nErrId’ is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS-Biblio-
theken

TwinCAT V3.1.0 Classic Interpreter
TwinCAT V3.1.4024.40 GST Interpreter

PC oder CX (x86 oder x64) Tc2_NCI

6.1.2.52.3 ItpIsFeedFromBackupList

The function ItpIsFeedFromBackupList becomes TRUE when the feed entries (SAF & SVB) were sent from
the backup list. During backward movement all entries are sent from the backup list. If the program is
executed in forward mode, the first entries usually also originate from the backup list. This is dependent of
the number of retraced entries and the number of entries in the SVB and SAF tables at the time at which
tracing was called. All further commands originate from the ‚original’ code.

While the NCI is processing the backup list, not all functions are available or meaningful. Here are a few
examples:

• Decoder stops such as @714 are not evaluated
• Modifications of R-parameters do not take effect as long as the motion takes place on the backup path

(forward or backward). R-parameters modifications take effect again as soon as the path data no
longer come from the backup list.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS-Biblio-
theken

TwinCAT V3.1.0 Classic Interpreter
TwinCAT V3.1.4024.40 GST Interpreter

PC oder CX (x86 oder x64) Tc2_NCI

6.1.2.52.4 ItpIsFirstSegmentReached

ItpIsFirstSegmentReached is a function that determines whether the program start position is reached
during retracing, based on the cyclic channel interface.

PLC NCI Libraries

TF5100258 Version: 2.11.0

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

The function returns TRUE when the start position of the G-Code program is reached. If the version number
of the cyclic channel interface is less than 6, the return value is always FALSE.

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS-Biblio-
theken

TwinCAT V3.1.0 Classic Interpreter
TwinCAT V3.1.4024.40 GST Interpreter

PC oder CX (x86 oder x64) Tc2_NCI

6.1.2.52.5 ItpIsMovingBackwards

ItpIsMovingBackwards is a function that determines whether backward movement takes place on the path
of the current G-Code program, based on the cyclic channel interface.

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

Return value

The function returns TRUE when backward movement takes place on the path. If the version number of the
cyclic channel interface is less than 6, the return value is always FALSE.

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS-Biblio-
theken

TwinCAT V3.1.0 Classic Interpreter
TwinCAT V3.1.4024.40 GST Interpreter

PC oder CX (x86 oder x64) Tc2_NCI

6.1.2.52.6 ItpRetraceMoveBackward
ItpRetraceMoveBackward

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpRetraceMoveBackward deals with the geometric entries at the actual position at the
start of the part program (G-Code).

PLC NCI Libraries

TF5100 259Version: 2.11.0

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a positive edge at this input.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Procedure
1. Activate feeder backup list (see ItpEnableFeederBackup [} 255])

ð The NC program is stopped with ItpEStopEx [} 209]
2. Wait and ensure that all axes in the group are at standstill
3. Call ItpRetraceMoveBackward
4. Stop backward movement with ItpEStop, otherwise the program returns to the start

5. Call ItpRetraceMoveForward [} 260] to move forward again
6. Call ItpEStopEx and ItpRetraceMoveBackward etc., if required.

Notice Do not use in conjunction with vertex blending. M-functions are suppressed during backward
movement.

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS-Biblio-
theken

TwinCAT V3.1.0 Classic Interpreter
TwinCAT V3.1.4024.40 GST Interpreter

PC oder CX (x86 oder x64) Tc2_NCI

PLC NCI Libraries

TF5100260 Version: 2.11.0

6.1.2.52.7 ItpRetraceMoveForward
ItpRetraceMoveForward

bExecute BOOL
tTimeOut TIME

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpRetraceMoveForward transfers all entries from the current block (e.g. position) in
forward travel direction to the NC kernel. It is called to reverse the direction after ItpRetraceMoveBackward
[} 258] was called.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a positive edge at this input.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also: ItpRetraceMoveBackward [} 258]

Voraussetzungen

Entwicklungsumgebung Zielplattform Einzubindende SPS-Biblio-
theken

TwinCAT V3.1.0 Classic Interpreter
TwinCAT V3.1.4024.40 GST Interpreter

PC oder CX (x86 oder x64) Tc2_NCI

6.1.3 Parts program generator
The function blocks ItpPpg* provide an option for creating a parts program (G-Code file) from the PLC.
During program generation a distinction is made between a main program (ItpPpgCreateMain [} 266]) and a
subroutine (ItpPpgCreateSubroutine [} 267]).

PLC NCI Libraries

TF5100 261Version: 2.11.0

Subsequently ItpPpgAppend* can be used to add various NC lines. The following function blocks are
available:

• ItpPpgAppendGeoLine [} 264] adds a linear motion.

• ItpPpgAppendGeoCircleByRadius [} 263] adds a circle with radius specification.

• ItpPpgAppendGenericBlock [} 262] inserts a self-defined line, such as activation of rounding or M-
functions.

Once the parts program is complete, it is closed with the routines ItpPpgCloseMain [} 265] or
ItpPpgCloseSubroutine [} 266].

The following function blocks can be used:

Function Block Description
ItpPpgAppendGenericBlock [} 262] Appends a generic NC line to a specified parts

program
ItpPpgAppendGeoCircleByRadius [} 263] Adds a circle to a specified parts program

ItpPpgAppendGeoLine [} 264] Adds a linear motion to a specified parts program

ItpPpgCloseMain [} 265] Closes a previously opened parts program

ItpPpgCloseSubroutine [} 266] Closes a previously opened subroutine

ItpPpgCreateMain [} 266] Opens or generates a parts program

ItpPpgCreateSubroutine [} 267] Opens or generates a subroutine

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100262 Version: 2.11.0

6.1.3.1 ItpPpgAppendGenericBlock
ItpPpgAppendGenericBlock

bExecute BOOL
sPathName STRING(80)
sBlock STRING(80)
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpPpgAppendGenericBlock adds a generic line to the parts program. It can be used to
activate an M-function or rounding, for example.

Before the actual call, call ItpPpgCreateMain [} 266] or ItpPpgCreateSubroutine [} 267].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 sPathName : STRING;
 sBlock : STRING;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

sPathName: Name of the parts program including path name

sBlock: Generic line to be added to the parts program

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100 263Version: 2.11.0

6.1.3.2 ItpPpgAppendGeoCircleByRadius
ItpPpgAppendGeoCircleByRadius

bExecute BOOL
sPathName STRING(80)
bClockWise BOOL
fTargetXPos LREAL
fTargetYPos LREAL
fTargetZPos LREAL
fRadius LREAL
fPathVelo LREAL
nBlockNo UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpPpgAppendGeoCircleByRadius adds a circular motion to the parts program. The circle
is parameterized by the radius.

Before the actual call, call ItpPpgCreateMain [} 266] or ItpPpgCreateSubroutine [} 267].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 sPathName : STRING;
 bClockWise : BOOL;
 fTargetXPos : LREAL;
 fTargetYPos : LREAL;
 fTargetZPos : LREAL;
 fRadius : LREAL;
 fPathVelo : LREAL;
 nBlockNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

sPathName: Name of the parts program including path name

bClockwise: If TRUE, the movement along the circle is clockwise, otherwise counter-clockwise

fTargetXPos: Target position of the X axis

fTargetYPos: Target position of the Y axis

fTargetZPos: Target position of the Z axis

fRadius: Circle radius

fPathVelo: Path velocity

nBlockNo: Line number in the parts program

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

PLC NCI Libraries

TF5100264 Version: 2.11.0

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.3.3 ItpPpgAppendGeoLine
ItpPpgAppendGeoLine

bExecute BOOL
sPathName STRING(80)
fTargetXPos LREAL
fTargetYPos LREAL
fTargetZPos LREAL
fPathVelo LREAL
nBlockNo UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpPpgAppendGeoLine adds a linear motion to the parts program. In addition to the actual
target position, the path velocity and the line number are transferred.

Before the actual call, call ItpPpgCreateMain [} 266] or ItpPpgCreateSubroutine [} 267].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 sPathName : STRING;
 fTargetXPos : LREAL;
 fTargetYPos : LREAL;
 fTargetZPos : LREAL;
 fPathVelo : LREAL;
 nBlockNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

sPathName: Name of the parts program including path name

fTargetXPos: Target position of the X axis

fTargetYPos: Target position of the Y axis

fTargetZPos: Target position of the Z axis

fPathVelo: Path velocity

nBlockNo: Line number in the parts program

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

PLC NCI Libraries

TF5100 265Version: 2.11.0

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.3.4 ItpPpgCloseMain
ItpPpgCloseMain

bExecute BOOL
sPathName STRING(80)
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpPpgCloseMain completes the main program with the corresponding code for the
interpreter (M02).

Before the actual call, call ItpPpgCreateMain [} 266].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 sPathName : STRING;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

sPathName: Name of the parts program including path name

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100266 Version: 2.11.0

6.1.3.5 ItpPpgCloseSubroutine
ItpPpgCloseSubroutine

bExecute BOOL
sPathName STRING(80)
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpPpgCloseSubroutine completes the subroutine with the corresponding code for the
interpreter (M17).

Before the actual call, call ItpPpgCreateSubroutine [} 267].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 sPathName : STRING;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

sPathName: Name of the parts program including path name

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.3.6 ItpPpgCreateMain
ItpPpgCreateMain

bExecute BOOL
sPathName STRING(80)
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpPpgCreateMain generates a new file, which can later be processed as main program. If
the file does not yet exist, it is created, otherwise it is overwritten.

PLC NCI Libraries

TF5100 267Version: 2.11.0

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 sPathName : STRING;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

sPathName: Name of the parts program including path name

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.3.7 ItpPpgCreateSubroutine
ItpPpgCreateSubroutine

bExecute BOOL
sPathName STRING(80)
nSubroutineId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpPpgCreateSubroutine generates a new file, which can later be processed as
subroutine. If the file does not yet exist, it is created, otherwise it is overwritten.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 sPathName : STRING;
 nSubroutineId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

sPathName: Name of the subroutine including path name

nSubroutineId: Number of the subroutine

tTimeOut: ADS Timeout-Delay

PLC NCI Libraries

TF5100268 Version: 2.11.0

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4 Blocks for compatibility with existing programs
Function blocks for compatibility
The purpose of the function blocks listed is to ensure compatibility with existing projects. It is not
advisable to use these function blocks for new projects. Instead, the equivalent function blocks
shown in the table above should be used.

Function Block Description
ItpDelDtg [} 269] Triggers “Delete Distance to go” in the NC

ItpEStop [} 270] Triggers the NCI EStop

ItpGetBottleNeckLookAhead [} 271] Provides the value of the look-ahead for bottleneck
detection

ItpGetBottleNeckMode [} 272] Provides the response mode for bottleneck detection

ItpGetGeoInfoAndHParam [} 273] Reads information of the currently active segment
and past and future segments.

ItpGoAhead [} 273] Triggers the GoAhead function

ItpIsEStop [} 274] Determines whether an EStop is executed or pending

ItpLoadProg [} 275] Loads an NC program using program names

ItpReadRParams [} 276] Reads calculation parameters

ItpReadToolDesc [} 277] Reads the tool description from the NC

ItpReadZeroShift [} 278] Reads the zero shift from the NC

ItpReset [} 279] Carries out a reset of the interpreter or of the NC
channel

ItpResetEx [} 280] Carries out a reset of the interpreter or of the NC
channel.

ItpResetFastMFunc [} 281] Resets a fast signal bit

ItpSetBottleNeckLookAhead [} 282] Sets the value of the look-ahead for bottleneck
detection

ItpSetBottleNeckMode [} 283] Sets the response mode when bottleneck detection is
switched on

ItpSetSubroutinePath [} 284] Optionally sets the search path for subroutines

PLC NCI Libraries

TF5100 269Version: 2.11.0

Function Block Description
ItpSetToolDescNull [} 285] Sets all tool parameters (including number and type)

to zero
ItpSetZeroShiftNull [} 286] Sets all origins to zero

ItpStartStop [} 287] Starts or stops the interpreter (NC channel)

ItpStepOnAfterEStop [} 288] Enables further processing of the parts program after
an NCI EStop

ItpWriteRParams [} 289] Writes calculation parameters

ItpWriteToolDesc [} 290] Writes the tool description into the NC

ItpWriteZeroShift [} 291] Writes the zero shift into the NC

6.1.4.1 ItpDelDtg
ItpDelDtg

bExecute BOOL
nChnId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpDelDtg function block triggers deletion of the remaining travel. There is a more detailed description in
the Interpreter [} 158]documentation.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpDelDtgEx [} 207].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

PLC NCI Libraries

TF5100270 Version: 2.11.0

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.2 ItpEStop
ItpEStop

bExecute BOOL
nGrpId UDINT
fDec LREAL
fJerk LREAL
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpEStop triggers the NCI EStop and enables a controlled stop on the path. The limit
values for the deceleration and the jerk are transferred as parameters. If these are smaller than the currently
active dynamic parameters, the transferred parameters are rejected.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpEStopEx [} 209].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGrpId : UDINT;
 fDec : LREAL;
 fJerk : LREAL;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nGrpId: group ID

fDec: Max. deceleration during stopping. If fDec is smaller than the currently active deceleration, fDec is
rejected. This ensures that the deceleration occurs with the standard ramp as a minimum.

fJerk: Max. jerk during stopping. If fJerk is smaller than the currently active jerk, fJerk is rejected.

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

ItpStepOnAfterEStop [} 288]

PLC NCI Libraries

TF5100 271Version: 2.11.0

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.3 ItpGetBottleNeckLookAhead
ItpGetBottleNeckLookAhead

bExecute BOOL
nChnId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId
UDINT nLookAhead

The function block ItpGetBottleNeckLookAhead determines the maximum size of the look-ahead for the
bottleneck detection (contour collision monitoring).

There is a more detailed description in the Interpreter [} 191] documentation.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpGetBottleNeckLookAheadEx [} 210].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
 nLookAhead : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. If the function block has a timeout error, ‘Error’ is TRUE
and ‘nErrId’ is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

nLookAhead: Value of the look-ahead for bottleneck detection

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100272 Version: 2.11.0

6.1.4.4 ItpGetBottleNeckMode
ItpGetBottleNeckMode

bExecute BOOL
nChnId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId
E_ItpBnMode eBottleNeckMode

The function block ItpGetBottleNeckMode reads the behavior in the event of a contour collision (bottleneck).

There is a more detailed description in the Interpreter [} 191] documentation.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpGetBottleNeckModeEx [} 211].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
 eBottleNeckMode: E_ItpBnMode
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. If the function block has a timeout error, ‘Error’ is TRUE
and ‘nErrId’ is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

eBottleNeckMode: Enum for the behavior in the event of a contour collision
TYPE E_ItpBnMode:
(
 ItpBnm_Abort := 0,
 ItpBnm_Adjust := 1,
 ItpBnm_Leave := 2
);
END_TYPE

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100 273Version: 2.11.0

6.1.4.5 ItpGetGeoInfoAndHParam
ItpGetGeoInfoAndHParam

↔ sNciToPlc Reference To NCTOPLC_NCICHANNEL_REF ST_ItpPreViewTab stTab
UDINT nErrId

The function block ItpGetGeoInfoAndHParam reads information of the currently active segment and past and
future segments. These include block number, H-parameter and residual path length on the segment.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpGetGeoInfoAndHParamEx [} 216].

VAR_IN_OUT
VAR_IN_OUT
 sNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

sNciToPlc: The structure of the cyclic channel interface from the NCI to the PLC. This structure is only
accessed for reading. (type: NCTOPLC_NCICHANNEL_REF [} 324])

VAR_OUTPUT
VAR_OUTPUT
 stTab : ST_ItpPreViewTabEx;
 nErrId : UDINT;
END_VAR

stTab: Structure containing the segment data.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.6 ItpGoAhead
ItpGoAhead

bExecute BOOL
nChnId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpGoAhead may only be used in association with the decoder stop '@717' [} 168]. There
is a more detailed description of this decoder stop in the interpreter documentation [} 125].

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpGoAheadEx [} 223].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

PLC NCI Libraries

TF5100274 Version: 2.11.0

nChnId: Channel ID

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.7 ItpIsEStop
ItpIsEStop

bExecute BOOL
nGrpId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bEStop

BOOL bErr
UDINT nErrId

Via bEStop, the function block ItpIsEStop provides information as to whether an EStop command was
triggered. If bEStop is TRUE, then an EStop was initiated (e.g. ItpEStop). The flag does not provide
information as to whether the axes have already stopped or are still on the braking ramp.

After the execution of ItpStepOnAfterEStop, ItpIsEStop will once again return FALSE.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpIsEStopEx [} 225].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGrpId : UDINT
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nGrpId: group ID

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bEStop : BOOL;

PLC NCI Libraries

TF5100 275Version: 2.11.0

 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bEStop: TRUE: EStop command was executed, FALSE: No EStop present

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

ItpEStop [} 270]

ItpStepOnAfterEStop [} 288]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.8 ItpLoadProg
ItpLoadProg

bExecute BOOL
nChnId UDINT
sPrg STRING(255)
nLength UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpLoadProgEx [} 227].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 sPrg : STRING;
 nLength : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge at this input triggers execution of the NC program

nChnId: Channel ID

sPrg: Name of the NC program that is executed

nLength: String length of the program name

tTimeOut: ADS Timeout-Delay

Notice The NC program is looked up in directory "TwinCAT\Mc\Nci", if no further information is
available. It is however also possible to give an absolute path.

PLC NCI Libraries

TF5100276 Version: 2.11.0

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.9 ItpReadRParams
ItpReadRParams

bExecute BOOL
nChnId UDINT
pAddr PVOID
nIndex DINT
nCount DINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpReadRParamsEx [} 229].

The ItpReadRParams function block reads the NC’s calculation parameters, also known as R-parameters. A
more detailed description of the calculation parameters can be found here [} 133]. A total of 1000 R-
parameters are available, of which the first 900 (0..899) are local, so that they are only visible in the current
NC channel. The other 100 (900..999) R-parameters are global, and are thus visible from anywhere in the
NC.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 pAddr : PVOID;
 nIndex : DINT;
 nCount : DINT;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge starts the read operation

nChnId: ID of the NC channel whose R-parameters are to be read

pAddr: Address of the target variables of the data to be read. The data are written by the NC directly from
the specified address. i.e. nIndex is not to be interpreted as offset from pAddr. The data are usually in an
array of type LREAL, which has to be defined by the user.

nIndex: Describes the index of the R-parameter to be read from an NC perspective.

PLC NCI Libraries

TF5100 277Version: 2.11.0

nCount: Number of R-parameters to be read

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

ItpWriteRParams [} 289]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.10 ItpReadToolDesc
ItpReadToolDesc

bExecute BOOL
nChnId UDINT
nDNo UDINT
tTimeOut TIME

↔ sToolDesc Reference To ToolDesc

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpReadToolDesc function block reads the tool parameters for the supplied D-word.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpReadToolDescEx [} 230].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 nDNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

nDNo: D-word for which the tool parameters are to be read. nDoNo can have values between 1 and 255.

tTimeOut: ADS Timeout-Delay

PLC NCI Libraries

TF5100278 Version: 2.11.0

VAR_IN_OUT
VAR_IN_OUT
 sToolDesc : ToolDesc;
END_VAR

sToolDesc: A structure into which the tool parameters of nDNo are written. The meaning of the parameters
depends on the tool type, and can be found in the tool data [} 179].
TYPE ToolDesc:
STRUCT
 nToolNumber : UDINT; (*valid range from 0 .. 65535*)
 nToolType : UDINT;
 fParam : ARRAY [2..15] OF LREAL;
END_STRUCT
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

see also:

ItpWriteToolDesc [} 290]; ItpSetToolDescNull [} 285]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.11 ItpReadZeroShift
ItpReadZeroShift

bExecute BOOL
nChnId UDINT
nZsNo UDINT
tTimeOut TIME

↔ sZeroShiftDesc Reference To ZeroShiftDesc

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpReadZeroShift function block reads the offset shift components X, Y and Z for the given zero shift.

Notice For reasons of compatibility, there are two entries (coarse and fine) for each axis in each zero
shift (e.g. G54). These two entries must be added together. This function block evaluates both the
entries and adds them together automatically.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpReadZeroShiftEx [} 231].

PLC NCI Libraries

TF5100 279Version: 2.11.0

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 nZsNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

nZsNo: Number of the zero shift; on the NC side G54 to G59 are zero shifts. The valid range of values for
'nZsNo' is therefore from 54 to 59.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sZeroShiftDesc : ZeroShiftDesc;
END_VAR

sZeroShiftDesc: The structure containing the components of the zero shift.
TYPE ZeroShiftDesc:
STRUCT
 fShiftX : LREAL;
 fShiftY : LREAL;
 fShiftZ : LREAL;
END_STRUCT
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

see also:

ItpWriteZeroShift [} 291]; ItpSetZeroShiftNull [} 286]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.12 ItpReset
ItpReset

bExecute BOOL
nChnId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

PLC NCI Libraries

TF5100280 Version: 2.11.0

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpResetEx2 [} 232].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge at this input triggers a reset of the NC channel

nChnId: Channel ID

tTimeOut: ADS Timeout-Delay

Notice A reset deletes all tables in the NC. The axes are halted immediately. For this reason a reset
should only be carried out either in the event of an error or when the axes are stationary.

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.13 ItpResetEx
ItpResetEx

bExecute BOOL
nGrpId UDINT
nChnId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block 'ItpResetEx' executes a channel reset, which deletes all existing tables of the NC channel.
In contrast to the conventional ItpReset [} 279], an active channel is stopped first, before the reset is
executed. This simplifies programming in the PLC, since no explicit check is necessary to ascertain whether
the axes are still in motion.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpResetEx2 [} 232].

PLC NCI Libraries

TF5100 281Version: 2.11.0

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGrpId : UDINT;
 nChnId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nGrpId: group ID

nChnId: Channel ID

tTimeOut: ADS timeout delay (the bBusy signal can be active for longer than tTimeOut)

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

see also: ItpStartStop [} 287]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.14 ItpResetFastMFunc
ItpResetFastMFunc

bExecute BOOL
nChnId UDINT
nMFuncNo UINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

This function block represents an alternative to Auto-reset or reset with another M-function (reset list during
parameterization of the M-function). For the sake of clarity, mixed operation involving resetting with an M-
function and this function block should be avoided.

The fast M-function [} 163] nMFuncNo is reset with a rising edge at input bExecute. In the event of the M-
function not being available, no error is returned.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpResetFastMFuncEx [} 233].

PLC NCI Libraries

TF5100282 Version: 2.11.0

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 nMFuncNo : UINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

nMFuncNo: Flying M-function that is to be reset

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.15 ItpSetBottleNeckLookAhead
ItpSetBottleNeckLookAhead

bExecute BOOL
nChnId UDINT
nLookAhead UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpSetBottleNeckLookAhead determines the maximum number of segments the system
may look ahead for bottleneck detection (contour collision monitoring). Note that segments, which were
added as a result of radius compensation (e.g. additional segments at acute angles) are taken into account.

There is a more detailed description in the Interpreter [} 191] documentation.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpSetBottleNeckLookAheadEx [} 234].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;

PLC NCI Libraries

TF5100 283Version: 2.11.0

 nLookAhead : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

nLookAhead: Specifies the look-ahead value

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.16 ItpSetBottleNeckMode
ItpSetBottleNeckMode

bExecute BOOL
nChnId UDINT
eBottleNeckMode E_ItpBnMode
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpSetBottleNeckMode specifies the behavior in the event of a contour collision
(bottleneck).

There is a more detailed description in the Interpreter [} 191] documentation.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpSetBottleNeckModeEx [} 235].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 eBottleNeckMode: E_ItpBnMode
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

PLC NCI Libraries

TF5100284 Version: 2.11.0

eBottleNeckMode: Enum for the behavior in the event of a contour collision

tTimeOut: ADS Timeout-Delay
TYPE E_ItpBnMode:
(
 ItpBnm_Abort := 0,
 ItpBnm_Adjust := 1,
 ItpBnm_Leave := 2
);
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.17 ItpSetSubroutinePath
ItpSetSubroutinePath

bExecute BOOL
nChnId UDINT
sPath STRING(80)
nLength UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

With ItpSetSubroutinePath function block, the search path for subroutines can optionally be set.

If a subroutine still has to be integrated, the file is searched in the following order:

• optional search path (ItpSetSubroutinePath)
• path from which the main program was loaded
• TwinCAT\Mc\Nci directory

Only one optional path can be active at any one time. It remains active until it is

• overwritten with another path or
• with an empty string

.

After a TwinCAT restart, the path has to be re-assigned.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpSetSubroutinePathEx [} 240].

PLC NCI Libraries

TF5100 285Version: 2.11.0

Interface
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 sPath : STRING;
 nLength : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

sPath: Optional path for subroutines; is disabled with an empty string.

nLength: String length

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.18 ItpSetToolDescNull
ItpSetToolDescNull

bExecute BOOL
nChnId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

FB ItpSetToolDescNull overwrites all tool parameters (incl. number & type) of the channel with zero.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpSetToolDescNullEx [} 241].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge results in overwriting of all tool parameters of the NC channel with zero.

PLC NCI Libraries

TF5100286 Version: 2.11.0

nChnId: ID of the NC channel

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

• ItpWriteToolDesc [} 290],

• ItpReadToolDesc [} 277]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.19 ItpSetZeroShiftNull
ItpSetZeroShiftNull

bExecute BOOL
nChnId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

FB ItpSetZeroShiftNull overwrites all zero shifts of the channel with zero.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpSetZeroShiftNullEx.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge results in overwriting of all zero shifts of the NC channel with zero.

nChnId: ID of the NC channel

tTimeOut: ADS Timeout-Delay

PLC NCI Libraries

TF5100 287Version: 2.11.0

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

• ItpWriteZeroShift [} 291]

• ItpReadZeroShift [} 278]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.20 ItpStartStop
ItpStartStop

bStart BOOL
bStop BOOL
nChnId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpStartStopEx [} 244].

Interface
VAR_INPUT
 bStart : BOOL;
 bStop : BOOL;
 nChnId : UDINT;
 tTimeOut : TIME;
END_VAR

bStart: A positive edge starts the NC channel

bStop: A positive edge stops the NC channel. A stop command deletes all the tables in the NC and brings
the axes to a controlled halt.

nChnId: Channel ID

tTimeOut: ADS Timeout-Delay

NOTE! The bStop input has a higher priority than the bStart input, so that if both inputs receive a
positive edge, a channel stop will be executed.

PLC NCI Libraries

TF5100288 Version: 2.11.0

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.21 ItpStepOnAfterEStop
ItpStepOnAfterEStop

bExecute BOOL
nGrpId UDINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpStepOnAfterEStop enables further processing of the parts program after a programmed
EStop.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpStepOnAfterEStopEx [} 245].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nGrpId : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nGrpId: group ID

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

PLC NCI Libraries

TF5100 289Version: 2.11.0

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

• ItpEStop [} 270]

• ItpIsEStop [} 274]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.22 ItpWriteRParams
ItpWriteRParams

bExecute BOOL
nChnId UDINT
pAddr PVOID
nIndex DINT
nCount DINT
tTimeOut TIME

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpWriteRParams function block writes R-parameters into the NC.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpWriteRParamsEx [} 246].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 pAddr : PVOID;
 nIndex : DINT;
 nCount : DINT;
 tTimeOut : TIME;
END_VAR

bExecute: A rising edge starts the write operation.

nChnId: ID of the NC channel whose R-parameters are to be written.

pAddr: Address of the variables containing the data to be written. Data are used directly from the specified
address, i.e. nIndex is not to be interpreted as offset from pAddr. The data are usually in an array of type
LREAL, which has to be defined by the user.

nIndex: Describes the index of the R-parameter to be written from an NC perspective.

nCount: Number of R-parameters to be written

tTimeOut: ADS Timeout-Delay

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

PLC NCI Libraries

TF5100290 Version: 2.11.0

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Sample

In this example the parameters R90 to R99 are written from an NC perspective.
VAR
 arrfRParam90to99 : ARRAY[0..9] OF LREAL;
 fbWriteRParam : ItpWriteRParams;
 n : INT := 0;
 bWriteParam : BOOL := FALSE;
END_VAR

FOR n:=0 TO 9 DO
 arrfRParam90to99[n] := 90 + n;
END_FOR

fbWriteRParam(
 bExecute := bWriteParam,
 nChnId := 2,
 pAddr := ADR(arrfRParam90to99[0]),
 nIndex := 90,
 nCount := 10,
 tTimeOut := T#200ms);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.23 ItpWriteToolDesc
ItpWriteToolDesc

bExecute BOOL
nChnId UDINT
nDNo UDINT
tTimeOut TIME

↔ sToolDesc Reference To ToolDesc

BOOL bBusy
BOOL bErr

UDINT nErrId

The ItpWriteToolDesc function block writes a block of tool parameters.

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpWriteToolDescEx [} 247].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 nDNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

PLC NCI Libraries

TF5100 291Version: 2.11.0

nDNo: D-word for which the tool parameters are to be read. nDoNo can have values between 1 and 255.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sToolDesc : ToolDesc;
END_VAR

sToolDesc: The structure that contains the new tool parameters. This structure is only accessed for reading.
The meaning of the parameters depends on the tool type, and can be found in the tool data [} 179].
TYPE ToolDesc:
STRUCT
 nToolNumber : UDINT; (*valid range from 0 .. 65535*)
 nToolType : UDINT;
 fParam : ARRAY [2..15] OF LREAL;
END_STRUCT
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

• ItpReadToolDesc [} 277]

• ItpSetToolDescNull [} 285]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.4.24 ItpWriteZeroShift
ItpWriteZeroShift

bExecute BOOL
nChnId UDINT
nZsNo UDINT
tTimeOut TIME

↔ sZeroShiftDesc Reference To ZeroShiftDesc

BOOL bBusy
BOOL bErr

UDINT nErrId

The function block ItpWriteZeroShift writes the shift components X, Y and Z for the specified zero shift.

For reasons of compatibility every zero shift that can be set has two parameters (coarse and fine) for each
axis. When using this function block to write a new zero shift, the new value is written into the 'fine
parameter'. A value of 0.0 is entered into the 'coarse parameter'. This makes it possible to use a function
block such as ItpReadZeroShift [} 278] to read and modify a zero shift and to send it back to the NC.

PLC NCI Libraries

TF5100292 Version: 2.11.0

Outdated version
The sole purpose of the function block is to ensure compatibility with existing projects. For new
projects please use the function block ItpWriteZeroShiftEx [} 248].

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 nChnId : UDINT;
 nZsNo : UDINT;
 tTimeOut : TIME;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

nChnId: Channel ID

nZsNo: Number of the zero shift.

On the NC side G54 to G59 are zero shifts; G58 and G59 can only be edited from the NC program. The valid
range of values for 'nZsNo' is therefore from 54 to 57.

tTimeOut: ADS Timeout-Delay

VAR_IN_OUT
VAR_IN_OUT
 sZeroShiftDesc : ZeroShiftDesc;
END_VAR

sZeroShiftDesc: The structure containing the components of the zero shift. This structure is only accessed
for reading.
TYPE ZeroShiftDesc:
STRUCT
 fShiftX : LREAL;
 fShiftY : LREAL;
 fShiftZ : LREAL;
END_STRUCT
END_TYPE

VAR_OUTPUT
VAR_OUTPUT
 bBusy : BOOL;
 bErr : BOOL;
 nErrId : UDINT;
END_VAR

bBusy: This output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bErr: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrId’. Is reset to FALSE by the execution of a command at
the inputs.

nErrId: Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

See also:

• ItpReadZeroShift [} 278]

• ItpSetZeroShiftNull [} 291]

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100 293Version: 2.11.0

6.1.5 Obsolete

6.1.5.1 F_GetVersionTcNciUtilities

This function returns part of the three-part version number of the TwinCAT 2 PLC library TcNciUtilities.lib as
UINT.

Outdated version
The sole purpose of this function is to ensure compatibility with existing projects. For new projects
please use the global structure stLibVersion_Tc2_NCI.

VAR_INPUT
FUNCTION F_GetVersionNciUtilities

VAR_INPUT
 nVersionElement : INT;
END_VAR

nVersionElement: Part of the version number to be read (range: [1..3])

Return value

F_GetVersionNciUtilities: Version number

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.1.5.2 Get_TcNcCfg_Version

This function returns the version number of the TwinCAT 2 PLC library TcNcCfg.lib as string.

Outdated version
The sole purpose of this function is to ensure compatibility with existing projects. For new projects
please use the global structure stLibVersion_Tc2_NCI.

Return value

Get_TcNcCfg_Version Version number

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

PLC NCI Libraries

TF5100294 Version: 2.11.0

6.1.5.3 ItpGetVersion

ItpGetVersion is a function that returns the version number of the TwinCAT PLC library TcNC.lib as string.

Outdated version
The sole purpose of this function is to ensure compatibility with existing projects. For new projects
please use the global structure stLibVersion_Tc2_NCI.

VAR_INPUT
FUNCTION ItpGetVersion

VAR_INPUT
END_VAR

Return value

ItpGetVersion: Version number

Sample
VAR
 strVersion: STRING(20);
END_VAR

strVersion := ItpGetVersion();

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_NCI

6.2 PLC Library: Tc2_PlcInterpolation
The Tc2_PlcInterpolation library offers an alternative to the application of G-Code (DIN 66025). This library
can be used to execute interpolated movement commands directly from the PLC, without using G-Code.

Alternative for Pick-and-Place Applications
TF5420 TwinCAT 3 Motion Pick-and-Place executes multi-dimensional motions. It was specially
developed for the requirements of pick-and-place applications and is an alternative to the
Tc2_PlcInterpolation library for this use case. The Tc3_McCoordinatedMotion library contains all
associated function blocks.

In a first step a table of different movement commands and additional functions is written. To this end
structures such as ST_NciGeoLine are transferred to the FB NciFeedTablePreparation. This appends the
movement command to the table. Once the table is full or all required entries have been added,
NciFeedTable is called in order to transfer the table content to the NC kernel. The data transfer directly starts
the execution.

NciMaxTableEntries can be edited

From library version 3.3.16.0 (included from TC3.1.4024.11) the maximum number of table entries can be
edited in the range from 10 to 32767. The default value is 100 entries.

https://infosys.beckhoff.com/content/1033/tf5420_tc3_advanced_pick_and_place/index.html?id=2855864336157536481
https://infosys.beckhoff.com/content/1033/tf5420_tc3_advanced_pick_and_place/8892648715.html?id=4195354615476176144

PLC NCI Libraries

TF5100 295Version: 2.11.0

Function blocks

Function blocks that are required for grouping of axes (or for channel control (channel override) can be found
in the PLC Library: Tc2_NCI [} 197].

Function Block Description
FB_NciFeedTablePreparation [} 296] Fills a table with NCI movements in the PLC

FB_NciFeedTable [} 297] Transfers a previously written table to the NC kernel
and starts the motion

Data structures

The following structures can be used as input parameters for the function block NciFeedTablePreparation:

Structures Enum Description
Organization

E_NciEntryTypeNone No function
ST_NciGeoStart [} 299] E_NciEntryTypeGeoStart Sets the start position for the first

geometry entry
ST_NciEndOfTables [} 310] E_NciEntryTypeEndOfTables Indicates the end of the geometry

table
Movement commands

ST_NciGeoLine [} 300] E_NciEntryTypeGeoLine Describes a straight line

ST_NciGeoCirclePlane [} 300] E_NciEntryTypeGeoCirclePlane Describes a circle in the main plane
(center point programming)

ST_NciGeoCircleCIP [} 302] E_NciEntryTypeGeoCircleCIP Describes a circle anywhere in the
space

ST_NciGeoBezier3 [} 302] E_NciEntryTypeGeoBezier3 Describes a 3rd order Bezier with
control points

ST_NciGeoBezier5 [} 303] E_NciEntryTypeGeoBezier5 Describes a 5th order Bezier with
control points

ST_NciDwellTime [} 308] E_NciEntryTypeDwellTime Describes a dwell time
Path parameters

ST_NciBaseFrame [} 307] E_NciEntryTypeBaseFrame Describes a zero shift and rotation

ST_NciVertexSmoothing [} 306] E_NciEntryTypeVertexSmoothing Activates blending at segment
transitions

ST_NciTangentialFollowingDesc
[} 309]

E_NciEntryTypeTfDesc Activates tangential following of the
tool

Dynamics
ST_NciDynOvr [} 306] E_NciEntryTypeDynOvr Modifies the dynamic override

ST_NciAxisDynamics [} 308] E_NciEntryTypeAxisDynamics Limits the axis dynamics

ST_NciPathDynamics [} 307] E_NciEntryTypePathDynamics Limits the path dynamics

ST_NciFeedrateIpol [} 308] E_NciEntryTypeFeedrateIpol Sets the feed interpolation type
Parameter commands

ST_NciHParam [} 305] E_NciEntryTypeHParam Sets an H-parameter (DINT)

ST_NciSParam [} 306] E_NciEntryTypeSParam Sets an S-parameter (WORD)

PLC NCI Libraries

TF5100296 Version: 2.11.0

Structures Enum Description
ST_NciTParam [} 306] E_NciEntryTypeTParam Sets a T-parameter (WORD)

ST_NciMFuncFast [} 305] E_NciEntryTypeMFuncFast Parameterizes a fast M-function (no
handshake)

ST_NciMFuncHsk [} 304] E_NciEntryTypeMFuncHsk Parameterizes an M-function with
handshake

ST_NciMFuncResetAllFast [} 305] E_NciEntryTypeResetAllFast Resets all fast M-functions

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_PlcInterpolation

6.2.1 FB_NciFeedTablePreparation

The function block FB_NciFeedTablePreparation appends an entry of a specific type to the feed table
(stFeedGroupTable). An appended entry can generate more than one row in the table. If the table has not
enough free rows, an error is returned and no entry is added to the table. In this case the entry either has to
be added to another table or to the same table, after FB_NciFeedTable was executed. This function block
deals with modal functions, such as tangential following. It is therefore important to always use the same
instance of this function block. The function block can be called repeatedly in a PLC cycle.

VAR_INPUT
VAR_INPUT
 nEntryType : E_NciEntryType;
 pEntry : POINTER TO ST_NciGeoLine;
 bResetTable : BOOL;
 bResetAll : BOOL;
END_VAR

nEntryType: Specifies the entry type, e.g. line, circle, tangential following

pEntry: Pointer to entry structure – must match nEntryType

bResetTable: If bResetTable is TRUE, the table ‚stFeedGroupTable’ is set to zero and nFilledRows is also
set to zero. If nErrorId = ErrNciFeedTableFull, this error is reset. All modal flags (such as tangential
following) remain constant.

bResetAll: Like bResetTable. In addition, all modal flags are set to their default values, and all error IDs are
reset.

VAR_IN_OUT
VAR_IN_OUT
 stFeedGroupTable : ST_NciFeedGroupTable
END_VAR

stFeedGroupTable: Table containing the rows for the NC kernel.

VAR_OUTPUT
VAR_OUTPUT
 nFilledRows : INT;
 bError : BOOL;
 nErrorId : UDINT;
END_VAR

nFilledRows: Number of filled rows.

PLC NCI Libraries

TF5100 297Version: 2.11.0

bError: Becomes TRUE as soon as an error has occurred.

nErrorId: Contains the command-specific error code of the most recently executed command. Is reset to 0
by the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation (error codes above 0x4000).

Notice If bResetTable, bResetAll, or bError is true, no further entries are accepted.

Notice The error code 0x4B72 indicates that the table is full and the last entry was not accepted.

Example:
stGeoLine.nDisplayIndex := 1;
stGeoLine.fEndPosX := 0;
stGeoLine.fEndPosY := 400;
stGeoLine.fEndPosZ := 100;
stGeoLine.fEndPosQ1 :=-90;
stGeoLine.fVelo := 1000; (*mm per sec*)

fbFeedTablePrep(
 nEntryType := E_NciEntryTypeGeoLine,
 pEntry := ADR(stGeoLine),
 bResetTable:= FALSE,
 stFeedGroupTable:= stNciFeedGroupTable,
 nFilledRows=> nFilledRows,
 bError => bError,
 nErrorId => nErrorId);

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_PlcInterpolation

6.2.2 FB_NciFeedTable

The function block FB_NciFeedTable transfers a given table to the NC kernel. If the override is set and the
approvals are enabled, execution is started immediately. bFeedingDone becomes TRUE when the transfer is
complete. This signal can be used for overwriting the table with NciFeedTablePreparation [} 296]. In
NciFeedTablePreparation the table first has to be reset.

bChannelDone indicates complete execution of the tables in the NC kernel. The identifier ST_NciEndOfTables
[} 298] must therefore be placed at the end of the last table.

VAR_INPUT
VAR_INPUT
 bExecute : BOOL;
 bReset : BOOL;
 bLogFeederEntries : BOOL;
END_VAR

bExecute: The command is triggered by a rising edge at this input.

bReset: Triggers a channel reset and also resets the function block

bLogFeederEntries: If TRUE, a log file 'PlcItpFeed.log' is written in the TwinCAT\Mc\Nci folder. It contains
all entries that are sent to the NC kernel via ADS. If bLogFeederEntries = TRUE, more time is required until
bFeedingDone becomes TRUE.

PLC NCI Libraries

TF5100298 Version: 2.11.0

VAR_IN_OUT
VAR_IN_OUT
 stFeedGroupTable : ST_NciFeedGroupTable;
 stNciToPlc : NCTOPLC_NCICHANNEL_REF;
END_VAR

stFeedGroupTable: Table containing the rows for the NC kernel.

stNciToPlc: The structure of the cyclic channel interface between NCI and PLC.

VAR_OUTPUT
VAR_OUTPUT
 bFeedingDone : BOOL;
 bChannelDone : BOOL;
 bFeedBusy: : BOOL;
 bResetBusy: : BOOL;
 bError : BOOL;
 nErrorId : UDINT;
END_VAR

bFeedingDone: Becomes TRUE once all table rows have been sent to the NC kernel.

bChannelDone: Becomes TRUE once all entries of the table in the NC kernel were executed and
ST_NciEndOfTables was detected.

bFeedBusy: Becomes TRUE when the function block sends entries to the NC kernel.

bResetBusy: Becomes TRUE when a reset is executed.

bError: Becomes TRUE as soon as an error has occurred.

nErrorId: Contains the command-specific error code of the most recently executed command. Is reset to 0
by the execution of a command at the inputs. The error numbers in ErrId can be looked up in the ADS error
documentation or in the NC error documentation.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v3.1.0 PC or CX (x86 or x64) Tc2_PlcInterpolation

6.2.3 Types and Enums

E_NciEntryType
TYPE E_NciEntryType :
(
 E_NciEntryTypeNone := 0,
 E_NciEntryTypeGeoStart := 1,
 E_NciEntryTypeGeoLine := 2,
 E_NciEntryTypeGeoCirclePlane := 3,
 E_NciEntryTypeGeoCircleCIP := 4,
 E_NciEntryTypeGeoBezier3 := 10,
 E_NciEntryTypeGeoBezier5 := 11,
 E_NciEntryTypeMFuncHsk := 20,
 E_NciEntryTypeMFuncFast := 21,
 E_NciEntryTypeMFuncResetAllFast := 23,
 E_NciEntryTypeHParam := 24,
 E_NciEntryTypeSParam := 25,
 E_NciEntryTypeTParam := 26,
 E_NciEntryTypeDynOvr := 50,
 E_NciEntryTypeVertexSmoothing := 51,
 E_NciEntryTypeBaseFrame := 52,
 E_NciEntryTypePathDynamics := 53,
 E_NciEntryTypeAxisDynamics := 55,
 E_NciEntryTypeDwellTime := 56,
 E_NciEntryTypeFeedrateIpol := 57,
 E_NciEntryTypeTfDesc := 100,
 E_NciEntryTypeEndOfTables := 1000
);
END_TYPE

PLC NCI Libraries

TF5100 299Version: 2.11.0

Structures Enum Description
Organization

E_NciEntryTypeNone No function
ST_NciGeoStart [} 299] E_NciEntryTypeGeoStart Sets the start position for the first

geometry entry
ST_NciEndOfTables [} 310] E_NciEntryTypeEndOfTables Indicates the end of the geometry

table
Movement commands

ST_NciGeoLine [} 300] E_NciEntryTypeGeoLine Describes a straight line

ST_NciGeoCirclePlane [} 300] E_NciEntryTypeGeoCirclePlane Describes a circle in the main plane
(center point programming)

ST_NciGeoCircleCIP [} 302] E_NciEntryTypeGeoCircleCIP Describes a circle anywhere in the
space

ST_NciGeoBezier3 [} 302] E_NciEntryTypeGeoBezier3 Describes a 3rd order Bezier with
control points

ST_NciGeoBezier5 [} 303] E_NciEntryTypeGeoBezier5 Describes a 5th order Bezier with
control points

ST_NciDwellTime [} 308] E_NciEntryTypeDwellTime Describes a dwell time
Path parameters

ST_NciBaseFrame [} 307] E_NciEntryTypeBaseFrame Describes a zero shift and rotation

ST_NciVertexSmoothing [} 306] E_NciEntryTypeVertexSmoothing Activates blending at segment
transitions

ST_NciTangentialFollowingDesc
[} 309]

E_NciEntryTypeTfDesc Activates tangential following of the
tool

Dynamics
ST_NciDynOvr [} 306] E_NciEntryTypeDynOvr Modifies the dynamic override

ST_NciAxisDynamics [} 308] E_NciEntryTypeAxisDynamics Limits the axis dynamics

ST_NciPathDynamics [} 307] E_NciEntryTypePathDynamics Limits the path dynamics

ST_NciFeedrateIpol [} 308] E_NciEntryTypeFeedrateIpol Sets the feed interpolation type
Parameter commands

ST_NciHParam [} 305] E_NciEntryTypeHParam Sets an H-parameter (DINT)

ST_NciSParam [} 306] E_NciEntryTypeSParam Sets an S-parameter (WORD)

ST_NciTParam [} 306] E_NciEntryTypeTParam Sets a T-parameter (WORD)

ST_NciMFuncFast [} 305] E_NciEntryTypeMFuncFast Parameterizes a fast M-function (no
handshake)

ST_NciMFuncHsk [} 304] E_NciEntryTypeMFuncHsk Parameterizes an M-function with
handshake

ST_NciMFuncResetAllFast [} 305] E_NciEntryTypeResetAllFast Resets all fast M-functions

ST_NciGeoStart

Sets the start position for the first geometry entry. This is necessary, if the first geometry entry is a circle or if
tangential following in the first segment is ON. This structure can optionally be written at each start of the first
table.
TYPE ST_NciGeoStart :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeGeoStart; (*do not override this parameter *)
 fPosX: LREAL;
 fPosY: LREAL;
 fPosZ: LREAL;
 fPosQ1: LREAL;
 fPosQ2: LREAL;
 fPosQ3: LREAL;
 fPosQ4: LREAL;

PLC NCI Libraries

TF5100300 Version: 2.11.0

 fPosQ5: LREAL;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

fPosX: Start position X

fPosY: Start position Y

fPosZ: Start position Z

fPosQ1: Start position Q1

fPosQ2: Start position Q2

fPosQ3: Start position Q3

fPosQ4: Start position Q4

fPosQ5: Start position Q5

ST_NciGeoLine

Describes a straight line with specified velocity.
TYPE ST_NciGeoLine :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeGeoLine; (*do not override this parameter *)
 nDisplayIndex: UDINT;
 fEndPosX: LREAL;
 fEndPosY: LREAL;
 fEndPosZ: LREAL;
 fEndPosQ1: LREAL;
 fEndPosQ2: LREAL;
 fEndPosQ3: LREAL;
 fEndPosQ4: LREAL;
 fEndPosQ5: LREAL;
 fVelo: LREAL;
 bRapidTraverse: BOOL;
 bAccurateStop: BOOL; (* VeloEnd := 0 *)
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

fEndPosX: Target position X

fEndPosY: Target position Y

fEndPosZ: Target position Z

fEndPosQ1: Target position Q1

fEndPosQ2: Target position Q2

fEndPosQ3: Target position Q3

fEndPosQ4: Target position Q4

fEndPosQ5: Target position Q5

fVelo: Target path velocity, like F in G-Code, but in basic units per second (e.g. mm/s)

bRapidTraverse: TRUE has the same effect as G0, FALSE treats this entry like G01

bAccurateStop: Accurate stop (TRUE has the same effect as G09)

ST_NciGeoCirclePlane

Describes a circle in the main plane. The center point is specified in absolute coordinates.

PLC NCI Libraries

TF5100 301Version: 2.11.0

The orthogonal component at the center is assigned internally. If a circle is programmed in the XY plane, for
example, ,fCenterZ‘ is assigned internally. If the user has assigned the value explicitly, the value is
nevertheless overwritten by the function block. A helix can be described by programming the height. If helix
is programmed in the XY plane, for example, the lifting height of the helix is specified absolutely with
‚fEndPosZ‘.
TYPE ST_NciGeoCirclePlane :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeGeoCirclePlane; (*do not override this parameter *)
 nDisplayIndex: UDINT;
 fEndPosX: LREAL;
 fEndPosY: LREAL;
 fEndPosZ: LREAL;
 fCenterX: LREAL;
 fCenterY: LREAL;
 fCenterZ: LREAL;
 fEndPosQ1: LREAL;
 fEndPosQ2: LREAL;
 fEndPosQ3: LREAL;
 fEndPosQ4: LREAL;
 fEndPosQ5: LREAL;
 fVelo: LREAL;
 bClockwise: BOOL;
 bAccurateStop: BOOL; (* VeloEnd := 0 *)
 nPlane: E_NciGeoPlane := E_NciGeoPlaneXY;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

fEndPosX: Target position X

fEndPosY: Target position Y

fEndPosZ: Target position Z

fCenterX: Centre position X in absolute coordinates

fCenterY: Centre position Y in absolute coordinates

fCenterZ: Centre position Z in absolute coordinates

fEndPosQ1: Target position Q1

fEndPosQ2: Target position Q2

fEndPosQ3: Target position Q3

fEndPosQ4: Target position Q4

fEndPosQ5: Target position Q5

fVelo: Target path velocity in basic units per second (e.g. mm/s), like F in G-Code

bClockwise: If TRUE, the circle is drawn clockwise, otherwise counter-clockwise (similar to G02, G03)

bAccurateStop: accurate stop [} 140] (TRUE has the same effect as G09)

nPlane: Specifies the plane: XY, YZ, or ZX (similar to G17..G19) (type: E_NciGeoPlane [} 301])

Circle segment as start segment
If the first geometry segment is a circle, the start position must set with ST_NciGeoStart [} 299].

E_NciGeoPlane
TYPE E_NciGeoPlane :
(
 E_NciGeoPlaneXY := 17,
 E_NciGeoPlaneZX := 18,

PLC NCI Libraries

TF5100302 Version: 2.11.0

 E_NciGeoPlaneYZ := 19
);
END_TYPE

ST_NciGeoCircleCIP

The CIP circle can be used to describe a circle anywhere in space. It does not have to be in the main plane.
In order for the circle to be described unambiguously, not all 3 points (the starting point is specified implicitly)
may lie on straight line. It is thus not possible to program a full circle in this way.
TYPE ST_NciGeoCircleCIP :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeGeoCircleCIP; (* do not overwrite this parameter
*)
 nDisplayIndex: UDINT;
 fEndPosX: LREAL;
 fEndPosY: LREAL;
 fEndPosZ: LREAL;
 fCIPPosX: LREAL;
 fCIPPosY: LREAL;
 fCIPPosZ: LREAL;
 fEndPosQ1: LREAL;
 fEndPosQ2: LREAL;
 fEndPosQ3: LREAL;
 fEndPosQ4: LREAL;
 fEndPosQ5: LREAL;
 fVelo: LREAL;
 bAccurateStop: BOOL; (* VeloEnd := 0 *)
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

fCIPPosX: X position in absolute coordinates (point on circular path)

fCIPPosY: Y position in absolute coordinates (point on circular path)

fCIPPosZ: Z position in absolute coordinates (point on circular path)

fEndPosX: Target position X

fEndPosY: Target position Y

fEndPosZ: Target position Z

fEndPosQ1: Target position Q1

fEndPosQ2: Target position Q2

fEndPosQ3: Target position Q3

fEndPosQ4: Target position Q4

fEndPosQ5: Target position Q5

fVelo: Target path velocity in basic units per second (e.g. mm/s), like F in G-Code

bAccurateStop: accurate stop [} 140] (TRUE has the same effect as G09)

Circle segment as start segment
If the first geometry segment is a circle, the start position must set with ST_NciGeoStart [} 299].

ST_NciGeoBezier3

Describes a third-order Bézier curve with the aid of control points. The start position results from the previous
segment. The third control point is determined by the target position.
TYPE ST_NciGeoBezier3:
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeGeoBezier3; (*do not override this parameter *)

PLC NCI Libraries

TF5100 303Version: 2.11.0

 nDisplayIndex: UDINT;
 fControlPoint1X: LREAL;
 fControlPoint1Y: LREAL;
 fControlPoint1Z: LREAL;
 fControlPoint2X: LREAL;
 fControlPoint2Y: LREAL;
 fControlPoint2Z: LREAL;
 fEndPosX: LREAL;
 fEndPosY: LREAL;
 fEndPosZ: LREAL;
 fEndPosQ1: LREAL;
 fEndPosQ2: LREAL;
 fEndPosQ3: LREAL;
 fEndPosQ4: LREAL;
 fEndPosQ5: LREAL;
 fVelo: LREAL;
 bAccurateStop: BOOL; (* VeloEnd := 0 *)
END_STRUCT
END_TYPE

A Bezier3 curve is not compatible with the type ST_NciVertexSmoothing of the type 3rd and 5th order
Bezier. In this case, a different type must be selected for VertexSmoothing.

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

fControlPoint1X: X component control point 1

fControlPoint1Y: Y component control point 1

...

fControlPoint2Z: Z component control point 2

fEndPosX: Target position X

fEndPosY: Target position Y

fEndPosZ: Target position Z

fEndPosQ1: Target position Q1

fEndPosQ2: Target position Q2

fEndPosQ3: Target position Q3

fEndPosQ4: Target position Q4

fEndPosQ5: Target position Q5

fVelo: Target path velocity in basic units per second (e.g. mm/s), like F in G-Code

bAccurateStop: Accurate stop [} 140] (TRUE has the same effect as G09)

ST_NciGeoBezier5

Describes a 5th-order Bézier curve with the aid of control points. The start position results from the previous
segment. The fifth control point is determined by the target position.
TYPE ST_NciGeoBezier5:
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeGeoBezier5; (*do not override this parameter *)
 nDisplayIndex: UDINT;
 fControlPoint1X: LREAL;
 fControlPoint1Y: LREAL;
 fControlPoint1Z: LREAL;
 fControlPoint2X: LREAL;
 fControlPoint2Y: LREAL;
 fControlPoint2Z: LREAL;
 fControlPoint3X: LREAL;
 fControlPoint3Y: LREAL;

PLC NCI Libraries

TF5100304 Version: 2.11.0

 fControlPoint3Z: LREAL;
 fControlPoint4X: LREAL;
 fControlPoint4Y: LREAL;
 fControlPoint4Z: LREAL;
 fEndPosX: LREAL;
 fEndPosY: LREAL;
 fEndPosZ: LREAL;
 fEndPosQ1: LREAL;
 fEndPosQ2: LREAL;
 fEndPosQ3: LREAL;
 fEndPosQ4: LREAL;
 fEndPosQ5: LREAL;
 fVelo: LREAL;
 bAccurateStop: BOOL; (* VeloEnd := 0 *)
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

fControlPoint1X: X component control point 1

fControlPoint1Y: Y component control point 1

...

fControlPoint4Z: Z component control point 4

fEndPosX: Target position X

fEndPosY: Target position Y

fEndPosZ: Target position Z

fEndPosQ1: Target position Q1

fEndPosQ2: Target position Q2

fEndPosQ3: Target position Q3

fEndPosQ4: Target position Q4

fEndPosQ5: Target position Q5

fVelo: Target path velocity in basic units per second (e.g. mm/s), like F in G-Code

bAccurateStop: accurate stop [} 140] (TRUE has the same effect as G09)

ST_NciMFuncHsk

Describes an M-function [} 163] of type handshake. The M-function number is between 0 and 159.
TYPE ST_NciMFuncHsk :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeMFuncHsk; (*do not override this parameter *)
 nDisplayIndex: UDINT;
 nMFunc: INT;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

nMFunc: M-function number (0..159)

M-functions in the PlcInterpolation library
If M-functions are used in the PlcInterpolation library, they do not have to be entered in the user
interface of the XAE. An M-function always takes effect at the programmed location.

PLC NCI Libraries

TF5100 305Version: 2.11.0

ST_NciMFuncFast

Parameterizes up to 8 fast M-functions [} 163]. The first M-function must be assigned nMFuncIn0, the
second nMFuncIn1 etc. -1 indicates the end of the assignments.
TYPE ST_NciMFuncFast :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeMFuncFast; (*do not override this parameter *)
 nDisplayIndex: UDINT;
 nMFuncIn0: INT;
 nMFuncIn1: INT;
 nMFuncIn2: INT;
 nMFuncIn3: INT;
 nMFuncIn4: INT;
 nMFuncIn5: INT;
 nMFuncIn6: INT;
 nMFuncIn7: INT;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

nMFuncIn0: fast M-function number (0..159)

nMFuncIn1: Fast M-function number (0..159); -1 indicates the end of the list.

nMFuncIn2: Fast M-function number (0..159); -1 indicates the end of the list.

nMFuncIn3: Fast M-function number (0..159); -1 indicates the end of the list.

nMFuncIn4: Fast M-function number (0..159); -1 indicates the end of the list.

nMFuncIn5: Fast M-function number (0..159); -1 indicates the end of the list.

nMFuncIn6: Fast M-function number (0..159); -1 indicates the end of the list.

nMFuncIn7: Fast M-function number (0..159); -1 indicates the end of the list.

M-functions in the PlcInterpolation library
If M-functions are used in the PlcInterpolation library, they do not have to be entered in the user
interface of the XAE. An M-function always takes effect at the programmed location.

ST_NciMFuncResetAllFast

Resets all fast M-functions [} 163].
TYPE ST_NciMFuncResetAllFast :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeMFuncResetAllFast; (*do not override this parameter
*)
 nDisplayIndex: UDINT;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

ST_NciHParam

Sets an H-parameter [} 167] in the cyclic channel interface.
TYPE ST_NciHParam :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeHParam; (*do not override this parameter *)
 nDisplayIndex: UDINT;
 nHParam: UDINT;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

PLC NCI Libraries

TF5100306 Version: 2.11.0

nDisplayIndex: For display purposes, such as block number in G-Code

nHParam: H-parameter from NC to PLC

ST_NciSParam

Sets an S-parameter [} 167] in the cyclic channel interface.
TYPE ST_NciSParam :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeSParam; (*do not override this parameter *)
 nDisplayIndex: UDINT;
 nSParam: UINT;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

nSParam: S-parameter from NC to PLC

ST_NciTParam

Sets an T-parameter [} 167] in the cyclic channel interface.
TYPE ST_NciTParam :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeTParam; (*do not override this parameter *)
 nDisplayIndex: UDINT;
 nTParam: UINT;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

nTParam: T-parameter from NC to PLC

ST_NciDynOvr

Modal functions for changing the path dynamics.

See DynOvr [} 174] in the interpreter documentation [} 125].
TYPE ST_NciDynOvr :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeDynOvr; (*do not override this parameter*)
 nDisplayIndex: UDINT;
 fDynOvr: LREAL;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

fDynOvr: Value for dynamic override (1 < fDynOvr <= 1)

ST_NciVertexSmoothing

Modal function for activating blending at the segment transition. Blending is active until it is cancelled by
setting the radius to 0.

A more detailed description of the parameter can be found in the interpreter documentation [} 125].
(paramVertexSmoothing [} 151]).
TYPE ST_NciVertexSmoothing :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeVertexSmoothing; (*do not override this parameter *)
 nDisplayIndex: UDINT;

PLC NCI Libraries

TF5100 307Version: 2.11.0

 nType: UDINT; (*type of smoothing, e.g. parabola, bi-quad *)
 nSubtype: UDINT; (*e.g. adaptive, constant radius *)
 fRadius: LREAL; (*max. radius for tolerance ball *)
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

nType: Blending type: 2: parabola, 3: Bi-quadratic, 4: Bezier 3rd order, 5: 5th order Bezier

nSubtype: 1: constant tolerance radius, 2: distance between intersection and vertex, 3: Adaptive tolerance
radius

fRadius: Radius of the blending sphere in basic units (e.g. mm)

ST_NciBaseFrame

The structure ST_NciBaseFrame describes a modal zero shift and rotation. The operating principle is the
same as for zero shift and rotation in the interpreter, i.e. the point of rotation is the current origin (see
rotation [} 147] in the interpreter documentation [} 125]).
TYPE ST_NciBaseFrame:
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeBaseFrame; (*Do not override this parameter *)
 nDisplayIndex: UDINT;
 fShiftX: LREAL;
 fShiftY: LREAL;
 fShiftZ: LREAL;
 fRotX: LREAL;
 fRotY: LREAL;
 fRotZ: LREAL;
 fShiftQ1: LREAL;
 fShiftQ2: LREAL;
 fShiftQ3: LREAL;
 fShiftQ4: LREAL;
 fShiftQ5: LREAL;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

fShiftX: Zero shift in X direction

fShiftY: Zero shift in Y direction

fShiftZ: Zero shift in Z direction

fRotX: Rotation of the X axis

fRotY: Rotation of the Y axis

fRotZ: Rotation of the Z axis

fShiftQ1: Offset of the Q1 axis

fShfitQ2: Offset of the Q2-axis

fShiftQ3: Offset of the Q3-axis

fShiftQ4: Offset of the Q4-axis

fShiftQ5: Offset of the Q5-axis

ST_NciPathDynamics

The structure ST_NciPathDynamics sets the path dynamics (acceleration, deceleration, jerk). The operating
principle is the same as for paramPathDynamics in the interpreter (see paramPathDynamics [} 174] in the
interpreter documentation [} 125]).

PLC NCI Libraries

TF5100308 Version: 2.11.0

TYPE ST_NciPathDynamics:
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypePathDynamics; (*do not override this parameter *)
 nDisplayIndex: UDINT;
 fAcc: LREAL;
 fDec: LREAL;
 fJerk: LREAL;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

fAcc: Maximum permitted path acceleration

fDec: Maximum permitted path deceleration

fJerk: Maximum permitted path jerk

ST_NciAxisDynamics

The structure ST_NciAxisDynamics sets the path axis dynamics (acceleration, deceleration, jerk). The
operating principle is the same as for paramAxisDynamics in the interpreter (see paramAxisDynamics [} 174]
in the interpreter documentation [} 125])
TYPE ST_NciAxisDynamics:
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeAxisDynamics; (*Do not override this parameter*)
 nDisplayIndex: UDINT;
 nAxis: UDINT;
 fAcc: LREAL;
 fDec: LREAL;
 fJerk: LREAL;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

nAxis: Axis in interpolation group X:0 Y:1 Z:2 Q1:3 ... Q5:7

fAcc: Maximum permitted axis acceleration

fDec: Maximum permitted axis deceleration

fJerk: Maximum permitted axis jerk

ST_NciDwellTime

The structure ST_NciDwellTime is used to activate a dwell time in seconds (see dwell time [} 140] in the
interpreter documentation [} 125])
TYPE ST_NciDwellTime:
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeDwellTime; (*Do not override this parameter *)
 nDisplayIndex: UDINT;
 fDwellTime: LREAL;
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

nDisplayIndex: For display purposes, such as block number in G-Code

fDwellTime: Dwell time in seconds

ST_NciFeedrateIpol

The structure ST_NciFeedrateIpol can be used to set the feed interpolation (see Feed interpolation [} 140]).

PLC NCI Libraries

TF5100 309Version: 2.11.0

TYPE ST_NciFeedrateIpol :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeFeedrateIpol;(*Do not overwrite this parameter*)
 nDisplayIndex: UDINT;
 eFeedrateIpol: E_NciFeedrateIpol;(*E_NciFeedrateIpolConstant = FCONST,
E_NciFeedrateIpolLinear=FLIN *)
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

eFeedrateIpol: specifies the feed interpolation.
TYPE E_NciFeedRateIpol :(
 E_NciFeedrateIpolConstant,
 E_NciFeedrateIpolLinear
)
END_TYPE

ST_NciTangentialFollowingDesc

This is a modal command for switching tangential following on or off.
TYPE ST_NciTangentialFollowingDesc :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeTfDesc; (*do not override this parameter *)
 bTangOn: BOOL;
 nTangAxis: E_NciAxesInGroup; (*axis used for tangential following *)
 nPathAxis1: E_NciAxesInGroup; (*describing the plane e.g. x*)
 nPathAxis2: E_NciAxesInGroup; (*e.g. y ==> g17, xy plane*)
 fOffset: LREAL; (*geo tangent is 0 degree, counting is mathmatical positive *)
 fCriticalAngle1: LREAL;
 nTfBehavior: E_TangentialFollowingBehavior; (*what to do if angle becomes bigger than critical
angle 1 *)
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

bTangOn: If TRUE, tangential following is switched on.

nTangAxis: Axis (Q1..Q5) that is used as tangential axis (type: E_NciAxesInGroup [} 309]).

nPathAxis1: First path axis describing the plane and orientation for calculating the tangent.

nPathAxis2: Second path axis describing the plane and orientation for calculating the tangent.

fOffset: Offset of the tangential axis

fCriticalAngle1: Critical angle 1. The response in cases where the angle between two segments is greater
than fCriticalAngle1 is specified with nTfBehavior.

nTfBehavior: see fCriticalAngle1 (type: E_TangentialFollowingBehavior [} 309])

E_NciAxesInGroup
TYPE E_NciAxesInGroup :
(
 NoneAxis := 0,
 XAxis,
 YAxis,
 ZAxis,
 Q1Axis,
 Q2Axis,
 Q3Axis,
 Q4Axis,
 Q5Axis
);
END_TYPE

E_TangentialFollowingBehavior
TYPE E_TangentialFollowingBehavior :
(
 E_TfIngoreAll, (*ignore critical angle *)

PLC NCI Libraries

TF5100310 Version: 2.11.0

 E_TfErrorOnCritical1 (*if angle becomes bigger than critical angle 1 ==> error *)
);
END_TYPE

E_TfIngoreAll: The critical angle is ignored.

E_TfErrorOnCritical1: An error is returned if the critical angle is exceeded.

ST_NciEndOfTables

Indicates the last entry of the last table. Is used for signaling the bChannelDone flag in FB_NciFeedTable
[} 297].
TYPE ST_NciEndOfTables :
STRUCT
 nEntryType: E_NciEntryType := E_NciEntryTypeEndOfTables; (*do not override this parameter *)
END_STRUCT
END_TYPE

nEntryType: Do not override this parameter (type: E_NciEntryType [} 298])

Samples

TF5100 311Version: 2.11.0

7 Samples
NCI: NCISimpleSample

Download:

https://infosys.beckhoff.com/content/1033/TF5100_TC3_NC_I/Resources/3438746891/.zip

The example NCISimpleSample shows how an G-Code program is loaded from the PLC and processing is
started.

You need to copy the enclosed parts program first.nc into the TwinCAT\Mc\Nci directory. Otherwise the parts
program will not be found during loading. Alternatively you can adjust the path in the PLC program.

PLC interpolation: PlcInterpolationSimpleSample

Download:

https://infosys.beckhoff.com/content/1033/TF5100_TC3_NC_I/Resources/2944140171/.zip

The sample shows how a movement can be affected with the library Tc2_PlcInterpolation directly from the
PLC.

https://infosys.beckhoff.com/content/1033/TF5100_TC3_NC_I/Resources/3438746891.zip
https://infosys.beckhoff.com/content/1033/TF5100_TC3_NC_I/Resources/2944140171.zip

Support and Service

TF5100312 Version: 2.11.0

8 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

Appendix

TF5100 313Version: 2.11.0

9 Appendix

9.1 Display of the parts program
Reading of the current NC line via ADS

This ADS Read command returns a maximum of three lines of the current parts program, i.e. the current line
of code and perhaps two previously processed lines.

Function ADS-Read
Port 500 (dec)
Index Group 0x2300 + channel ID
Index Offset 0x2000 0001
Data string (30 bytes min.)

Appendix

TF5100314 Version: 2.11.0

Reading of the current program name

This ADS Read command returns the program name of the current main NC program (in this case 1_1.nc).

Function ADS-Read
Port 500 (dec)
Index Group 0x2100 + channel ID
Index Offset 0x7
Data string, 100 characters max.

Appendix

TF5100 315Version: 2.11.0

Reading of the current file information

In contrast to the 'Reading the current NC line' function, in this case not the line itself is read, but associated
line information. The return value is the current program name (e.g. file name of the subroutine) and a file
offset. Based on this information, the user interface can open the associated file and highlight the respective
line. The display is no longer limited to 3 rows, i.e. any number of lines can be displayed.

In the event of an NCI load or runtime error, information about the associated line of code can be obtained
via this route.

Function ADS-Read
Port 500 (dec)
Index Group 0x2100 + channel ID
Index Offset 0x12
Data UINT32 Current display of

1: SAF-
2: Interpreter
3: Error offset

UINT32 File offset
char[260] path + program name

9.2 Display of technology data

The currently active technology data such as G functions, zero shifts and rotation can be read via ADS.

Activation for reading the technology data

In order to read the above-mentioned parameters, activation via ADS is required first.

The function must be activated before the start of the NC program, or earlier. It remains active until either a
TwinCAT restart is performed or the function is reset explicitly.

Function ADS-Write
Port 500 (dec)
Index Group 0x2000 + channel ID
Index Offset 0x0053
Data DWORD

0: disable (default)
1: enable

Appendix

TF5100316 Version: 2.11.0

Reading the currently active zero shift

This command reads the active zero shift of the segment currently in block execution (SAF). If no zero shift is
active (G53), the structure for the individual components contains a zero vector. These data can be used for
switching the display between machine coordinates and programming coordinates, for example.

The data, which are read with the function block 'ItpReadZeroShift', for example, may differ from these
values, since the interpreter data are read with the function block, which may already take into account new
offsets.

Function ADS-Read
Port 500 (dec)
Index Group 0x2100 + channel ID
Index Offset 0x0014
Data {

UINT32 block counter
UINT32 dummy
LREAL[3] zero shift G54..G57
LREAL[3] zero shift G58
LREAL[3] zero shift G59
}

Reading the currently active rotation

This command reads the active rotation of the segment currently in block execution (SAF).

Function ADS-Read
Port 500 (dec)
Index Group 0x2100 + channel ID
Index Offset 0x0015
Data {

UINT32 block counter
UINT32 dummy
LREAL[3] rotation of X, Y & Z in degrees
}

Reading the currently active G-Code

The G-Code is subdivided into groups. For example, the geometries types with modal effect (G01, G02...)
and the plane selection (G17..G19) form separate groups. When the G-Code information is read, the
enumerator for the groups is also read. These can then be displayed in an application-specific manner.

Since the read command comes with a parameter to be read, not all groups have to be read. The memory
provided is always filled by group 1. If, for example, the transferred memory size is 3x8 bytes, the data for
the block counter, group 1 and 2 are returned.

Function ADS-Read
Port 500 (dec)
Index Group 0x2100 + channel ID
Index Offset 0x0013
Data {

UINT32 block counter
UINT32 Group 1: ModalGeoTypes
UINT32 Group 2: BlockwiseGeoTypes
UINT32 Group 3: ModalPlaneSelection
UINT32 Group 4: ModalToolCompensation

Appendix

TF5100 317Version: 2.11.0

UINT32 Group 5: ModalToolFeedDirection
UINT32 Group 6: ModalZeroShift
UINT32 Group 7: ModalAccurateStop
UINT32 Group 8: BlockwiseAccurateStop
UINT32 Group 9: ModalDesignationAbsInc
UINT32 Group 10:

ModalDesignationInchMetric
UINT32 Group 11: ModalFeedRateInCurve
UINT32 Group 12: ModalCenterpointCorr
UINT32 Group 13: ModalCircleCpAbsInc
UINT32 Group 14: ModalCollisionDetection
UINT32 Group 15: ModalRotation
UINT32 Group 16: ModalCalcExRot
UINT32 Group 17: ModalDiam
UINT32 Group 18: ModalFeedrateIpol
UINT32 Group 19: ModalMirror
}

#define GCodeOffset 0x1000
#define CommonIdentOffset 0x2000 // used for non-g-code commands, like rot, cfc...

Group 1: ModalGeoTypes
enum GCodeGroup_ModalGeoTypes
{
ModalGeoTypeUndefined = 0,
ModalGeoTypeG0 = 0 + GCodeOffset, // line - rapid traverse
ModalGeoTypeG01 = 1 + GCodeOffset, // straight line
ModalGeoTypeG02 = 2 + GCodeOffset, // circle clockwise
ModalGeoTypeG03 = 3 + GCodeOffset // circle anticlockwise
};

Group 2: BlockwiseGeoTypes
enum GCodeGroup_BlockwiseGeoTypes
{
BlockwiseGeoTypeNone = 0,
BlockwiseGeoTypeG04 = 4 + GCodeOffset, // dwell time
BlockwiseGeoTypeG74 = 74 + GCodeOffset, // homing
BlockwiseGeoTypeCip = 1 + CommonIdentOffset // circle parametrized with 3 points
};

Group 3: ModalPlaneSelection
enum GCodeGroup_ModalPlaneSelection
{
ModalPlaneSelectUndefined = 0,
ModalPlaneSelectG17 = 17 + GCodeOffset, // xy-plane
ModalPlaneSelectG18 = 18 + GCodeOffset, // zx-plane
ModalPlaneSelectG19 = 19 + GCodeOffset // yz-plane
};

Group 4: ModalToolCompensation
enum GCodeGroup_ModalToolCompensation
{
ModalToolCompUndefined = 0,
ModalToolCompG40 = 40 + GCodeOffset, // tool compensation off
ModalToolCompG41 = 41 + GCodeOffset, // tool compensation left
ModalToolCompG42 = 42 + GCodeOffset // tool compensation right
};

Group 5: ModalToolFeedDirection
enum GCodeGroup_ModalToolFeedDirection
{
ModalToolFeedDirUndefined = 0,
ModalToolFeedDirPos = 2 + CommonIdentOffset, // tool feed direction positive
ModalToolFeedDirNeg = 3 + CommonIdentOffset // tool feed direction negative
};

Appendix

TF5100318 Version: 2.11.0

Group 6: ModalZeroShift
enum GCodeGroup_ModalZeroShift
{
ModalZeroShiftUndefined = 0,
ModalZeroShiftG53 = 53 + GCodeOffset, // zero shift off
ModalZeroShiftG54G58G59 = 54 + GCodeOffset, // zero shift G54 + G58+ G59
ModalZeroShiftG55G58G59 = 55 + GCodeOffset, // zero shift G55 + G58+ G59
ModalZeroShiftG56G58G59 = 56 + GCodeOffset, // zero shift G56 + G58+ G59
ModalZeroShiftG57G58G59 = 57 + GCodeOffset // zero shift G57 + G58+ G59
};

Group 7: ModalAccurateStop
enum GCodeGroup_ModalAccurateStop
{
ModalAccurateStopNone = 0,
ModalAccurateStopG60 = 60 + GCodeOffset // modal accurate stop
};

Group 8: BlockwiseAccurateStop
enum GCodeGroup_BlockwiseAccurateStop
{
BlockwiseAccurateStopNone = 0,
BlockwiseAccurateStopG09 = 9 + GCodeOffset, // common accurate stop
BlockwiseAccurateStopTpm = 4 + CommonIdentOffset // target position monitoring
};

Group 9: ModalDesignationAbsInc
enum GCodeGroup_ModalDesignationAbsInc
{
ModalDesignAbsIncUndefined = 0,
ModalDesignAbsIncG90 = 90 + GCodeOffset, // absolute designation
ModalDesignAbsIncG91 = 91 + GCodeOffset // incremental designation
};

Group 10: ModalDesignationInchMetric
enum
GCodeGroup_ModalDesignationInchMetric
{
ModalDesignInchMetricUndefined = 0,
ModalDesignInchMetricG70 = 70 + GCodeOffset, // designation inch
ModalDesignInchMetricG71 = 71 + GCodeOffset, // designation metric
ModalDesignInchMetricG700 = 700 + GCodeOffset, // designation inch & feedrate recalculated
ModalDesignInchMetricG710 = 710 + GCodeOffset // designation metric & feedrate recalculated
};

Group 11: ModalFeedRateInCurve
enum GCodeGroup_ModalFeedRateInCurve
{
ModalFeedRateInCurveUndefined = 0,
ModalFeedRateInCurveCfc = 5 + CommonIdentOffset, // constant feed contour
ModalFeedRateInCurveCfin = 6 + CommonIdentOffset, // constant feed inner contour
ModalFeedRateInCurveCftcp = 7 + CommonIdentOffset // constant feed tool center point
};

Group 12: ModalCenterpointCorr
enum GCodeGroup_ModalCenterpointCorr
{
ModalCenterpointCorrUndefined = 0,
ModalCenterpointCorrOn = 8 + CommonIdentOffset, // circle centerpoint correction on
ModalCenterpointCorrOff = 9 + CommonIdentOffset // circle centerpoint correction off
};

Group 13: ModalCircleCpAbsInc
enum GCodeGroup_ModalCircleCpAbsInc
{
ModalCircleCpUndefined = 0,
ModalCircleCpIncremental = 10 + CommonIdentOffset, // circle centerpoint incremental to start point
ModalCircleCpAbsolute = 11 + CommonIdentOffset // circle centerpoint absolute
};

Group 14: ModalCollisionDetection

Appendix

TF5100 319Version: 2.11.0

enum GCodeGroup_ModalCollisionDetection
{
ModalCollisionDetectionUndefined = 0,
ModalCollisionDetectionOn = 12 + CommonIdentOffset, //collision detection on
ModalCollisionDetectionOff = 13 + CommonIdentOffset //collision detection off
};

Group 15: ModalRotation
enum GCodeGroup_ModalRotation
{
ModalRotationUndefined = 0,
ModalRotationOn = 14 + CommonIdentOffset, // rotation is turned on
ModalRotationOff = 15 + CommonIdentOffset // rotation is turned off
};

Group 16: ModalCalcExRot
enum GCodeGroup_ModalCalcExRot
{
ModalCalcExRotUndefined = 0,
ModalCalcExRotOn = 16 + CommonIdentOffset, // extended calculation for rotation turned on
ModalCalcExRotOff = 17 + CommonIdentOffset // extended calculation for rotation turned off
};

Group 17: ModalDiam
enum GCodeGroup_ModalDiam
{
ModalDiamUndefined = 0,
ModalDiamOn = 18 + CommonIdentOffset, // diameter programming on
ModalDiamOff = 19 + CommonIdentOffset // diameter programming off
};

Group 18: ModalFeedrateIpol
enum GCodeGroup_ModalFeedrateIpol
{
ModalFeedrateIpolUndefined = 0,
ModalFeedrateIpolConst = 20 + CommonIdentOffset, // federate interpolation constant (default)
ModalFeedrateIpolLinear = 21 + CommonIdentOffset // federate interpoaltion linear to remaining path
};

Group 19: ModalMirror
enum GCodeGroup_ModalMirror
{
// value - (32+CommonIdentOffset) shows the bitmask for mirrored axes
// that's why the sequence seems to be strange...
//
ModalMirrorUndefined = 0,
ModalMirrorOff = 32 + CommonIdentOffset,
ModalMirrorX = 33 + CommonIdentOffset,
ModalMirrorY = 34 + CommonIdentOffset,
ModalMirrorXY = 35 + CommonIdentOffset,
ModalMirrorZ = 36 + CommonIdentOffset,
ModalMirrorZX = 37 + CommonIdentOffset,
ModalMirrorYZ = 38 + CommonIdentOffset,
ModalMirrorXYZ = 39 + CommonIdentOffset
};

9.3 Displaying the remaining path length
If calculation of the remaining path length is switched active, it is calculated up to as far as the next accurate
stop, or as far as the last geometric segment in memory (block preparation). An accurate stop is, for
instance, generated by G09 or by G60. However, M-functions of type handshake, decoder stops and G04
implicitly generate an accurate stop.

Activation:

Index Group: 0x3000 + Group ID
Index Offset: 0x0508

see index offset specification for group parameters

Appendix

TF5100320 Version: 2.11.0

Reading the remaining path length:
Reading is again implemented through ADS, and can also be recorded with TwinCAT Scope.

Index Group: 0x3100 + Group ID
Index Offset: 0x0522

The remaining path length can be transferred with the cyclic channel interface to the PLC via
ItpSetCyclicLrealOffsets [} 237].
see index offset specification for group state

9.4 Parameterisation
The parameterization of the NCI comprises the standard dynamic parameters (acceleration, deceleration,
jerk) and their online changes, along with the minimum velocity and the parameters for the reduction of the
path velocity including online change.

General characteristics at segment transitions
• Velocity: The segment set velocity VS changes at the segment transition from VS_in to VS_out. At the

segment transition the velocity is always reduced to the lower of the two values.
• Acceleration: The current path acceleration is always returned to a = 0 at segment transition.
• Jerk: The jerk unit J changes according to the geometry at the segment transition. This can cause a

significant step change in dynamics.

• It is possible to smooth segment transitions [} 128].

Table 1: NCI group parameters

Parameter Meaning and boundary conditions
Curve velocity reduction mode [} 321] Coulomb, cosine or VELOJUMP

Minimum velocity [} 320] Path velocity which may not be less than this value
(except peaks with movement reversal): V_min ≥ 0.0

Reduction method for C1 transitions [} 321] Reduction factor for C1 transitions: C1 ≥ 0.0
VELOJUMP: C0 reduction factors C0X, C0Y, C0Z Reduction factors for C0 transitions for X, Y, Z axis:

C0X ≥ 0.0, C0Y ≥ 0.0, C0Z ≥ 0.0 (axis parameters,
online modification in interpreter [} 175] possible).

DEVIATIONANGLE: Reduction factor C0 C0 Path reduction factor for C0 transitions: 1.0 ≥ C0 ≥
0.0

DEVIATIONANGLE: Critical angle (low) φ_l Angle from which a velocity reduction is applied at
the segment transition: 0 ≤ φ_l < φ_h ≤ π

DEVIATIONANGLE: Critical angle (high) φ_h Angle from which the velocity at the segment
transition (v_link) is reduced to 0.0: 0 ≤ φ_l < φ_h ≤ π

Tolerance sphere radius [} 154] TBR Radius of the tolerance spheres: 1000.0 mm ≥TBR ≥
0.1 mm

C2 reduction factor [} 175] C2 Reduction factor for smoothed transitions: C2 ≥ 0.0

Global software limit positions for the path [} 322] Switches monitoring of the global software end
positions for the path axes

Minimum velocity

Each NCI group has a minimum path velocity V_min ≥ 0.0. The actual velocity should always exceed this
value. User-specified exceptions are: programmed stop at segment transition, path end and override
requests which lead to a velocity below the minimum value. A systemic exception is a motion reversal. With
the reduction method DEVIATIONANGLE the deflection angle is φ ≥ φ_h, in which case the minimum
velocity is ignored. V_min must be less than the set value for the path velocity (F word) of each segment.

The minimum velocity can be set to a new value V_min ≥ 0.0 in the NC program at any time. The unit is mm/
sec.

Appendix

TF5100 321Version: 2.11.0

Classification of the segment transitions

In general, the transition from one segment to the next is not indefinitely smooth. Therefore, it is necessary to
reduce the velocity at the transition point in order to avoid dynamic instability. For this purpose, the
transitions are geometrically classified and the effective transition velocity - V_link - is determined in three
categories.

Segments - as geographical objects - are defined here as curves in terms of differential geometry and are
parameterized by the arc length.
A segment transition from a segment S_in to a segment S_out is classified in geometrical terms as type Ck,
where k is a natural number (including 0), if each segment has k continuous arc length differentials and the
kth derivatives at the transition point correspond.

C0 transitions have a knee-point at the transition point.

C1 transitions appear smooth, but are not smooth in dynamic terms. One example is the straight line-semi
circle transition in the stadium: at the transition point there is a step change in acceleration.

C2 transitions (and of course Ck transitions with k > 2) are dynamically smooth (jerk restricted).

Reduction method for C2 transitions

As at all transitions, at C2 transitions V_link is set to equal the minimum of both set segment velocities:
V_link = min(V_in,V_out). There is no further reduction.

Reduction method for C1 transitions

First, V_link is set to the lower of the two segment target velocities: V_link = min(V_in,V_out). The
geometrically induced absolute step change in acceleration AccJump in the segment transition is calculated
depending on the geometry types G_in and G_out, and the plane selection G_in and G_out of the segments
to be connected, at velocity V_link. If this is greater than C1 times the path acceleration/(absolute)
deceleration AccPathReduced permissible for the geometries and planes, the velocity V_link is reduced until
the resulting step change in acceleration is equal to AccPathReduced. If this value is less than V_min, then
V_min takes priority.

Notice When changing the dynamic parameters, the permissible path acceleration for the geometries
and planes and thereby the reaction of the reduction changes automatically.

Interface: XAE [} 23] and interpreter [} 175]

Reduction modes for C0 transitions

Several reduction methods are available for C0 transitions. The reduction method VELOJUMP reduces the
velocity after permitted step changes in velocity for each axis. The reduction method DEVIATIONANGLE
reduces the velocity depending on the deflection angle φ (angle between the normalized end tangent T_in of
the incoming segment S_in and the normalized start tangent T_out of the outgoing segment S_out). The
cosine reduction method is a purely geometrical method (see curve velocity reduction method [} 24]).

The VELOJUMP method is recommended for mechanically independent axes, while for mechanically
coupled axes (the Y axis is attached to the X axis, for example) the DEVIATIONANGLE method is usually
recommended.

Reduction method for C0 transitions: VELOJUMP

If V_link = min(V_in,V_out), and for each axis V_jump[i] = C0[i] * min(A+[i],-A-[i]) * T is the permitted absolute
step change in velocity for the axis [i], wherein C0[i] is the reduction factor and A+[i], A-[i] are the
acceleration/deceleration limits for the axis [i], and T is the cycle time. The VELOJUMP reduction method
ensures that the path velocity is reduced at the segment transition V_link until the absolute step change in
the set axis velocity of axis [i] is at most V_jump[i]. V_min nevertheless has priority: if V_link is less than
V_min, V_link is set to V_min. In the case of movement reversal with no programmed stop, there will be a
jump in axis velocity.

Notice When changing the dynamic parameters, the maximum permissible step changes in axis
velocity automatically change at the same time.

Appendix

TF5100322 Version: 2.11.0

Reduction method for C0 transitions: DEVIATIONANGLE

Notice When changing the dynamic parameters, the reduction factors do not automatically change at
the same time.

Changing the parameters for C0 transitions: DEVIATIONANGLE

Table 2: Parameter

Parameter Meaning and boundary conditions
DEVIATIONANGLE: Reduction factor C0C0 Path reduction factor for C0 transitions: 1.0 ≥ C0 ≥

0.0
DEVIATIONANGLE: Critical angle (low) φ_l Angle from which reduction takes effect: 0 ≤ φ_l <

φ_h ≤ π
DEVIATIONANGLE: Critical angle (high) φ_h Angle from which reduction to v_link = 0.0 takes

effect: 0 ≤ φ_l < φ_h ≤ π

Interface: Interpreter [} 175]

Cosine reduction method

See here [} 24].

Tolerance sphere radius and C2 reduction factor

These parameters are described under the heading Smoothing of segment transitions [} 128].

Global software limit positions for the path

The 'Global software limit position monitoring for the path' offers two different ways of software position limit
monitoring.

Limit position monitoring by the SAF task

This type of end position monitoring is always active if the limit position for the axis has been switched to
active (axis parameter). The monitoring is carried out component for component by the SAF task. This
means that if the end position is exceeded, the path velocity is instantly set to 0, and the entire interpolation
group has an error.

This type of monitoring is activated through the axes parameters, and not by means of the group parameters
described here.

Software limit positions on the path

To prevent the path velocity being set to 0 immediately when a violation of the software end positions is
encountered, the function 'Global software end position monitoring of the path' must be enabled. If this is
active, the movement stops at the NC block in which the end positions were violated. The velocity is reduced
via a ramp.

• So that the monitoring is only executed for the desired path axes, the software limit positions for the
axis components must be selected (axis parameters).

• The monitoring is carried out for the standard geometry segments. These include
Straight line
Circle
Helix

• Curves with splines are not monitored. The set values associated with the splines are always within the
tolerance sphere. Otherwise the limit position monitoring will make use of the SAF task.

• Because meaningful and generally applicable monitoring of the end positions can only be carried out at
the NC program's run-time (before lookahead) it is possible that the path axes will move as far as (but
not including) the NC block in which the limit positions are exceeded.

Appendix

TF5100 323Version: 2.11.0

• If for some reason the axes are located outside the software limit positions it is possible to move back
into the correct region in a straight line.

Parameterization:

XAE: Group parameters [} 23]

9.4.1 Path override (interpreter override types)
The path override is a velocity override. This means that changing the override creates a new velocity, but
does not affect the ramps (acceleration or jerk). The used override types only differ in terms of reference
velocity.

The parameterization takes place in the interpolation channel under the group parameters [} 24].

Option 'Reduced' - based on the reduced velocity (default)

Because of the relevant dynamic parameters (braking distance, acceleration etc.) it is not possible for the
programmed velocity (the blue line) be achieved in every segment. For this reason a velocity, possibly
reduced, (the red line) is calculated for each geometric segment. In the standard case, the override is made
with reference to this segment velocity.

The advantage of this override type is that if override values are small the machine operates with an
approximately linear reduction in velocity, and this is therefore the correct setting for most applications.

v_res = v_max * Override

Option 'Original' - based on the programmed path velocity

The override value is based on the velocity programmed by the user. The maximum segment velocity only
has a limiting effect.

Appendix

TF5100324 Version: 2.11.0

Selection 'Reduced [0 ... >100%]' - based on internally reduced velocity with the option to specify a
value greater than 100%

The override type behaves like 'Reduced' [} 323]. With this override type it is possible to travel along the path
more quickly than programmed in the G-Code. There is no limitation to 120%, for example. The maximum
possible path velocity is limited by the maximum velocities of the axis components (G0 velocity) and their
dynamics.

If limitation to a particular value, e.g. 120%, is required, this can be set in the PLC project.

9.5 Cyclic Channel Interface
The channel interface is responsible for the cyclic data exchange between the PLC and the NCI.

From the NCI to the PLC (160 bytes)
TYPE NCTOPLC_NCICHANNEL_REF :
STRUCT
BlockNo : UDINT;
FastMFuncMask : ARRAY [1..5] OF DWORD;
HskMFuncNo : UINT;
HskMFuncReq : WORD;
HFuncValue : UDINT;
SpindleRpm : UINT;
Tool : UINT;
ChnState : NCTOPLC_NCICHANNEL_REF_CHN_STATE;
IntParams : ARRAY [0..3] OF UDINT;
DoubleParams : ARRAY [0..3] OF LREAL;
PathVelo : LREAL;
LoadedProg : UDINT;
ItpMode : WORD;
ItpState : UINT;
ErrorCode : UDINT;
ChnId : UINT;
GrpId : UINT;
ItfVersion : UINT;
_reserved1 : UINT;
ChnOperationState : UDINT;
McsAxisIDs : ARRAY [0..7] OF USINT;
AcsAxisIDs : ARRAY [0..7] OF USINT;
_reserved2 : ARRAY [1..24] OF USINT;
END_STRUCT
END_TYPE

Appendix

TF5100 325Version: 2.11.0

Variable name Data type Description
BlockNo UDINT block number
FastMFuncMask ARRAY OF DWORD Bit mask for evaluation of the fast

M-functions [} 163]
HskMFuncNo UINT Number of synchronous M-function

present (M-function with
handshake)

HskMFuncReq WORD Flag indicating that a synchronous
M-function is present
0: no synchronous M-function is
present
1: a synchronous M-function is
present

HFuncValue DINT Value of the auxiliary function
SpindleRpm WORD Spindle rotation speed
Tool WORD Tool number
ChnState NCTOPLC_NCICHANNEL_REF_C

HN_STATE
DWORD with status information for
the channel (see status information
for the channel (ChnState) [} 325]

IntParams ARRAY [0..3] OF UDINT Data of the freely configurable
channel interface (see
ItpSetCyclicUDintOffsets [} 238])

DoubleParams ARRAY [0..3] OF LREAL Data of the freely configurable
channel interface (see
ItpSetCyclicLrealOffsets [} 237])

PathVelo LREAL Current path set velocity
LoadedProg UDINT Name of the currently executed NC

program. If the name is not a
UDINT, this value is 0.

ItpMode WORD Bit mask that indicates execution in
interpreter mode.

ItpState UINT Status [} 15] of the interpreter
ErrorCode UDINT Error code of the interpreter

channel
ChnId UINT Channel ID
GrpId UINT group ID
ItfVersion UINT Version of this cyclic channel

interface
ChnOperationState UDINT Channel state for a channel of the

kinematic transformation; has no
purpose for an interpolation
channel.

McsAxisIDs ARRAY [0..7] OF USINT IDs of the MCS axes for a
kinematic transformation channel;
has no purpose for an interpolation
channel.

AcsAxisIDs ARRAY [0..7] OF USINT IDs of the ACS axes for a
kinematic transformation channel;
has no purpose for an interpolation
channel.

Channel status information (ChnState)

In the XAE the channel status information can only be read with a plain text name, from the PLC
only via the bit number.

Appendix

TF5100326 Version: 2.11.0

Name Bit number (zero based) Description
bIsInterpolationChannel 0 Indicates that the linked channel is

an interpolation channel.
bIsKinematicChannel 1 Indicates that the structure is linked

to a channel for the kinematic
transformation.

bIsEStopRequested 8 Indicates that an ItpEStop was
called, without checking whether
the axes are already at standstill.

bIsFeedFromBackupList 10 For retracing the current entries
from the interpreter backup list are
sent.

bIsMovingBackward 11 Indicates that the current motion is
a reversing motion.

bRetraceStartPosReached 12 Indicates that the program start
was reached during reversing.

From PLC to NCI (128 bytes)
TYPE PLCTONC_NCICHANNEL_REF :
STRUCT
SkipLine : WORD; (* Mask to skip lines *)
ItpMode : WORD;
MFuncGranted : WORD; (* granted signal of the M-function *)
_reserved1 : UINT;
ChnAxesOvr : UDINT; (* Channel override in percent * 100 *)
ChnSpindleOvr : UDINT;
_reserved2 : ARRAY [1..112] OF USINT;
END_STRUCT
END_TYPE

Variable name Data type Description
SkipLine WORD Bit mask with which block skipping

[} 126] of the NCI is parameterized
from the PLC

ItpMode WORD Bit mask with which the interpreter
execution mode can be altered.
This is, for instance, required if the
interpreter is to operate in single
block [} 132] mode.

MFuncGranted WORD Flag with which an M-function of
type 'Handshake' is confirmed.
0: Not acknowledged
1: Acknowledgement

ChnAxesOvr UDINT Channel override for the axes from
0...1000000 (corresponds to 0 -
100%)

ChnSpindleOvr UDINT Channel override for the spindle
between 0 and 1000000
(corresponds to 0 - 100%);
currently not supported.

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf5100

mailto:info@beckhoff.de?subject=TF5100
https://www.beckhoff.com
https://www.beckhoff.com/tf5100

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Introduction
	3 User interface in the TwinCAT 3 Engineering environment
	3.1 Outline
	3.2 Interpolation Channel
	3.3 Interpreter element
	3.3.1 Interpreter online window
	3.3.2 "Interpreter" tab
	3.3.3 "M-Functions" tab
	3.3.4 "R parameters" tab
	3.3.5 "Zero point" tab
	3.3.6 "Tools" tab
	3.3.7 "Editor" tab
	3.3.8 "MDI" tab

	3.4 Group element
	3.4.1 "General" tab
	3.4.2 "DXD" tab
	3.4.3 “Settings” tab
	3.4.4 "Online" tab
	3.4.5 "3D-Online" tab

	4 GST Reference Manual
	4.1 General Notes
	4.2 Preprocessor
	4.3 Combining G-Code and ST
	4.4 G-Code (DIN 66025)
	4.4.1 Tool Radius Compensation (D, G40, G41, G42)
	4.4.2 Comments
	4.4.3 Execution Order
	4.4.4 Mutual Exclusive G-Codes
	4.4.5 Rapid Traverse (G00)
	4.4.6 Linear Interpolation (G01)
	4.4.7 Circular Interpolation (G02, G03, IJK, U)
	4.4.8 Dwell Time (G04)
	4.4.9 Accurate Stop (G09,G60)
	4.4.10 Delete Distance to go (G31)
	4.4.11 Zero Offest Shifts (G53,G54...59)
	4.4.12 Working Plane and Feed Direction (G17, G18, G19, P)
	4.4.13 Inch/metric dimensions (G70, G71, G700, G710)
	4.4.14 Dimensional Notation (G90, G91)
	4.4.15 M-Functions (M)
	4.4.16 General Codes (F, N, Q, X, Y, Z, A, B, C)

	4.5 ST - Structured Text (IEC 61131-3)
	4.5.1 Comments
	4.5.2 Literals
	4.5.3 Native Data Types
	4.5.4 Userdefined Types
	4.5.5 Control Structures
	4.5.6 Jump statement
	4.5.7 Userdefined Functions
	4.5.8 Standard Functions
	4.5.8.1 Type Conversion
	4.5.8.2 Arithmetic and Trigonometric
	4.5.8.3 Shift and Rotation
	4.5.8.4 Logical Operations
	4.5.8.5 Selection (Conditional Expressions)
	4.5.8.6 Min, Max and Limit
	4.5.8.7 Comparison

	4.5.9 R-Parameters
	4.5.10 H, S, and T parameters

	4.6 CNC Functions
	4.6.1 Strings and Messages
	4.6.2 Transformations
	4.6.3 Circular Movement
	4.6.4 Centerpoint Correction
	4.6.5 Tools
	4.6.6 Synchronization
	4.6.7 Query of Axes
	4.6.8 Current Point
	4.6.9 Tool Radius Compensation
	4.6.10 Suppression of G-Code Blocks
	4.6.11 Zero Offset Shift
	4.6.12 Units
	4.6.13 Trigonometric (Unit Aware)
	4.6.14 Feed Mode
	4.6.15 Feed Interpolation
	4.6.16 Streaming of Large G-Code Files
	4.6.17 Vertex Smoothing
	4.6.17.1 Subtypes

	4.6.18 Automatic Accurate Stop
	4.6.19 Spline Interpolation
	4.6.20 Dynamic Override
	4.6.21 Programming reference
	4.6.22 Center Point Reference of Circles
	4.6.23 Change in axis dynamics
	4.6.24 Change in path dynamics

	4.7 Transformations
	4.7.1 Modification of the Effective Transformation T and its Effect
	4.7.2 Components of the Effective Transformation T
	4.7.3 Applying Transformations
	4.7.4 Revoking Transformations
	4.7.5 Restoration of Stack

	4.8 Error Reporting
	4.8.1 Error Messages
	4.8.2 Compile-Time Errors and Runtime Errors
	4.8.3 Errors in G-Code
	4.8.4 Preprocessing

	4.9 General Command Overview
	4.10 Comparative Command Overview

	5 Classic Dialect Reference Manual
	5.1 Basic Principles of NC Programming
	5.1.1 Structure of an NC Program
	5.1.2 Block Skipping
	5.1.3 Look-Ahead
	5.1.4 Smoothing of Segment Transitions
	5.1.5 Co-ordinate System
	5.1.6 Dimensional Notation
	5.1.7 Working Plane and Feed Direction
	5.1.8 Inch/metric dimensions
	5.1.9 Single Block Operation
	5.1.10 Arithmetic Parameters

	5.2 Programming Movement Statements
	5.2.1 Referencing
	5.2.2 Rapid Traverse
	5.2.3 Linear Interpolation
	5.2.4 Circular Interpolation
	5.2.5 Helix
	5.2.6 Dwell Time
	5.2.7 Accurate Stop
	5.2.8 Feed interpolation
	5.2.9 Zero Offset Shifts
	5.2.10 Target Position Monitoring
	5.2.11 Contour definitions
	5.2.12 Rotation
	5.2.13 Mirror
	5.2.14 Smoothing of segment transitions
	5.2.14.1 Overview
	5.2.14.2 Parabolic smoothing
	5.2.14.3 Biquadratic smoothing
	5.2.14.4 Bezier curve of the 3rd order
	5.2.14.5 Bezier curve of the 5th order
	5.2.14.6 Old Bezier blending type
	5.2.14.7 Subtypes

	5.2.15 Circular Smoothing
	5.2.16 Automatic Accurate Stop
	5.2.17 Delete Distance to Go
	5.2.18 Modulo Movements
	5.2.19 Auxiliary axes
	5.2.19.1 Calculation of the velocity
	5.2.19.2 Path velocity at segment transitions

	5.3 Supplementary Functions
	5.3.1 M-Functions
	5.3.1.1 Available M-functions
	5.3.1.2 Resetting of M-functions
	5.3.1.3 Parameterization of M-functions
	5.3.1.4 Combination of M functions
	5.3.1.5 Behavior in case of an error

	5.3.2 H, T and S Parameters
	5.3.3 Decoder stop
	5.3.3.1 Decoder stop (@714)
	5.3.3.2 Decoder Stop with Axis Position Rescan (@716)
	5.3.3.3 Decoder Stop with external trigger event (@717)

	5.3.4 Jumps
	5.3.5 Loops
	5.3.6 Subroutine techniques
	5.3.7 Dynamic Override
	5.3.8 Altering the Motion Dynamics
	5.3.9 Change of the Reduction Parameters
	5.3.10 Change of the Minimum Velocity
	5.3.11 Read Actual Axis Value
	5.3.12 Skip virtual movements
	5.3.13 Messages from NC program

	5.4 Tool Compensation
	5.4.1 Tool Data
	5.4.2 Selecting and Deselecting the Length Compensation
	5.4.3 Cartesian Tool Translation
	5.4.4 Cutter Radius Compensation
	5.4.4.1 Miller/Cutter Radius Compensation Off
	5.4.4.2 Miller/cutter radius compensation left
	5.4.4.3 Miller/cutter radius compensation right
	5.4.4.4 Departure and approach behavior of the miller/cutter radius compensation

	5.4.5 Orthogonal Contour Approach/Departure
	5.4.6 Path Velocity in Arcs
	5.4.7 Bottle Neck Detection

	5.5 Command overview
	5.5.1 General command overview
	5.5.2 @-Command Overview

	6 PLC NCI Libraries
	6.1 PLC Library: Tc2_NCI
	6.1.1 Configuration
	6.1.1.1 CfgBuild3DGroup
	6.1.1.2 CfgBuildExt3DGroup
	6.1.1.3 CfgAddAxisToGroup
	6.1.1.4 CfgReconfigGroup
	6.1.1.5 CfgReconfigAxis
	6.1.1.6 CfgRead3DAxisIds
	6.1.1.7 CfgReadExt3DAxisIds

	6.1.2 NCI POUs
	6.1.2.1 ItpConfirmHsk
	6.1.2.2 ItpDelDtgEx
	6.1.2.3 ItpEnableDefaultGCode
	6.1.2.4 ItpEStopEx
	6.1.2.5 ItpGetBlockNumber
	6.1.2.6 ItpGetBottleNeckLookAheadEx
	6.1.2.7 ItpGetBottleNeckModeEx
	6.1.2.8 ItpGetChannelId
	6.1.2.9 ItpGetChannelType
	6.1.2.10 ItpGetCyclicLrealOffsets
	6.1.2.11 ItpGetCyclicUDintOffsets
	6.1.2.12 ItpGetError
	6.1.2.13 ItpGetGeoInfoAndHParamEx
	6.1.2.14 ItpGetGroupAxisIds
	6.1.2.15 ItpGetGroupId
	6.1.2.16 ItpGetHParam
	6.1.2.17 ItpGetHskMFunc
	6.1.2.18 ItpGetItfVersion
	6.1.2.19 ItpGetOverridePercent
	6.1.2.20 ItpGetSetPathVelocity
	6.1.2.21 ItpGetSParam
	6.1.2.22 ItpGetStateInterpreter
	6.1.2.23 ItpGetTParam
	6.1.2.24 ItpGoAheadEx
	6.1.2.25 ItpHasError
	6.1.2.26 ItpIsFastMFunc
	6.1.2.27 ItpIsEStopEx
	6.1.2.28 ItpIsHskMFunc
	6.1.2.29 ItpLoadProgEx
	6.1.2.30 ItpReadCyclicLRealParam1
	6.1.2.31 ItpReadCyclicUdintParam1
	6.1.2.32 ItpReadRParamsEx
	6.1.2.33 ItpReadToolDescEx
	6.1.2.34 ItpReadZeroShiftEx
	6.1.2.35 ItpResetEx2
	6.1.2.36 ItpResetFastMFuncEx
	6.1.2.37 ItpSetBottleNeckLookAheadEx
	6.1.2.38 ItpSetBottleNeckModeEx
	6.1.2.39 ItpSetCyclicLrealOffsets
	6.1.2.40 ItpSetCyclicUDintOffsets
	6.1.2.41 ItpSetOverridePercent
	6.1.2.42 ItpSetSubroutinePathEx
	6.1.2.43 ItpSetToolDescNullEx
	6.1.2.44 ItpSetZeroShiftNullEx
	6.1.2.45 ItpSingleBlock
	6.1.2.46 ItpStartStopEx
	6.1.2.47 ItpStepOnAfterEStopEx
	6.1.2.48 ItpWriteRParamsEx
	6.1.2.49 ItpWriteToolDescEx
	6.1.2.50 ItpWriteZeroShiftEx
	6.1.2.51 Blocksearch
	6.1.2.51.1 ItpBlocksearch
	6.1.2.51.2 ItpGetBlocksearchData
	6.1.2.51.3 ItpStepOnAfterBlocksearch

	6.1.2.52 Retrace
	6.1.2.52.1 ItpEnableFeederBackup
	6.1.2.52.2 ItpIsFeederBackupEnabled
	6.1.2.52.3 ItpIsFeedFromBackupList
	6.1.2.52.4 ItpIsFirstSegmentReached
	6.1.2.52.5 ItpIsMovingBackwards
	6.1.2.52.6 ItpRetraceMoveBackward
	6.1.2.52.7 ItpRetraceMoveForward

	6.1.3 Parts program generator
	6.1.3.1 ItpPpgAppendGenericBlock
	6.1.3.2 ItpPpgAppendGeoCircleByRadius
	6.1.3.3 ItpPpgAppendGeoLine
	6.1.3.4 ItpPpgCloseMain
	6.1.3.5 ItpPpgCloseSubroutine
	6.1.3.6 ItpPpgCreateMain
	6.1.3.7 ItpPpgCreateSubroutine

	6.1.4 Blocks for compatibility with existing programs
	6.1.4.1 ItpDelDtg
	6.1.4.2 ItpEStop
	6.1.4.3 ItpGetBottleNeckLookAhead
	6.1.4.4 ItpGetBottleNeckMode
	6.1.4.5 ItpGetGeoInfoAndHParam
	6.1.4.6 ItpGoAhead
	6.1.4.7 ItpIsEStop
	6.1.4.8 ItpLoadProg
	6.1.4.9 ItpReadRParams
	6.1.4.10 ItpReadToolDesc
	6.1.4.11 ItpReadZeroShift
	6.1.4.12 ItpReset
	6.1.4.13 ItpResetEx
	6.1.4.14 ItpResetFastMFunc
	6.1.4.15 ItpSetBottleNeckLookAhead
	6.1.4.16 ItpSetBottleNeckMode
	6.1.4.17 ItpSetSubroutinePath
	6.1.4.18 ItpSetToolDescNull
	6.1.4.19 ItpSetZeroShiftNull
	6.1.4.20 ItpStartStop
	6.1.4.21 ItpStepOnAfterEStop
	6.1.4.22 ItpWriteRParams
	6.1.4.23 ItpWriteToolDesc
	6.1.4.24 ItpWriteZeroShift

	6.1.5 Obsolete
	6.1.5.1 F_GetVersionTcNciUtilities
	6.1.5.2 Get_TcNcCfg_Version
	6.1.5.3 ItpGetVersion

	6.2 PLC Library: Tc2_PlcInterpolation
	6.2.1 FB_NciFeedTablePreparation
	6.2.2 FB_NciFeedTable
	6.2.3 Types and Enums

	7 Samples
	8 Support and Service
	9 Appendix
	9.1 Display of the parts program
	9.2 Display of technology data
	9.3 Displaying the remaining path length
	9.4 Parameterisation
	9.4.1 Path override (interpreter override types)

	9.5 Cyclic Channel Interface

		documentation@beckhoff.com
	2024-01-12T10:18:34+0100
	Beckhoff Automation, Verl
	Documentation Publishing

