
Manual | EN

TF3710
TwinCAT 3 | Interface for LabVIEW™

2024-04-15 | Version: 1.5.2

Foreword

TF3710 3Version: 1.5.2

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

LabVIEW™ and NI™ are trademarks of National Instruments. Neither Beckhoff, nor any software programs
or other goods or services offered by Beckhoff, are affiliated with, endorsed by, or sponsored by National
Instruments.

Foreword

TF37104 Version: 1.5.2

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF3710 5Version: 1.5.2

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Foreword

TF37106 Version: 1.5.2

1.4 Documentation issue status
Version Changes
1.5.x TwinCAT 3.1 Build 4026

• Brief information on installation [} 11]
New:
• CoE Read and CoE Write [} 81]

◦ VIs for reading and writing CoE objects from LabVIEW™

• Example CoE Read or Write [} 109]

Table of contents

TF3710 7Version: 1.5.2

Table of contents
1 Foreword.. 3

1.1 Notes on the documentation ... 3
1.2 For your safety .. 4
1.3 Notes on information security.. 5
1.4 Documentation issue status .. 6

2 Overview .. 9

3 Installation ... 11

4 Licensing ... 16

5 Quick start ... 19

6 Technical introduction.. 23
6.1 TwinCAT ADS ... 23
6.2 Communication modes ... 25

6.2.1 One-time reading ... 28
6.2.2 One-time writing ... 30
6.2.3 Reading data continuously... 31
6.2.4 Writing data continuously ... 36

6.3 Type Resolving ... 37

7 LabVIEW™ VIs... 40
7.1 ADS DAQ .. 44
7.2 ADS FlexDAQ ... 53
7.3 ADS Write Assistant .. 59
7.4 Symbol Interface ... 64
7.5 Init ... 65
7.6 ADS-Read ... 66
7.7 ADS-Write ... 71
7.8 TypeResolver .. 72
7.9 Release ... 73
7.10 Utilities... 74

7.10.1 Notification ... 77
7.10.2 LVBuffer ... 79
7.10.3 CoE .. 81

7.11 Low-Level .. 84
7.11.1 Init .. 84
7.11.2 Read... 85
7.11.3 Write... 87
7.11.4 TypeResolver ... 89
7.11.5 SumUp ... 96

7.12 With TypeResolving .. 99

8 Samples ... 102
8.1 Basic examples ... 102
8.2 Application example .. 109

9 Appendix.. 111

Table of contents

TF37108 Version: 1.5.2

9.1 Overview of error codes .. 111
9.2 ADS Return Codes.. 112
9.3 Data types ... 115
9.4 Runtime Return Codes.. 116
9.5 Support Return Codes .. 119

Overview

TF3710 9Version: 1.5.2

2 Overview
The TwinCAT 3 interface for LabVIEW™ enables data exchange between LabVIEW™ and one or more
TwinCAT runtime environments. The data exchange takes place via the TwinCAT ADS protocol.

Product information

TF3710 TwinCAT 3 interface for LabVIEW™ combines the worlds of NI™ and Beckhoff. High-performance
data exchange between a TwinCAT runtime environment and your LabVIEW™ application gives you the
option to implement part of your application in TwinCAT and another part in LabVIEW™. The apportionment
is up to the user. In a minimal configuration, you can use TwinCAT solely as a driver for your fieldbus
devices and implement your application entirely in LabVIEW™. Similarly, you can implement your application
mainly in TwinCAT and use LabVIEW™ only as an HMI.

The TwinCAT 3 interface for LabVIEW™ supports all LabVIEW™ editions including Base, Full, Professional
and also the Runtime Engine, so that you can optionally deliver your LabVIEW™ application as a stand-
alone application with the LabVIEW™ application builder. The Windows operating systems on Beckhoff IPCs
and Embedded PCs are ideally suited as a platform directly on the machine controller.

Product components

The TF3710 TwinCAT 3 interface for LabVIEW™ product consists of the following components:

• LabVIEW™ Virtual Instruments (VIs) for your function palette
• Product-specific dynamic-link libraries (DLLs)
• Example VIs.

Overview

TF371010 Version: 1.5.2

When installing on a system with LabVIEW™ runtime, only the DLLs are installed; otherwise, all components
are installed.

Installation

TF3710 11Version: 1.5.2

3 Installation
System requirements

The minimum requirements for using the TF3710 TwinCAT 3 Interface for LabVIEW™ product are described
below.

Please observe the following distinction: the TF3710 license is required on the TwinCAT runtime
environment. The components of the TF3710 TwinCAT 3 Interface for LabVIEW™, on the other hand, are
required on the system with the LabVIEW™ installation.

Engineering

In your engineering environment you need a TwinCAT 3.1 ADS installation, in addition to LabVIEW™. There
is no need to install TwinCAT 3.1 ADS if you have a TwinCAT 3 Engineering environment or a TwinCAT
Runtime installed on your engineering system.

• TwinCAT 3.1 ADS
• LabVIEW™ 2017, 2018, 2019, 2020, 2021, 2022, 2023

◦ Runtime, Base, Full, Community, Professional Edition
◦ 32-bit, 64-bit

Runtime

For the TwinCAT runtime you need the following components:
• TwinCAT 3.1 XAR build 3.1.4024.12 or higher

If a lower version is required, please contact Beckhoff Support.
• Operating systems: Windows operating system, TwinCAT/BSD
• One license for TF3710 TwinCAT 3 Interface for LabVIEW™

For testing purposes, a 7-day trial version can be activated repeatedly.

For the LabVIEW™ runtime the following components are required:
• LabVIEW™ Runtime Engine 2017, 2018, 2019, 2020, 2021, 2022, 2023
• Windows NT-based operating system

It should be noted that the TwinCAT and LabVIEW™ runtimes can be installed on the same system or on
separate systems connected via a network.

TwinCAT Package Manager: Installation (TwinCAT 3.1 Build 4026)

Detailed instructions on installing products can be found in the chapter Installing workloads in the TwinCAT
3.1 Build 4026 installation instructions.

Install the following workload to be able to use the product:

https://infosys.beckhoff.com/content/1033/tc3_installation/15731787659.html?id
https://infosys.beckhoff.com/content/1033/tc3_installation/15698617995.html?id
https://infosys.beckhoff.com/content/1033/tc3_installation/15698617995.html?id

Installation

TF371012 Version: 1.5.2

TF3710 | TwinCAT 3 Interface for LabVIEW™

TwinCAT setup: Installation (TwinCAT 3.1 build 4024 and earlier)

The following section describes the installation of the TwinCAT 3 Function TwinCAT 3 Interface for
LabVIEWTM for Windows-based operating systems.

NOTICE
Different setups for 32bit and 64bit LabVIEW™
Two setups can be found on the download page of the Beckhoff website. The setup labeled "x86"
integrates the interface for LabVIEW™ into installed 32bit LabVIEW™ environments. The setup labeled
"x64" is suitable for 64bit LabVIEW™ environments.

ü The TwinCAT 3 function setup file was downloaded from the Beckhoff website.
1. Run the setup file as administrator. To do this, select the Run As Admin command in the context menu

of the file.
ð The installation dialog opens.

2. Accept the end user licensing agreement and click Next.

Installation

TF3710 13Version: 1.5.2

3. Enter your user data.

Installation

TF371014 Version: 1.5.2

4. If you want to install the full version of the TwinCAT 3 function, select Complete as installation type. This
installs the product for each LabVIEW™ found on the system. Select Custom if you only want to install
the product for individual LabVIEW™ environments.

Installation

TF3710 15Version: 1.5.2

5. Click Next, then Install to start the installation.

ð A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.

Mass compile
During installation, the TwinCAT 3 Interfaces for LabVIEW™ library is added for the mass
compilation of VIs. A LabVIEW™ VI is started for this purpose.

6. Confirm the dialog with Yes.

Fig. 1:

7. Click Finish to exit the setup.
ð The TwinCAT 3 function has been successfully installed and can be licensed (see Licensing).

Licensing

TF371016 Version: 1.5.2

4 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. "TF3710 TwinCAT 3 Interface for LabVIEW").

https://infosys.beckhoff.de/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207

Licensing

TF3710 17Version: 1.5.2

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.
7. Click 7-Day Trial License... to activate the 7-day trial license.

Licensing

TF371018 Version: 1.5.2

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Quick-Guide: license query fails

Different error messages may occur during the license query in LabVIEW™, e.g.: License state issue, No
License found, License expired, License invalid, License invalid System id.

Check the following:

• If a license query failed previously, restart LabVIEW™ so that the ADS client in Interface for
LabVIEW™ is completely unloaded.

• Use the TwinCAT XAE to check the license status on the target system and adjust it if necessary.

Quick start

TF3710 19Version: 1.5.2

5 Quick start
The following describes how to set up the connection between LabVIEWTM and TwinCAT using an exemplary
measuring task. Thereby data is generated in TwinCAT, which is read by LabVIEWTM.

Activating a TwinCAT project
ü Download this https://infosys.beckhoff.com/content/1033/TF3710_TC3_Interface_for_LabVIEW/

Resources/10083995531/.zip. There is a tnzip file in the ZIP archive.
1. Open TwinCAT XAE and select

File > Open > Open Solution From Archive... to load the tnzip.
2. If you do not already have a valid TF3710 license on the target system, go to System > License >

Manage Licenses and select the checkbox for the TF3710 license.
3. Activate the project, e.g. on your local PC or on a remote target system and start the PLC.
ð The TwinCAT project is now running on your target system.

Creating LabVIEW™ project
ü LabVIEW™ is open.
1. Create a new project and open an empty VI.
2. Save the VI.
3. Place an instance of the ADS DAQ VI on the block diagram. To do this, navigate in the Functions

palette to User Libraries > Beckhoff LabVIEW Interface > ADS DAQ.
ð A user interface for configuring the connection to TwinCAT opens automatically.

4. Select Symbol Interface to create a new configuration.

5. Browse with the Target Browser in the middle field into your target on which you have activated the
TwinCAT project.

6. Then select the ADS symbols to be read. Navigate to 851: Port851 > MAIN and select the ADS symbols
aAM and aSine. Drag and drop both icons to the right area (ADS Read area).

https://infosys.beckhoff.com/content/1033/TF3710_TC3_Interface_for_LabVIEW/Resources/10083995531.zip
https://infosys.beckhoff.com/content/1033/TF3710_TC3_Interface_for_LabVIEW/Resources/10083995531.zip

Quick start

TF371020 Version: 1.5.2

7. Click OK.
ð The Symbol Interface Configurator closes and you are shown further setting options. Don't change

the default settings and select Finish.

ð The user interface is closed and code is automatically generated on the block diagram according to
the configuration. You can change and extend this individually.

Quick start

TF3710 21Version: 1.5.2

Extending block diagram
ü Code was generated on the block diagram (see above).
8. Extend the block diagram, e.g. with a waveform graph.
9. Set your VI to Run mode.
ð In this case, look at the two time signals on the front panel.

Quick start

TF371022 Version: 1.5.2

Technical introduction

TF3710 23Version: 1.5.2

6 Technical introduction
Data exchange between LabVIEW™ and TwinCAT 3 takes place using the Automation Device Specification
(ADS) server-client protocol. With the Interface for LabVIEW™ an ADS client is realized in LabVIEW™,
which enables a performant data exchange with TwinCAT runtimes. The TwinCAT runtimes implement the
ADS server accordingly.

6.1 TwinCAT ADS
Basic structure of ADS devices and ADS symbols

Automation Device Specification (ADS) forms the basis for the LabVIEW™ interface. ADS describes a
device- and fieldbus-independent interface and enables communication between ADS devices.

The ADS device concept and the identification of an ADS device are explained below.

The modular system architecture of TwinCAT allows the individual parts of the software (e.g. TwinCAT PLC,
TwinCAT NC ...) to be regarded as independent devices: there is a software module for each individual task.
The servers in the system are the executing devices that provide certain services. The clients are programs
that request the services of the servers. A client initially establishes a connection to the server and requests
a service: for example, it requests reading the value of a variable or it requests writing a variable.

The interface for LabVIEW™ provides an ADS client interface, which enables data exchange (read and
write) with TwinCAT runtimes. The TwinCAT runtime, or its ADS devices, thus provide their services as ADS
servers and can be used from LabVIEW™.

ADS data exchange between ADS devices takes place via the ADS router. As shown in the diagram above,
data exchange between ADS devices implemented on the same system takes place via the system memory.
If two ADS devices, e.g. LabVIEW™ and the TwinCAT runtime, are on different systems, a route can be
created between two ADS routers. When creating the ADS route, the transport type (usually TCP/IP) for
communication between the two ADS routers can be defined. Accordingly, an ADS device identifies itself via
the AMS NetId of the ADS router and a port number, which then specifies the ADS device on the system.
For example, port 851 is the default port for the first PLC instance in the TwinCAT runtime. ADS services of
an ADS device are then specified by two parameters, the Index Group and the Index Offset. For example, a
PLC variable is accessible for reading or writing under a specific Index Group and Index Offset.

If an application is to be created that is to be used on several target systems and in which LabVIEWTM and
TwinCAT run on the same system, the relative AMS NetId can be used. The relative AMS NetId always
points to the local system. For this purpose, 0.0.0.0.0.0 is used for the address.

Technical introduction

TF371024 Version: 1.5.2

Summary
• AMS NetId: Identifies the ADS router, i.e. the system.

• ADS Routes
• Port: Identifies an ADS device.
• Index Group/Offset: Specifies the ADS system service, e.g. a variable for reading and writing.

In order to make the addressing of variables in a TwinCAT runtime more convenient for the user, TwinCAT
creates ADS symbols, which can be searched with the Target Browser, for example. The Target Browser is
also integrated into the interface for LabVIEW™ in the VI Symbol Interface [} 64] so that ADS symbols can
be selected easily and quickly. An ADS symbol for a variable in TwinCAT then contains the information
mentioned above: AMS NetId, Port, Index Group and Index Offset and furthermore the Bit Size as well as a
symbol name and the data type of the variable.

For more information on ADS, please see the following links:

• AMS NetId and Port: ADS device identification

• Index Group and Index Offset: Specification for ADS devices

• ADS Routes: System Node "Routes" and Add Route

• Connecting Devices with same AMS NetId: AmsNAT

• Using MQTT and Message Broker with ADS: ADS-over-MQTT

• TLS encrypted ADS: Secure ADS

• Target Browser

• Record ADS communication: ADS Monitor

Basic ADS data communication

Basically, there are three different possibilities/modes for data communication in ADS.

Synchronous reading or writing
• The ADS client in LabVIEW™ waits for a response from the ADS server before proceeding with code

execution.

Asynchronous reading or writing
• The ADS client in LabVIEW™ sends a read or write request to the ADS server but does not wait for a

response; instead, it continues to execute other parts of the program (for example, requests to other
variables).

Event-based communication (read only)
• An ADS notification is only registered once on the server. The notification can be registered "on

change" or "cyclic". After a notification has been registered at the server, it sends requested data to the
server without any further requests from the client.

https://infosys.beckhoff.com/content/1033/tc3_system/818866059.html?id=3642410868144282418
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/18014398625641867.html?id=3801185565839764443
https://infosys.beckhoff.com/content/1033/tc3_ads_intro/117241867.html?id=1944752650545554679
https://infosys.beckhoff.com/content/1033/tc3_system/html/tcsysmgr_systemnode_subnodes_routes.htm?id=5662381071116974088
https://infosys.beckhoff.com/content/1033/tc3_system/html/tcsysmgr_addroutedialog.htm?id=7456915385600655878
https://infosys.beckhoff.com/content/1033/ams_nat/index.html?id=5446486341902696635
https://infosys.beckhoff.com/content/1033/tc3_ads_over_mqtt/index.html?id=120186874503837909
https://infosys.beckhoff.com/content/1033/secure_ads/index.html?id=2501949194726739202
https://infosys.beckhoff.com/content/1033/te13xx_tc3_scopeview/5508698763.html?id=5717051341997975919
https://infosys.beckhoff.com/content/1033/tf6010_tc3_ads_monitor/index.html?id=6325013624252864758

Technical introduction

TF3710 25Version: 1.5.2

The VIs ADS Read [} 66] and ADS Write [} 71] are polymorphic. The desired communication mode (sync,
async or notification) can be selected there. The VIs also provide extensions to these basic modes that
involve LabVIEW™-side buffering of data and passing it to the LabVIEW™ process.

6.2 Communication modes
Initial classification

The extensions to the basic functionalities (sync, async and notification) are explained below. Practical
recommendations are also given as to which mode is a preferred choice for exemplary applications.

The following table shows all provided modes with an initial classification.

Mode Read Write Short description
Sync Single [} 28] X X Read/write a variable in a self-contained one-time action. The

client waits during the request to the server.
Async Single [} 29] X X Read/write a variable in a self-contained one-time action. The

client does not wait during the request to the server.
Noti. Single [} 29] X Waiting for an "On Change" event in TwinCAT as a one-time

action. The notification is unregistered after the event.
Noti. Buffered [} 30] X One-time reading of a time series with a defined length. The

notification is unregistered after receiving the time series.
E-Noti. Single [} 33] X Continuous reading (cyclic or "on change"). The notification is

not automatically unregistered; it runs until it is explicitly
unregistered. The notifications received are forwarded to an
event structure in LabVIEW™.

E-Noti. Buffered [} 35] X Buffered continuous reading (cyclic or "on change“). The
notification is not automatically unregistered; it runs until it is
explicitly unregistered. The notifications received are
forwarded to an event structure in LabVIEW™. The buffer
enables higher data throughput, but causes latency.

LVB-Noti. Single [} 31] X Continuous reading (cyclic or "on change"). The notification is
not automatically unregistered; it runs until it is explicitly
unregistered. On the LabVIEW side, the data is written to a
buffer to which the user has direct access.

In the table above some modes are assigned the property "Buffered". The diagram below illustrates the
system structure. For "Noti. Buffered" and "E-Noti. Buffered", the addressed buffer refers to a LabVIEW™-
side buffer of size LVBufferSize. The buffer is filled with data read from TwinCAT and transferred to
LabVIEW™ when the buffer size is reached. In addition, there is a TwinCAT-side buffer from the standard
ADS interface, which, however, can only be used with ADS notifications of the type Cyclic. By default the
size of this buffer is TcBufferSize = 10 samples, although it can be adjusted.

Technical introduction

TF371026 Version: 1.5.2

In the following section, the above example is considered with the following parameters:

TcBufferSize = 10

LVBufferSize = 500

ADS notification of the Cyclic type with 1 ms sample time (corresponds here to the cycle time of the PLC).

Every 1 ms a sample is now written into the TwinCAT-side buffer. After 10 ms the buffer is full and is
transferred to the LabVIEW™-side buffer. After receiving 50 messages with 10 samples each, i.e. after
500 ms (plus communication time), the LabVIEW™-side buffer is full and then transfers the entire data
packet of 500 samples to LabVIEW™. Accordingly, there is a delay time of at least 500 ms until the data
packet is received in LabVIEW™. The minimum expected delay time is also displayed in the configuration
dialog (Edit Symbol Parameters) in the lower part as "Expected min delay".

Parameterizing and realizing the communication modes

The parameters mentioned in the above section can be set in the User Interface (UI) of the Symbol Interface
[} 64].

Technical introduction

TF3710 27Version: 1.5.2

In addition to the parameterization of the ADS symbols, the basic structure of the LabVIEW™ program must
be observed, which is outlined below.

The Symbol Interface [} 64] opens a dialog with the Target Browser and the possibility to parameterize
each ADS symbol according to the above figure. The output of the Symbol Interface is a string in XML format
describing all selected ADS symbols and their parameterization. This string is linked to the Init VI [} 65].
Alternatively, the Symbol Interface can export the XML. This XML file can then be passed directly to the Init
VI. The Init VI then passes handles of the ADS symbols to a Read VI [} 66], which can be set as a
polymorphic VI to the options described above. At the output there are data handles, which are linked with a
Type Resolver VI [} 72]. The output of the Type Resolver VI is a Variant Type, which can be cast to the
correct format. When writing, the order of Type Resolver and Write VI [} 71] is reversed accordingly.

Technical introduction

TF371028 Version: 1.5.2

The above diagram illustrates the structure with Low Level VIs. To simplify programming, several Low Level
VIs are combined, depending on the communication mode. See Sync Read [} 28] or Async Read [} 29], for
example.

Practical considerations

There are various options for reading data. In order to simplify the selection in practice, a table is provided
below which describes exemplary application scenarios and suggests a communication mode.

Signal type in
TwinCAT

Example Communication mode

Quasi-static
parameters

Read the current parameter set of a PID controller
or the ID of the current product in the machine.
Reading machine settings.

Sync Read [} 28], Async
Read [} 29]

Continuous
signal

Stream of one or more sensor signals (temperature,
strain, force, …). There is no defined end of the
data stream.

General DAQ application

Fast response required: E-
Noti. Single [} 33]
(Transmode "cyclic")
High data throughput: E-
Noti. Buffered [} 30] or
LVB-Noti. Single [} 31]

Event Waiting for TwinCAT event, e.g. start of a process:
bStart changes from FALSE to TRUE.
The event appears once. It is then no longer
required and can be unregistered.

Noti. Single [} 29]
(Transmode "on change")

Event Responding to changes in states, e.g. changing the
signals to be read depending on the state of the
machine:
Viewing the nState variables.
The event occurs frequently and this event should
be observed throughout.

E-Noti. Single [} 33]
(Transmode "on change")

Signal of defined length Reading of exactly 1000 samples of a specific
sensor signal.

Noti. Buffered [} 30]

6.2.1 One-time reading
This communication mode is ideal, for reading a TwinCAT configuration or a completely filled data buffer in
the PLC once, for example. In contrast to continuous reading [} 31], one-time reading requires no
additional programming in LabVIEW™.

The TF3710 TwinCAT 3 Interface for LabVIEW™ product categorizes one-time reading into four cases:

1. Synchronous reading
2. Asynchronous reading
3. Notification Single
4. Notification Buffered

Synchronous reading

With synchronous reading, after a request has been sent by the client, a response from the ADS server is
awaited before the program code is executed further. The reader is released immediately after successful
confirmation from the server. This type of reading is therefore suitable for calculating or displaying the data
directly after it has been received from TwinCAT.

The polymorphic "Sync Single" block is composed of several low-level VIs [} 84] and thus combines the
creation of a handle, reading and releasing.

Technical introduction

TF3710 29Version: 1.5.2

Examples in LabVIEW™: Basic examples [} 102]

Asynchronous reading

With asynchronous reading, the client does not wait for a response from the ADS server. In this mode, there
is no guarantee that the reader has already received the data packet or not. As a result, the reader cannot
be released.

The polymorphic VI "Async Single" therefore initializes the reader and sends the request to TwinCAT. The
release is not part of the VI.

Examples in LabVIEW™: Basic examples [} 103]

Notification Single

Notification Single is only supported for Transmode "on change".

The block "Noti. Single" , in contrast to Notification E-Single [} 33], does not require a user-programmed
event structure. The notification is only intended for one-time use, i.e. to catch a one-time event. The
notification is registered in the background, received and then removed.

This block returns an array of two values, the last state before the value change and the new state after the
value change, e.g. [FALSE, TRUE], if a variable has changed its value from FALSE to TRUE.

Examples in LabVIEW™: Basic examples [} 102]

Technical introduction

TF371030 Version: 1.5.2

Notification Buffered

The block "Noti. Buffered", in contrast to Event driven reading [} 35], does not require a user-programmed
event structure. The block uses a buffer of size LVBufferSize to save the data received from TwinCAT in
an intermediate layer. The notification is not removed until the buffer is full. The saved data are then passed
to LabVIEW™.

Accordingly, reception of a time series with predefined length (LVBufferSize samples) can easily be realized
with this communication mode.

NOTICE
LVBufferSize
The buffer size is determined by the parameter LVBufferSize when creating the ADS symbol, see
Symbol Interface [} 64] VI.

Examples in LabVIEW™: Basic examples [} 102]

6.2.2 One-time writing
The TwinCAT 3 Interface for LabVIEW™ categorizes one-time writing as follows:

1. Synchronous writing
2. Asynchronous writing

Synchronous writing

During synchronous writing, the system waits for a response from the server (TwinCAT). The writer is
released after the data packet has successfully been sent to TwinCAT.

This process is performed in the background by the polymorphic VI "Sync Single".

Examples in LabVIEW™: Basic examples [} 104]

Asynchronous writing

When writing asynchronously, the system does not wait for a positive acknowledgement from the server. In
this mode, there is no guarantee that the Writer has already sent the data packet or not. As a result, the
writer cannot be released.

The polymorphic VI "Async Single" therefore initializes the writer and sends only the request to the server.
A release is not executed in the VI.

Technical introduction

TF3710 31Version: 1.5.2

Examples in LabVIEW™: Basic examples [} 104]

6.2.3 Reading data continuously
When continuously reading a time series from TwinCAT, the client in LabVIEW™ continuously receives data
packets from the ADS server. The data packets can be requested cyclically through a polling procedure or
event-based as ADS notification. Both options are explained below.

Reading with polling cycle

Simple reading

With polling, the client sends requests to the server at a defined time interval. This can be easily built using
the Low-Level [} 84] VIs, for example. The ADS reader is initialized only once and requests a new data
packet from TwinCAT with each cycle of the loop. With each cycle a new request is sent to the server and a
corresponding response is awaited. The ADS reader is released once the termination condition of the loop
has been reached. The image below shows the complete procedure in LabVIEW™.

Example in LabVIEW™: Basic examples [} 104]

The procedure is error-prone in the sense that it cannot be guaranteed that a cyclically changing value in the
PLC is sampled without gaps. For this use case, it is recommended to work with e-notifications, which are
described below.

Reading with LVB notification

Compared to Event-driven reading [} 33], the ADS notifications can also be read continuously with a
specific polling cycle. Reading in this case happens asynchronously, as described in the graphic below. Here
the ADS notifications are registered by the Thread1 and written into the LVBuffer. Later the LVBuffer is read
with the Thread2.

Technical introduction

TF371032 Version: 1.5.2

In contrast to Notification E-Buffered [} 35], no LabVIEW™ events are used in this case. Accordingly, the
LabVIEW™ user has direct access to the LVBuffer. In LabVIEW™ the block diagram looks like this:

Examples in LabVIEW™: Read Notification-LVBuffer Multiple [} 106]

The block diagram uses the LVBuffer blocks (see LVBuffer [} 79]):
• Init LVBuffer Handle
• Read From LVBuffer
• LVBuffer status
• Release LVBuffer Handle

The block diagram uses the ADS notification blocks:

• ADS-Read [} 70]

• Notification [} 79]

NOTICE
Polling cycle
If the polling cycle is slower than the notification cycle time, the LVBuffer may overflow and samples may be
lost.

Technical introduction

TF3710 33Version: 1.5.2

6.2.3.1 Event driven reading
With event-driven reading, LabVIEW™ events and ADS notifications are used together. An ADS notification
only has to be registered once on the server. The server data are then received cyclically or on change (see
"Transmode" in chapter Communication modes [} 25]) from the client. Accordingly, the client only needs to
issue one request, and the server then controls whether a new message needs to be sent to the client.

The ADS client in LabVIEW™ forwards the received notifications (data packets) as LabVIEW™ event to an
event structure. See also the LabVIEW™ documentation on User events. The event structure inserts the
received LabVIEW™ event into an internal queue. The events in the queue are processed by LabVIEW™
using the FIFO principle. If the notifications are received faster than it is possible to process the event
structure in LabVIEW™, the queue becomes larger. This ensures that no notification is lost. It must be noted
that this increases the amount of memory used. Accordingly, it must be taken into account that a point in
time must be reached at which the memory requirement (the pending events) can be processed.

We recommend using the LabVIEW™ Event Inspector Window (View > Event Inspector Window) to observe
the processing of LabVIEW™ events.

The interface for LabVIEW™ offers two different modes of operation for continuously registering ADS
notifications as LabVIEW™ events:

1. E-Notification Single
2. E-Notification Buffered

E-Notification Single

The operation mode E-Notification Single immediately forwards the received ADS data packet to the
LabVIEW™ event structure, i.e. it directly generates a LabVIEW™ event. A data packet can contain several
samples. Transmode and TCBufferSize are key parameters for this:

Transmode "Cyclic" uses the TwinCAT-side buffer (of size TCBufferSize). In this case notifications are first
written to the TCBuffer and then bundled and sent to the LabVIEW™ client when the buffer is full. This
achieves higher data throughput, and there is less load on network thanks to fewer messages with low user
data volume.

https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/creating_user_events/

Technical introduction

TF371034 Version: 1.5.2

With Transmode "OnChange" the TCBuffer is not used. Here, the individual notifications are forwarded
directly to the client without buffering. The client receives any change of state with minimal latency and
can respond directly.

In LabVIEW™ the block diagram corresponds in principle to the above picture. Here the Register Notification
Block and the Event Structure run in two different threads. The event is registered only once. The system
then waits for the notifications in the event structure. Each received notification contains:

• Notification Handle
• Number of samples
• Array of notification data
• Array of ADS timestamps

If no notification is received, the event structure times out.

Technical introduction

TF3710 35Version: 1.5.2

Examples in LabVIEW™: Read Notification-Event Single [} 105], Read Notification-Event Multiple [} 106]

E-Notification Buffered

The operation mode E-Notification Buffered uses a data buffer on LabVIEW™ side in addition to the above
structure. The buffer size is set by the parameter LVBufferSize when the ADS symbol is created. The
received ADS data packets are first written to the LabVIEW™-side buffer in an intermediate layer and only
forwarded to the event structure as a LabVIEW™ event when the buffer has been filled.

This approach generates LabVIEW™ events less frequently than in the E-Notification Single variant. By
submitting larger data packets to LabVIEW™, processing can be made more efficient, resulting in higher
overall data throughput.

Buffer size
The TwinCAT 3 interface for LabVIEW™ reserves an additional 10% buffer memory when
generating LVBuffer.

Transmode and TCBufferSize are also the key parameters for this operation mode:

With Transmode "Cyclic" the TCBuffer and the LVBuffer are used.

With Transmode "OnChange" the TCBuffer is not used. The individual notifications are transferred directly
to LVBuffer without buffering.

Technical introduction

TF371036 Version: 1.5.2

In LabVIEW™ the block diagram is similar to the E-Notification Single mode. Each received notification has
an additional field called BufferInfo. BufferInfo provides additional information about the LVBuffer:

• Previous Overflow Samples: Describes a counter that indicates how often the created buffer was not
sufficient. Example: The buffer has been created by the user with 50 samples. As described above,
10% more storage space is created internally, i.e. 55 samples. Several samples can be transferred for
each notification thanks to TwinCAT-side buffering. If the buffer in LabVIEW™ is already occupied with
45 samples and another packet with 10 samples arrives, the maximum buffer is not exceeded and the
counter does not increment. If, on the other hand, the ADS packet was to contain more than 10
samples, data would be lost because the buffer would not be sufficient. Accordingly, the counter would
increment by one.

• Missing Samples: Describes the difference between received and expected samples. Example: The
LabVIEW™-side buffer has 50 samples, so 50 samples are expected. However, if only 48 samples are
received, the value of Missing Samples is two.

• Buffer Usage: in percent %

Example in LabVIEW™: Read Notification-Event Buffered [} 105], Read Notification-Event Multiple [} 106]

6.2.4 Writing data continuously
During continuous writing LabVIEW™ sends write requests to TwinCAT. Sending of requests is based on a
polling cycle.

Technical introduction

TF3710 37Version: 1.5.2

Writing with polling cycle

Writing with the ADS synchronous block uses so-called continuous polling. Here the low-level [} 84] writer
blocks are used. The ADS writer is initialized only once. It sends a new TypeResolved data packet to the
ADS server with each cycle (iteration). With each cycle a new request is sent to the server and an
acknowledgement is awaited. The ADS writer is released once the condition for exiting the loop had been
reached. The image below shows the complete procedure in LabVIEW™.

This type of writing from LabVIEW™ to TwinCAT can be used to write values directly to an output terminal
with short cycle times, for example.

Example in LabVIEW™: Basic examples [} 107]

6.3 Type Resolving
The TwinCAT 3 Interface for LabVIEW™ provides TypeResolver, to parse the ADS data stream from
LabVIEW™ data type to TC3 data type or vice versa. A comparison is first made between the LabVIEW™
data type and the TC3 data type. If the data types are the same, the ADS data stream is parsed and copied
appropriately. The TypeResolver supports the following operation modes:

1. Resolve ADS data stream from TC3.
2. Resolve ADS data stream for TC3.

Resolve ADS data stream from TC3

The From TC block initializes the TypeResolver, parses and converts the ADS data read from TwinCAT with
ADS Read into the LabVIEW™ data type Variant. The block Type Release releases the TypeResolver from
memory. Variant is converted to the appropriate LabVIEW™ data type via Variant-to-Data VI.

The following graphic shows how the composition of TypeResolver from the Low Level VIs [} 89]. In this
example we assume a structure in TwinCAT that consists of three elements.

Definition of the structure:
TYPE ST_toLabVIEW :
STRUCT
 TCSignedWord : INT;
 TCUnsignedInt : UINT;
 TCStringArray : ARRAY [1..5] OF STRING;
END_STRUCT
END_TYPE

The TC3 data type and the LabVIEW™ data type must match for the conversion process. In the appendix
you will find a translation table [} 115] as an overview. On the right side of the block diagram is a LabVIEW™
container that mirrors the above structure.

Structure of the LabVIEW™ container (not initialized, merely defined):

• I16
• U16
• TCStringArray is 1..n Elements and of type string (not further specified in LabVIEW™)

Copying data may fail for the following reasons:

• The elements of the LabVIEW™ container are not configured in the correct order.

Technical introduction

TF371038 Version: 1.5.2

• The entries of the structure and the container do not have the same data type.

Resolve ADS data stream for TC3

The To TC block initializes the TypeResolver, compares the LabVIEW™ data type with the TC3 data type
and converts the LabVIEW™ data into ADS raw data. The block then releases the TypeResolver from the
memory. The converted ADS data can then be passed directly to an ADS Write [} 71] block.

The diagram below shows a similar scenario as described earlier for From TC. In this case the data are
converted from a LabVIEW™ data type to a TC3 data type. The conversion may fail for the following
reasons:

• The elements of the LabVIEW™ container are not configured in the correct order.
• The entries of the structure and the container do not have the same data type.
• The elements in the structure are not initialized.

Initialization of the LabVIEW™ data type
When converting from LabVIEW™ to TC3 data type, the LabVIEW™ data type must be pre-
initialized. For a complex data type, such as a structure, the complete data type must be initialized.
For an array the individual elements must be initialized.

Technical introduction

TF3710 39Version: 1.5.2

For the diagram above, for example, the following TwinCAT structure is conceivable in the PLC as a target
for writing:
TYPE ST_fromLabVIEW :
STRUCT
 TCSignedDoubleInt : DINT;
 TCUnsignedLongInt : ULINT;
 TCStringArray : ARRAY [1..6] OF STRING(80);
END_STRUCT
END_TYPE

The matching initialized LabVIEW™ container is then structured as follows:

• I32
• U64
• String array with 6 elements (80 characters per array element may be used here)

Automatic type generation

Manual creation of matching data types in LabVIEW™ can be time consuming and error-prone. The
TwinCAT Interface for LabVIEW™ offers the possibility of automatic type generation. Use the TypeResolver
[} 89] and the Utilities [} 76] wrapper block for this purpose. See the chapter Examples [} 102] for several
variations on how to use these VIs effectively: Example Type Resolver [} 76].

LabVIEW™ VIs

TF371040 Version: 1.5.2

7 LabVIEW™ VIs
The TwinCAT 3 Interface for LabVIEW™ provides controls and VIs for use in LabVIEW™.

The VIs are located in the block diagram in the functions palette: Functions > User Libraries > Beckhoff-
LabVIEW-Interface.

The main folder contains the basic VIs that can be used to build a program for reading via ADS, writing via
ADS, TypeResolving and releasing the ADS client. In addition, the main folder contains the subfolders: Low-
Level, With TypeResolving and Utilities.

Low-Level

The Low-Level subfolder contains Low-Level-VIs. The low-level VIs operate based the same principle as the
basic VIs. The low-level VIs involve a little more programming effort but offer higher performance (in terms of
data throughput) than the basic VIs and more flexibility for realizing complex programs. Reading data
continuously [} 31] is an example that uses the Low-Level-VIs for fast reading via ADS. Writing data
continuously [} 37] is a similar example. Not only reading and writing can be accelerated in this way, but also
TypeResolving, see Continous Read [} 104], for example.

The table describes the subfolders and their contents and function:

Subfolder VIs Function
Init [} 84] Base Init Initializes the ADS client.

Get List of ReadWrite
Symbols

Creates a list of ADS read and write symbols.

Get List of Registered
Targets

Creates a list of registered ADS target systems.

Read [} 85] Init Reader Initializes the ADS Reader.
Send Reader-Request Sends a request to the ADS server.
Register Notification Registers the notification on the ADS server.
TryReadData Checks the response from the server and reads the data

stream.
Release Reader Releases the reader from memory.

Write
[} 87]

Init Writer Initializes the ADS Writer.
Send Writer Request Sends a request to the ADS server.
CheckWriteStatus Checks for the response from the ADS server to ascertain

whether the data packet was received.
Release Writer Releases the writer from memory.

LabVIEW™ VIs

TF3710 41Version: 1.5.2

Subfolder VIs Function
TypeResolve

r [} 89]
Init Type Initializes the TypeResolver.
Resolve From TC Type Converts the TC3 data type to a LabVIEW™ data type variant.
Resolve To TC Type Converts the LabVIEW™ data type variant to TC3 data type.
Release Type Releases the TypeResolver from memory.

With TypeResolving

The With TypeResolving subfolder contains two VIs for reading and writing via ADS with integrated
TypeResolver block.

Utilities

The Utilities subfolder contains additional VIs for the following purposes:

Subfolder VIs Function
Notification

[} 77]
ADS To LabVIEW
Timestamp

Converts ADS timestamps to LabVIEW™ timestamps.

Notification Data To Variant
Array

Builds an array of LabVIEW™Variant from the notification data
stream.

Stop Notification Stops the ADS notifications.
Start Notification Starts the ADS notifications.
Unregister Notification Unregisters the notification on the server.
Check License Checks the license state on a given target system.
Set Device State,
Get Device State

Reads or changes the state of an ADS device.

Get Version Info Provides information regarding the product version.

LabVIEW™ VIs

TF371042 Version: 1.5.2

Operating elements

The controls are located in the front panel in the controls palette under: User Controls > Beckhoff-
LabVIEW-Interface.

LabVIEW™ VIs

TF3710 43Version: 1.5.2

The Notification subfolder contains controls that are required when initializing the LabVIEW™ event for ADS
notifications.

Furthermore, the subfolder "TypeGenerator" contains TypeGenerator [} 91] class objects to convert
TwinCAT types into LabVIEW™ types (see Basic examples [} 107]).

The following table describes the function of the controls:

Subfolder Controls Function
Notification Single User-Event

Data
Control for initializing a LabVIEW™ event for Single ADS
notifications.

LabVIEW™ VIs

TF371044 Version: 1.5.2

Subfolder Controls Function
Buffered User-Event
Data

Control for initializing a LabVIEW™ event for Buffered ADS
notifications.

TypeGenerator CBase Class object; base class of the TypeGenerator
CBool Class object; Boolean class of the TypeGenerator.
CNumeric Class object; numeric class of the TypeGenerator.
CString Class object; LabVIEW™ string class of the TypeGenerator.
CArray Class object; array class of the TypeGenerator.
CTimestamp Class object; LabVIEW™ timestamp class of the

TypeGenerator.
CCluster Class object; LabVIEW™ cluster class of the TypeGenerator.

7.1 ADS DAQ
The ADS DAQ (Data Acquisition) VI is a LabVIEW™ Express VI for easy configuration of measuring tasks
with TwinCAT 3, i.e. you can use this VI for read access to TwinCAT runtimes.

The user interface of the ADS DAQ VI guides you step by step through the configuration of your measuring
task:

• Selection of the data points to be read (ADS symbols)
• Configuration of the read mode (ADS notification)
• Type generator configuration
• Configuration of start and end condition of the measuring task

The configuration window opens after placing the ADS DAQ instance in the LabVIEW™ block diagram or by
double-clicking. The configurations can be made with the help of the selection windows described below.
After the configuration is complete, the instance creates all the necessary resources for reading the data.

Save VI before using the ADS DAQ VI
The ADS DAQ VI stores the configuration of an instance in the path of the current project/VI.
Therefore, it is necessary to save the project/VI beforehand.

Open ADS DAQ VI in an accelerated way
ü The library must be precompiled.
1. Open the settings for "Mass Compile" in the LabVIEW™ settings at Tools > Advanced.
2. Select the folder of the TwinCAT 3 Interfaces for LabVIEW™ library, e.g. C:\Program Files\ National

Instruments\LabVIEW 2023\user.lib\Beckhoff-LabVIEW-Interface.
3. Start "Mass Compile".

Output Meaning
[20] Handle Handle to the ADS client
[25] Loaded Types An array of LabVIEW™ Enums:

• Describes which data types have been generated.
[26] Selection LabVIEW™ cluster consisting of two elements:

• SymbolName: The name of the ADS symbol

LabVIEW™ VIs

TF3710 45Version: 1.5.2

Output Meaning
• Notification Mode: LabVIEW™ Enum

◦ Single TypeResolved Queue: Reads only one sample as notification
and adds the sample to the LabVIEW™ queue (only in LabVIEW™
32-bit).

◦ Single TypeResolved Control: Reads only one sample as notification
and writes the sample to the LabVIEW™ display element (only in
LabVIEW™ 32-bit).

◦ Buffered TypeResolved Queue: Reads a number of samples as
described by LVBufferSize, and adds the samples to the
LabVIEW™ queue.

◦ Buffered TypeResolved Control: Reads a number of samples as
described by LVBufferSize, and writes the samples to the
LabVIEW™ display element.

Number of symbols
Currently, the ADS DAQ block supports reading a maximum of 10 ADS symbols per instance. Use
multiple instances or the upgrade ADS FlexDAQ [} 53] if you want to read more than 10 ADS
symbols.

Generation of TwinCAT 3 data types
To support all notification modes, all generated types are converted to arrays. Notifications Buffered
as well as Notifications Single are supported in the same way.

Symbol selection window

This window is used to select the ADS symbols to be read with the ADS DAQ instance. The window offers
three different ways to select the ADS symbols:

1. Symbol Interface [} 64]: Opens an additional graphical user interface for browsing ADS symbols.
◦ Browse into the connected targets.
◦ Select the desired ADS symbols and drag and drop them into the right field.
◦ Optionally, in the right field you can export the selected ADS symbols as a list and save them as

an XML file.
2. Symbol File: Opens a LabVIEW™ file dialog box to read in the ADS symbols using an XML file

exported from the Symbol Interface.
◦ Reads only the symbols, but does not include all other settings of the ADS DAQ VI from the other

configuration views.
3. Load Previous Configuration: Loads the last configuration (if existing) with which the ADS DAQ

instance has already been configured.
◦ The configuration always opens as an empty configuration. If you want to adjust the existing

configuration, select Load Previous Configuration.

LabVIEW™ VIs

TF371046 Version: 1.5.2

After selecting the ADS symbols, select Next.

Click Finish in the dialog at any time to save and close the configuration.

Notification selection window

In this window the notification mode is specified for individual selected ADS symbols. The Notification Mode
describes on one side the way of reading (single/buffered) and on the other side the display of the read data
in LabVIEW™ (control/queue). Default setting is Buffered TypeResolved Queued.

The following table describes the different properties:

Single TypeResolved Buffered TypeResolved
Control
(Only recommended if
the data do not need to
be processed or saved)

The individual notifications are
displayed directly in a LabVIEW™
control.

Notifications are first written to an
intermediate buffer layer and passed into the
LabVIEW™ process when the buffer is filled.
The data are displayed in a LabVIEW™
control.

Queued
(Recommended if data
are to be processed,
saved, ...)

The individual notifications are
inserted directly into a LabVIEW™
queue.

Notifications are first written to an
intermediate buffer layer and passed into the
LabVIEW™ process when the buffer is filled.
The data are inserted into a LabVIEW™
queue.

For more information on single and buffered mode, see Communication modes [} 25] and Event driven
reading [} 33].

LabVIEW™ VIs

TF3710 47Version: 1.5.2

Click Modify to open the Symbol Interface and make changes to the ADS symbols to be read.

Click Next to go to the next configuration page.

Type generation selection window

In this window you can select whether the respective data type of the ADS symbol to be read is to be
generated as a LabVIEW™ constant or as a control/display element. Both constants and control/display
elements are automatically generated in the block diagram of the VI, where the ADS DAQ instance is also
located. Default setting is Control/Indicator.

Measurement Job configurator

In this window the ADS DAQ instance can be configured with additional start/stop/record conditions.

Default setting is at Start: LabVIEW run and at Stop: LabVIEW Abort, no Record.

LabVIEW™ VIs

TF371048 Version: 1.5.2

Start Job

The control Start Job configures the start of the reading process. The parameter Start Condition describes
the way of starting.

• LabVIEW™ Run: The ADS notifications are both automatically registered and started after starting the
VI.

• On Signal: The ADS notifications are not started automatically in this case. The ADS DAQ instance
waits for a specific trigger from LabVIEW™ or TwinCAT.

◦ Trigger on LabVIEW™ Event: With this selection the ADS DAQ instance generates a separate
event logic to start the ADS notifications from LabVIEW™.

LabVIEW™ VIs

TF3710 49Version: 1.5.2

◦ TwinCAT Signal: The DAQ instance is triggered by an (additional) TwinCAT signal and therefore
does not start the ADS notifications automatically. The button Browse Target opens the Symbol
Interface. Drag an ADS symbol to the right onto the "Read" area. All primary data types are
allowed. Furthermore, a signal condition has to be defined on which the ADS DAQ VI is to be
triggered.

The table below describes the transition (Last value ➔ New value) of different TwinCAT types with the
definition of Rising and Falling Edge used here.

TwinCAT type Rising Edge Falling Edge
Last value New value Last value New value

Boolean type 0 1 1 0
Numeric integer type (i8, i16, i32,
i64, u8, u16, u32, u64)

< Threshold = Threshold > Threshold = Threshold

Numeric rational type (float32,
float64) Epsilon: 1.0 e-7

< Threshold = Threshold > Threshold = Threshold

Stop Job

The control Stop Job configures the stopping of ADS notifications, i.e. the stopping of the reading process.
The parameter Stop Condition describes the way of stopping.

• LabVIEW™ Abort: The ADS notifications are automatically unregistered as well as stopped after
stopping the VI.

• Measurement Duration: The ADS notifications stop automatically after the measurement time has
elapsed.

• On Signal: This option behaves identically to the selection On Signal in Start Job (see above).
◦ Click Copy from Start Signal to copy the start condition from Start to Stop Job (applies only to the

TwinCAT signal).

Record Job

The recording of ADS DAQ measured data can be configured with the control Record Job. After
configuration and clicking Finish, the ADS DAQ instance generates an additional Block To TDMS to save
the received data as a LabVIEW™ TDMS file under the specified file name and path.

LabVIEW™ VIs

TF371050 Version: 1.5.2

Click Finish to save the settings. The automatic code generation for your configuration starts.

Automatically generated code in the block diagram

In the following, two variants of the automatically generated code are explained as examples.

In the first example, the ADS DAQ VI is generated with default settings, i.e. Buffered Type Resolved
Queue, Control/Indicator, Start with LabVIEW™ Run, Stop with LabVIEW™ Stop. An ADS symbol
MAIN.aBuffer is read.

• 1a: A handle from Queue 1 goes from the instance of ADS DAQ VI to the underlying queue blocks.
The queue of the ADS DAQ VI already contains Type-Resolved data packets. Each data packet is of
size LvBufferSize (cf. settings in the Symbol Properties [} 25]), as Buffered Type Resolved Queue
has been configured.

• 2a: Initialization of the queue with a LabVIEW™ Variant Array as data type.
• 2b: While loop with start condition "LabVIEW™ Run" and end condition "Timeout or error occurred".
• 2b.1: Dequeue element: Waits for received data packets with specified timeout of 5 seconds

(customizable).
• 2b.2: For loop: Takes the individual elements of the Variant array and converts the data type to the

corresponding LabVIEW™ data type. Here, for example, the user can directly access the converted
type and continue working with it.

• 2b.3: Checks the current state of the queue, e.g. whether the queue is growing steadily. If this is the
case, the data will arrive from ADS DAQ VI faster than it can be converted to the LabVIEW™ data
type. Optionally, the user can insert a display element or similar here to monitor the queue.

• 2c: Releases the queue memory. After that the queue is released from the LV memory. Optionally,
after these steps, the user can release the ADS client handle from memory.

In the second example, the start condition is changed from LabVIEW™-Run to Trigger on LabVIEW™-Event
and the recording to a TDMS file is enabled.

LabVIEW™ VIs

TF3710 51Version: 1.5.2

• The blocks already described in the first example remain identical in their function. Only the timeout
was set to -1 in this case (wait infinitely), because the start of the measurement is triggered by
LabVIEW™.

• 2b.4: The TDMS block is automatically generated based on the setting that a recording should take
place. The user must manually link the data to be saved to the To Variant block. If the received data
correspond to a LabVIEW™ signal, they can be converted to a LabVIEW™ waveform before the To
Variant. The user can use the automatically generated constant dt which corresponds to the time
distance between two data points (sampling period duration).

• 3a: The ADS reader handles are regenerated with each new configuration of the ADS DAQ VI. The
obsolete reader handles are automatically released from memory.

• 3b: Logic is created that generates a trigger-event when a Boolean value change occurs. This is used
to start the ADS notifications.

• 3b.1: Starts the ADS Notification for the registered ADS symbols.

Notes on the "To TDMS" in the block diagram

The To TDMS block allows you to save ADS DAQ instance data to a LabVIEW™ TDMS file (the NI TDMS
file format). This block is automatically generated by the ADS DAQ instance, but only if Queued has been
selected as the notification mode, cf. ADS DAQ [} 46].

https://www.ni.com/de-de/support/documentation/supplemental/06/the-ni-tdms-file-format.html
https://www.ni.com/de-de/support/documentation/supplemental/06/the-ni-tdms-file-format.html

LabVIEW™ VIs

TF371052 Version: 1.5.2

The TDMS file format provides TDMS objects and TDMS channels to hierarchically arrange data or
properties (name, date, ...) among TDMS objects. The inputs Property-/Data Objects can be used to
reference or classify both properties and data. The inputs Property-/Data Values help to enter measured
values under TDMS objects and channels.

Input/output Meaning
[0] Path In The path to the TDMS file
[1] Property Objects An array of a LabVIEW™ string:

• References a specific object (channel) for properties with the format
described below:

1. Object and channels are separated with slash "/".
2. The list of properties is entered by a comma-separated string (",").
3. Items 1 and 2 are separated by a colon (":").

Sample:
Property Object[0]=ObjectABC/ChannelXYZ:Name,Author,Date
TDMS Object=ObjectABC
TDMS Channel=ChannelXYZ
Property[0]=name (string)
Property[1]=author (string)
Property[2]=date (timestamp)

[2] Property Values An array of LabVIEW™ variants:
• Describes the values of properties.

[3] Transpose Data? Flag to transpose the entered 2D of 3D arrays.
[5] Data Objects An array of a LabVIEW™ string:

• References a specific object (channel) for data.
The following format is used for referencing:

1. Object and channels are separated with slash ("/").

Sample:
Data Object[0]=ObjectABC/ChannelXYZ

[7] Data Values An array of LabVIEW™ variants with the following supported LabVIEW™
types:
• LabVIEW™ waveform
• 1D, 2D, 3D array (2D, 3D array are internally converted to 1D):

◦ Boolean type
◦ Integer numeric types (i8 ... i64,u8 ... u64)
◦ Non-integer numeric types (float32, float64)
◦ LabVIEW™ string

[4] Path Out The path of the TDMS file

LabVIEW™ VIs

TF3710 53Version: 1.5.2

The following graphic shows an example of the To TDMS block in use.

7.2 ADS FlexDAQ
The ADS FlexDAQ (Flexible Data Acquisition) VI is a further development of the ADS DAQ [} 44] VI. As with
the ADS DAQ, this is a LabVIEW™ Express VI that simplifies the configuration of measuring tasks with
TwinCAT 3 and provides read access to the TwinCAT runtime.

The ADS FlexDAQ VI also offers the following additional options:
• Any number of ADS symbols can be read per instance.
• A unique Loop-ID can be assigned to the symbols. Symbols with the same Loop-ID are read in the

same while loop.
• Each symbol can be assigned a corresponding TDMS flag to store the data to be read in a TDMS file.

The user interface guides you step by step through the configuration of your measuring task:

• Selection of the data points to be read (ADS symbols)
• Configuration of the read mode (ADS notification)
• Configuration of the Loop-IDs
• Configuring the storage of measured data in a TDMS file
• Configuration of start and end condition of the measuring task

The configuration window opens after placing the ADS FlexDAQ instance in the LabVIEW™ block diagram
or by double-clicking. The configurations can be made with the help of the selection windows described
below. After the configuration is complete, the instance creates all the necessary resources for reading the
data.

Save VI before using the ADS FlexDAQ VI
The ADS FlexDAQ VI stores the configuration of an instance in the path of the current project.
Therefore, it is necessary to save the project beforehand.

Open ADS FlexDAQ VI in an accelerated way
ü The library must be precompiled.
1. Open the settings for "Mass Compile" in the LabVIEW™ settings at Tools > Advanced.
2. Select the folder of the TwinCAT 3 Interfaces for LabVIEW™ library, e.g. C:\Program Files\ National

Instruments\LabVIEW 2023\user.lib\Beckhoff-LabVIEW-Interface .
3. Start "Mass Compile".

LabVIEW™ VIs

TF371054 Version: 1.5.2

Input/output Meaning
[1] Reader handles Handles on the reading symbols
[20] Handle Handle to the ADS client
[26] Selection LabVIEW™ cluster consisting of two elements:

• SymbolName: The name of the ADS symbol
• Notification Mode: LabVIEW™ Enum

◦ Single TypeResolved Queue: Reads only one sample as notification
and adds the sample to the LabVIEW™ queue (only in LabVIEW™
32-bit).

◦ Single TypeResolved Control: Reads only one sample as notification
and writes the sample to the LabVIEW™ display element (only in
LabVIEW™ 32-bit).

◦ Buffered TypeResolved Queue: Reads a number of samples as
described by LVBufferSize, and adds the samples to the
LabVIEW™ queue.

◦ Buffered TypeResolved Control: Reads a number of samples as
described by LVBufferSize, and writes the samples to the
LabVIEW™ display element.

TwinCAT 3 data type generation
To support all notification modes, all generated types are converted to arrays. Notifications Buffered
as well as Notifications Single are supported in the same way.

Symbol selection window

Just as with ADS DAQ [} 44], the Symbol selection window is used to select the ADS symbols to be read with
the ADS Flex DAQ instance. In addition, there is an option Import Configuration, which can be used to
import a saved configuration. For this purpose, a LabVIEW™ file dialog box opens, in which a path to an
exported configuration can be selected.

LabVIEW™ VIs

TF3710 55Version: 1.5.2

Notification and Loop-ID selection window

In this window the Notification Mode and the Loop-ID are selected. The possible notification modes can be
found in the section ADS DAQ [} 46]. The Loop-ID is used to distribute the reading of the symbols to while
loops. With the ADS Flex DAQ it is possible to assign the same Loop-ID to several symbols. These are then
processed in the same while loop. This reduces the number of loops.

Maximum Loop-IDs
The number of inputs is limited to 23 for the ADS Flex DAQ instance. Consequently, a maximum of
23 different Loop-IDs can also be assigned.

LabVIEW™ VIs

TF371056 Version: 1.5.2

Save measured data

For each symbol there is the option "Save To TDMS", which saves the respective symbol in a TDMS file
when reading from TwinCAT. The block "To TDMS [} 51]" like in the ADS DAQ is used for this purpose.

Automatically generated code in the block diagram

In the following, two variants of the automatically generated code are explained as examples.

In the first example, the ADS FlexDAQ VI is generated with default settings, i.e. Buffered Type Resolved
Queue, no storage of measured data, Start with LabVIEW™ Run, Stop with LabVIEW™ Stop. An ADS
symbol MAIN.aAM is read.

LabVIEW™ VIs

TF3710 57Version: 1.5.2

• 1a: ADS Reader handles are initialized for the selected ADS symbols. The ADS reader handles are
regenerated with each new configuration of the ADS FlexDAQ VI. The obsolete reader handles are
automatically released from memory.

• 1b: The ADS notification is started with the help of the handle. For this purpose, iteration is performed
on each individual handle and the ADS notification is started.

• 2: A handle from Simpe Queue1 goes from the instance of ADS FlexDAQ to the underlying queue
blocks. The queue of the ADS FlexDAQ VI already contains Type-Resolved data packets. Each data
packet is of size LvBufferSize (cf. settings in the Communication modes [} 25]), as Buffered Type
Resolved Queue has been configured.

• 3a: The queue is initialized with a LabVIEW™ Variant Array as data type.
• 3b: While loop with start condition "LabVIEW™ Run" and without end condition.
• 3b.1: Dequeue element: Waits for received data packets for an infinite time (customizable).
• 3b.2: For loop: Takes the individual elements of the Variant array and converts the data type to the

corresponding LabVIEW™ data type. Here, for example, the user can directly access the converted
type and continue working with it.

• 3c and 3d: The queue memory is released. After that the queue is released from the LabVIEW™
memory. Optionally, after these steps, the user can release the ADS client handle from memory.

LabVIEW™ VIs

TF371058 Version: 1.5.2

In the second example, the start condition is changed from LabVIEW™-Run to "Trigger on LabVIEW™
Event" and the data storage to a TDMS file is enabled. Two symbols are read: MAIN.aAM and MAIN.aSine.
These are assigned the same Loop-ID. Thus, both symbols are read in the same while loop.

• The blocks 1a, 2, 3b, 3b.2, 3b.4, 3c and 3d already described in the first example remain identical in
their function.

• 1b: Logic is created that generates a trigger-event when a Boolean value change occurs. This is used
to start the ADS notifications.

• 3a: The queue is initialized with a LabVIEW™ cluster as data type with the member variables:
◦ SymbolName: Identifies the read data packet
◦ Data: TypeResolved ADS notification data packet

• 3b.2: The read data packet is unpacked and distributed to the corresponding case structure.
• 3b.3: Case structure that passes the ADS data for the unpacked symbol data to LabVIEW™. In the

example, the case structure manages two ADS symbols MAIN.aAM and MAIN.aSine.
• 3b.5: The TDMS block is generated automatically based on the setting that the data should be saved.

The data to be saved is automatically linked to the To Variant block. If the received data correspond to
a LabVIEW™ signal, they can be converted to a LabVIEW™ waveform before the To Variant. The user
can use the automatically generated constant dt which corresponds to the time distance between two
data points (sampling period duration).

LabVIEW™ VIs

TF3710 59Version: 1.5.2

7.3 ADS Write Assistant
Like the ADS FlexDAQ [} 53], the ADS Write Assistant VI is a LabVIEW™ Express VI that simplifies the
configuration of transfer tasks. The ADS Write Assistant VI can be used to write data from LabVIEW™ to
TwinCAT 3.

The user interface of the ADS Write Assistant VI guides you step by step through the configuration of your
transfer task:

• Selection of the data points to be written (ADS symbols)
• Configuration of the Loop-IDs
• Configuration of start and end condition of the write operation using the transfer job selection window

The configuration window opens after placing the ADS Write Assistant instance in the LabVIEW™ block
diagram or by double-clicking. The configurations can be made with the help of the selection windows
described below. After the configuration is complete, the instance creates all the necessary resources for
writing the data.

Save VI before using the ADS Write Assistant VI
The ADS Write Assistant VI saves the instance configuration in the path of the current project.
Therefore it is necessary that the project has been saved before.

Open ADS Write Assistant VI in an accelerated way
ü The library must be precompiled.
1. Open the settings for "Mass Compile" in the LabVIEW™ settings at Tools > Advanced.
2. Select the folder of the TwinCAT 3 Interfaces for LabVIEW™ library, e.g. C:\Program Files\ National

Instruments\LabVIEW 2023\user.lib\Beckhoff-LabVIEW-Interface.
3. Start "Mass Compile".

Input/output Meaning
[1] SumUp handle Handle to the SumUp Writer
[20] Handle Handle to the ADS client

Symbol selection window

The symbol selection window at the ADS Write Assistant offers the same functionality as at ADS FlexDAQ
[} 54]. Here one of the options can be selected to start a new configuration or to apply the settings of an
existing configuration. If you start a new configuration via Symbol Interface, you will automatically move on to
the next window.

LabVIEW™ VIs

TF371060 Version: 1.5.2

Loop-ID window

In this window, the symbols are assigned a unique Loop-ID. This distributes the writing of the symbols to
different while loops. If two symbols have the same Loop-ID, both symbols have used the same loop. The
number of Loop-IDs determines the number of generated while loops in the LabVIEW™ block diagram.

Write operation configurator (selection window)

In this window the start/stop condition for the data transport from LabVIEW™ to TwinCAT 3 can be
configured. The configurator behaves identically to ADS DAQ [} 47] except for the stop condition.

LabVIEW™ VIs

TF3710 61Version: 1.5.2

With the control Stop Job you configure the stopping of the writing process. The parameter Stop Condition
describes the stop condition.

• The options LabVIEW™ Abort and On Signal are described in ADS DAQ [} 47].
• Duration: If Duration is selected as a stop condition, then the write operation is determined after a

time. With this condition, the "Transition Condition" option is also available. This allows the write
duration to be influenced by a trigger. The image below shows the different "Transition Condition"
triggers.

◦ Single Trigger: Starts a new write duration only if no other write operation is present.
◦ New Trigger: Always starts a new write operation.
◦ Start-Stop Trigger: Starts a write operation if no other is present or, on the contrary, stops an

existing write operation.

Automatically generated code in the block diagram

In the following, two variants of the automatically generated code are explained as examples.

In the first example, the ADS Write Assistant VI is generated with default settings, i.e. Start with
LabVIEW™ Run, Stop with LabVIEW™ Stop. An ADS symbol MAIN.aSine is written. A sine signal
generated by LabVIEW™ and transferred to the TwinCAT 3 Runtime.

LabVIEW™ VIs

TF371062 Version: 1.5.2

• 1: The ADS Writer SumUp handle is initialized and the flag bAutosend? is set to True. Thus, each new
packet is automatically transported from LabVIEW™ to the TwinCAT 3 Runtime.

• 2: A handle goes from the ADS Write Assistant to the underlying queue blocks. The queue forwards
each new data packet to the ADS Write Assistant. Until then, the data packet only contains raw data,
which is then automatically converted into a TwinCAT 3 data type by the ADS Write Assistant using the
TypeResolver and then transferred to TwinCAT using the ADS SumUp.

• 3a: The queue is initialized with a LabVIEW™ variant as data type.
• 3b: While loop with start condition "LabVIEW™ Run" without end condition.
• 3b.1: The ADS Write Assistant generates an event case with the property "value change" for each

selected symbol. Only value changes are made available to the SumUp handle. The image below
shows an example of how the new data can be generated. This is about the so-called LabVIEW™
block diagram events.

• 4: The ADS symbol MAIN.aSine is in this case a LREAL array of 20 elements. The generated sine
signal therefore also contains only 20 data points.

• 3b.2: Enqueue element: Waits for new data packets and inserts each new data packet into the queue.
• 3c and 3d: Releases the queue memory. After that the queue is released from the LabVIEW™

memory. Optionally, after these steps, the user can release the ADS client handle from memory.

LabVIEW™ VIs

TF3710 63Version: 1.5.2

In the second example, the start/stop conditions are set to Trigger on LabVIEW™ Event. In addition, two
symbols are written here with the SumUp handle: MAIN.aSquare and MAIN.aSine. The two symbols are
assigned the same Loop-ID. Thus, both symbols use a while loop and the same event structure.

LabVIEW™ VIs

TF371064 Version: 1.5.2

• The blocks 2, 3b, 3b.1, 3b.2, 3c and 3d already described in the first example remain identical in their
function.

• 1a: The ADS Writer SumUp handle is initialized and the flag bAutosend? is set to False . The new
packet must be sent explicitly to TwinCAT 3. In the example this is done by the separate event "Send
SumUp".

• 1b: Logic is created that generates a trigger-event when a Boolean value change occurs. The value
change starts the write process.

• 1b.2: A write operation is started using a SumUp handle.
• 3a: The queue is initialized with a LabVIEW™ cluster as data type with the following member variables:

◦ SymbolName: Identifies the data packet to be written.
◦ Write Package: Contains the data packet to be transferred.

7.4 Symbol Interface
The Symbol Interface block provides a graphical user interface (UI) for browsing ADS symbols. It simplifies
the selection of different ADS symbols as read or write symbols and the parameterization of the symbols.
The block creates, based on the configuration created by the user, a LabVIEW™ string which can be passed
to the Init VI. Likewise, an XML file of the created configuration can be saved from the UI so that the
configuration can be loaded and passed to the Init VI without repeated manual configuration.

LabVIEW™ VIs

TF3710 65Version: 1.5.2

Input/output Meaning
[0] Symbol Interface Mode LabVIEW™ Enum consisting of three modes:

• ADS symbols for read access only
• ADS symbols for write access only
• Read & Write: Reading and writing are allowed.

[4] PortInfo LabVIEW™ string in XML with ADS read and/or write symbols.

Microsoft Windows only
The Symbol Interface block can be accessed only with a Windows operating system.

Running the Symbol Interface will open the graphical user interface shown below. The TwinCAT Target
Browser is integrated in the middle part. This is used to browse target systems or their ADS symbols. By
drag and drop an ADS symbol (or by multi-select several ADS symbols at the same time) can be dragged to
the right area for read accesses or to the left area for write accesses. For each selected ADS symbol a
graphic element appears in the Write or Read area. By double-clicking on these graphical elements (multi-
select is also possible here) another window appears. The window describes the information of the ADS
symbol and offers the option to attach parameters to the ADS symbol, which are used for certain read or
write commands.

Manual addressing via AmsNetId, Port, Index Group and Index Offset is also possible. To do this, create a
new element under ADS-Read or ADS-Write with New and you can fill in the "Symbol Info" area manually.

Paramater CycleTime
The cycle time in which the selected ADS symbol is executed in the TwinCAT runtime is always
offered as the default value for the CycleTime. Only multiples of this cycle time are allowed, since
an ADS notification with the new value is sent after each completed cycle. If a value other than
CycleTime is entered, it is always rounded up to the next permissible value.

7.5 Init
The main task of the Init block is to initialize and connect the ADS client to the ADS router. After successful
initialization, LabVIEW™ receives a handle back to the ADS client. For this purpose the Init block uses the
low-level Init [} 84] blocks in the background.

In addition to its main task, the Init block performs the following other tasks:

• Creates a list of ADS target systems based on the input XMLDescription.

https://infosys.beckhoff.com/content/1033/te13xx_tc3_scopeview/5500489739.html?id=2028097704104462594
https://infosys.beckhoff.com/content/1033/te13xx_tc3_scopeview/5500489739.html?id=2028097704104462594

LabVIEW™ VIs

TF371066 Version: 1.5.2

• Checks each individual target system for a valid TF3710 TwinCAT 3 Interface for LabVIEW™ license.
• Creates a list of target systems on which a valid TF3710 TwinCAT 3 Interface for LabVIEW™ could be

retrieved. Reading and writing is only possible on target systems with a valid license.
• Creates a sorted list of ADS read symbols based on the input XMLDescription.
• Creates a sorted list of ADS write symbols based on the input XMLDescription.

Input/output Meaning
[0] XMLDescription LabVIEW™ XML string with ADS read and write symbols or the path as a

string to an existing, already created (exported) XML file.
[4] Handle Handle to the ADS client
[6] LicenseState List of license states of the TwinCAT target systems
[8] ReadGrpSymbols List of ADS reading symbols
[10] WriteGrpSymbols List of ADS writing symbols

NOTICE
Client Handle
The handle to the ADS client in LabVIEW™ is only released if a valid TF3710 TwinCAT 3 Interface for
LabVIEW™ license is found on at least one of the selected target systems. If no license could be found, the
Init block returns an error via error out [15].

7.6 ADS-Read
The ADS-Read- block is a polymorphic VI and supports the following ADS communication modes [} 25] to
read data from TwinCAT:

• Sync Single [} 28]

• Async Single [} 29]

• Noti. Single [} 29]

• Noti. Buffered [} 30]

• E-Noti. Sinlge [} 33]

• E-Noti Buffered [} 35]

• E-Noti. Multiple Symbols [} 70]

• LVB-Noti. Single Symbol [} 70]

• LVB-Noti. Multiple Symbols [} 71]

All modes use the low-level Read [} 85] blocks in the background to:

1. Initialize the ADS Reader.
2. To send the ADS request.
3. To wait for answer and
4. finally release the reader from the memory.

The section Communication modes [} 25] provides further information as well as practical application
recommendations. In the chapter Examples [} 102] you will find exemplary implementations in LabVIEW™.

LabVIEW™ VIs

TF3710 67Version: 1.5.2

Depending on the selected communication mode, the parameters configured in Symbol Interface [} 64] are
used or remain unused. The relevant parameters are named below.

Sync Single [} 28]

In this operation mode, the ADS client (LabVIEW™) sends a request to the ADS server (TwinCAT) and waits
for a response from the server in the program sequence.

Relevant parameter: Timeout

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] Read status? Read status
[10] Ads Read Data ADS raw data

Async Single [} 29]

In this operation mode, the ADS client (LabVIEW™) sends a request to the ADS server (TwinCAT) and does
not wait for a response from the server in the program sequence.

Relevant parameter: Timeout

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] Read Status Read status
[10] ReadHdl Handle to the ADS reader

Noti. Single [} 29]

In this operation mode ADS notifications are registered to the relevant ADS symbols in TwinCAT. Only "on
change" registration is possible. The ADS notification is unregistered again from the ADS server when the
first "on change" notification is received in LabVIEW™.

LabVIEW™ VIs

TF371068 Version: 1.5.2

Relevant parameters: Timeout, Transmode (= on change)

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[7] Send Send flag, TRUE registers the ADS notification
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] Read Status Read status
[10] Ads Read Data ADS raw data (array of two entries, previous value and current value)

Noti. Buffered [} 30]

In this communication mode ADS notifications are registered on the respective ADS symbols in TwinCAT.
The ADS client in LabVIEW™ also uses a buffer memory, which is first filled with feedback messages from
TwinCAT before the entire buffer memory is transferred to LabVIEW™. After passing the buffered data to
LabVIEW™, the ADS notification is unregistered from the server. Both ADS notification types, "on change"
and "cyclic", are supported.

Relevant parameters: Timeout, Transmode, SampleTime, LVBufferSize, TCBufferSize

With Transmode = "on change" the SampleTime and the TCBufferSize are not relevant.

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[7] Send Send flag, TRUE registers the ADS notification
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] Read Status Read status
[10] Ads Read Data Buffered ADS raw data

E-Noti. Single [} 33]

In this operating mode, ADS notifications are registered on the relevant ADS symbols in TwinCAT and then
continuously transmitted to LabVIEW™ as a LabVIEW™ event. The ADS notification reports after a defined
time if ElapseTimeMs is greater than zero, or remains until it is actively unregistered. For the use of user
events in LabVIEW™, see LabVIEW™ documentation. In contrast to E-Noti. Buffered (see below), no
LabVIEW™-side buffer memory is used in this case.

https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/creating_user_events/

LabVIEW™ VIs

TF3710 69Version: 1.5.2

Relevant parameters: Timeout, Transmode, SampleTime, TCBufferSize

With Transmode = "on change" the SampleTime and the TCBufferSize are not relevant.

Input/output Meaning
[0] Handle Handle to the ADS client
[1] ElapseTimeMs Measurement duration in milliseconds:

• ElapseTimeMs > 0: the notifications stop after the time has elapsed.
• ElapseTimeMs = 0: the notifications must be stopped from outside.

[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[7] Send Send Flag, TRUE starts the ADS notification
[9] user event Reference to user event
[4] Handle Handle to the ADS client
[6] SymbolName The ADS symbol consisting of AMSNetId and symbol name

E-Noti Buffered [} 35]

In this operating mode, ADS notifications are registered on the relevant ADS symbols in TwinCAT and then
continuously transmitted to LabVIEW™ as a LabVIEW™ event. The ADS notification reports after a defined
time if ElapseTimeMs is greater than zero, or remains until it is actively unregistered. For the use of user
events in LabVIEW™, see LabVIEW™ documentation. In contrast to E-Noti. Single (see above), a
LabVIEW™-side buffer memory of size LVBufferSize is used in this case. When the buffer is filled the
collected data are passed to LabVIEW™ via an event.

Relevant parameters: Timeout, Transmode, SampleTime, TCBufferSize, LVBufferSize

With Transmode = "on change" the SampleTime and the TCBufferSize are not relevant.

Input/output Meaning
[0] Handle Handle to the ADS client
[1] ElapseTimeMs Measurement duration in milliseconds:

• ElapseTimeMs > 0: the notifications stop after the time has elapsed.
• ElapseTimeMs = 0: the notifications must be stopped from outside.

[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[7] Send Send Flag, TRUE starts the ADS notification
[9] user event Reference to user event
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name

https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/creating_user_events/

LabVIEW™ VIs

TF371070 Version: 1.5.2

E-Noti. Multiple Symbols

This operation mode works like E-Noti. Buffered [} 69], except that this VI can be used for several ADS
symbols at the same time.

Relevant parameters: Timeout, Transmode, SampleTime, TCBufferSize, LVBufferSize

With Transmode = "on change" the SampleTime and the TCBufferSize are not relevant.

Input/output Meaning
[0] Handle Handle to the ADS client
[1] ElapseTimeMs An array of U32 consisting of measurement duration in milliseconds:

• Element of ElapseTimeMs > 0: the notifications stop after the time expires.
• Element of ElapseTimeMs = 0: the notifications must be stopped

externally.
[5] Symbols An array of LabVIEW™ strings:

• The ADS symbol consisting of AMS address and symbol name
[9] Noti. E-Buffered Event
Refs

An array of references to user event

[4] Handle Handle to the ADS client
[6] SymbolName The ADS symbol consisting of AMS address and symbol name

LVB-Noti. Single Symbol

This operation mode works like E-Noti. Buffered [} 69], except that this VI provides direct access to LVBuffer
[} 79] instead of using LabVIEW™ events. As a result, no LabVIEW™ events are required to read the
notifications.

Relevant parameters: Timeout, Transmode, SampleTime, LVBufferSize, TCBufferSize

With Transmode = "on change" the SampleTime and the TCBufferSize are not relevant.

Input/output Meaning
[0] Handle Handle to the ADS client
[1] ElapseTimeMs Measurement duration in milliseconds:

• ElapseTimeMs > 0: the notifications stop after the time has elapsed.
• ElapseTimeMs = 0: the notifications must be stopped from outside.

[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[9] LVBuffer Handle Handle to the LVBuffer

LabVIEW™ VIs

TF3710 71Version: 1.5.2

Input/output Meaning
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name

LVB-Noti. Multiple Symbols

This operation mode works exactly like LVB-Noti. Single Symbol [} 70], with the difference that this VI can be
used for several ADS symbols at the same time.

Relevant parameters: Timeout, Transmode, SampleTime, LVBufferSize, TCBufferSize

With Transmode = "on change" the SampleTime and the TCBufferSize are not relevant.

Input/output Meaning
[0] Handle Handle to the ADS client
[1] ElapseTimeMs An array of U32 consisting of measurement duration in milliseconds:

• Element of ElapseTimeMs > 0: the notifications stop after the time expires.
• Element of ElapseTimeMs = 0: the notifications must be stopped

externally.
[5] Symbols An array of LabVIEW™ strings:

• The ADS symbol consisting of AMS address and symbol name
[9] LVBuffer Handle An array of U32 consisting of handle on LVBuffer
[4] Handle Handle to the ADS client
[6] Symbols An array of LabVIEW™ strings:

• The ADS symbol consisting of AMS address and symbol name

7.7 ADS-Write
The ADS-Write block is a polymorphic VI and supports the following ADS communication modes [} 25] to
write data to TwinCAT:

• Sync Single [} 30]

• Async Single [} 30]

For ADS-Write only one parameter is relevant, which can be set in the Symbol Interface [} 64] and that is the
parameter Timeout.

Sync Single [} 30]

In this operation mode, the ADS client in LabVIEW™ sends a write request with the type-resolved ADS value
to the ADS server in TwinCAT and waits for a response as to whether the value has been written.

LabVIEW™ VIs

TF371072 Version: 1.5.2

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[9] Ads Write Data Type-resolved ADS value
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] Write Status Write status

Async Single [} 30]

In this operation mode the ADS client in LabVIEW™ sends a write request with the type-resolved ADS value
to the ADS server in TwinCAT and does not wait for a response whether the value has been written.

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[9] Ads Write Data Type-resolved ADS value
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] Write Status Write status
[10] WriteHandle Handle to the ADS Writer

7.8 TypeResolver
The TypeResolver block is a polymorphic VI and supports the following operation modes to convert data
types:

• To TC (for writing from LabVIEW™ to TwinCAT)
• From TC (for reading from TwinCAT to LabVIEW™)

To TC

The To TC block initializes the TypeResolver, compares the LabVIEW™ data type with the TC3 data type
and converts the LabVIEW™ data into ADS raw data. The block then releases the TypeResolver from the
memory.

For more information see: Type Resolving [} 38].

LabVIEW™ VIs

TF3710 73Version: 1.5.2

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[9] WData Raw data for ADS-Write
[4] Handle Handle to the ADS client
[6] bHasMatched Flag (TRUE if TC3 and LabVIEW™ data type are identical, otherwise FALSE)
[10] ADSWData Type-resolved ADS write value

From TC

The From TC block initializes the TypeResolver, parses and converts the ADS data read from TwinCAT with
ADS Read into the LabVIEW™ data type Variant. The block Type Release releases the TypeResolver from
memory.

For more information see: Type Resolving [} 37].

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[9] ADSRData Raw data from ADS-Read
[4] Handle Handle to the ADS client
[8] RDataArray Type-resolved ADS read array for the LabVIEW™ data type
[10] RData Type-resolved ADS read value for the LabVIEW™ data type

7.9 Release
The Release block releases the handle to the ADS client from memory.

LabVIEW™ VIs

TF371074 Version: 1.5.2

Input Meaning
[0] Handle Handle to the ADS client

7.10 Utilities
Additional VIs can be found under Utilities.

Check License

The Check License block checks the target system for a valid TF3710 TwinCAT 3 Interface for LabVIEW™
license.

Input/output Meaning
[0] Handle The handle to the client
[5] Target/Symbol ADS target as string consisting of AMSNetId or ADS symbol as string

consisting of AMSNetId and symbol name
[4] Handle The handle to the client
[6] Target/Symbol ADS target as string consisting of AMSNetId or ADS symbol as string

consisting of AMSNetId and symbol name
[8] LicenseInfo LabVIEW™ cluster consisting of three elements:

• Boolean flag (TRUE if license is valid, FALSE otherwise)
• AMSNetId of the target system
• String with message about the license state, e.g. "license is valid" or "trial

license denied“

Get Device State

The Device State block is a polymorphic VI and can be operated as Get Device State and Set Device State.

The operation mode Get Device State reads the current state of the target system and the PLC.

The following table describes the ADS port and its meaning:

ADS Port ADS State State
TC3 PLC Port > 851 ADS_STATE_RUN PLC is running.

ADS_STATE_STOP PLC is stopped.
ADS_STATE_RESET PLC is reset.

System Port = 10000 ADS_STATE_RECONFIG TwinCAT is in Config mode.
ADS_STATE_RESET TwinCAT is in Run mode.

LabVIEW™ VIs

TF3710 75Version: 1.5.2

Input/output Meaning
[0] Handle The handle to the client
[5] Target ADS target as string consisting of AMSNetId
[4] Handle The handle to the client
[6] Target ADS target as string consisting of AMSNetId
[8] Device State State of the target system (ENUM)
[10] ADS State State of the PLC (ENUM)

Set Device State

The Set Device State block changes the current state of the target system and the PLC.

With a specific ADS Port and ADS State the PLC or TwinCAT can be set to a corresponding state. The
following table describes the ADS port and its usage:

ADS Port ADS State State
TC3 PLC Port > 851 ADS_STATE_RUN Starts the PLC.

ADS_STATE_STOP Stops the PLC.
ADS_STATE_RESET Resets the PLC.

System Port = 10000 ADS_STATE_RECONFIG Puts TwinCAT in Config mode.
ADS_STATE_RESET Puts TwinCAT in Run mode.

Input/output Meaning
[0] Handle The handle to the client
[5] Target ADS target as string consisting of AMSNetId
[7] Device State New state of the target system (numeric)
[9] ADS State New state of the PLC (ENUM)
[4] Handle The handle to the client
[6] Target ADS target as string consisting of AMSNetId

Get Version Info

The Get Version Info block returns the current version of the TF3710 setup and the installed TF3710 library
as a LabVIEW™ string.

LabVIEW™ VIs

TF371076 Version: 1.5.2

Output Meaning
[6] ProductVersion Setup version as string
[8] FileVersion Version of the installed TF3710 library as string

Generate Type

The Generate Type block automatically generates the LabVIEW™ data type based on a TypeInfo
description from a TwinCAT 3 data type.

The LabVIEW™ type can be inserted as a constant or control on a block diagram or saved as a LabVIEW™
ctl file. The Generate Type block is a wrapper VI and uses low-level class objects from TypeGenerator
[} 91] together with the TypeResolver [} 89]. There are several ways in which the wrapper block can be
parameterized.

1. The TypeResolver is already initialized externally and LabVIEW™ already has a TypeHandle.
The bAutoInit flag has the value "False":

◦ The TypeResolver already has information regarding the TwinCAT 3 data type.
◦ The wrapper block can generate the new type.

◦ The example Generate Type using Symbol Interface or Symbol's file [} 107] uses this method.
2. The TypeResolver is not initialized externally and LabVIEW™ does not have a TypeHandle. The

bAutoInit flag has the value "True":
◦ The TypeResolver has no information regarding the TwinCAT 3 data type.
◦ The wrapper block needs the TypeInfo to generate the type.

◦ The example Generate Type using TypeInfo file [} 108] uses this method.

Input/output Meaning
[0] Handle The handle to the client
[1] bAutoInit Boolean flag (True = TypeResolver is initialized internally, otherwise False)
[2] Saving Info LabVIEW™ cluster consisting of three elements:

• CustomDir: Boolean flag
TRUE = LabVIEW™ type is saved in a specific folder (Dir Name). If this
folder does not exist, the block creates the folder.
FALSE = LabVIEW™ type is saved in the project folder, subfolder Ctl.

• Dir Name: LabVIEW™ string (name of the folder)
• Control FileName: LabVIEW™ string (name of the new Ctl. If empty, the

block uses the name from the TypeInfo)

LabVIEW™ VIs

TF3710 77Version: 1.5.2

Input/output Meaning
[3] VI Refnum A static VI Refnum

The block uses the VI Refnum to insert the LabVIEW™ type as a Constant/
Control/Indicator on the block diagram.

[5] TypeHdl The handle to the TypeResolver
[7] Symbol Group LabVIEW™ Enum:

• Read symbol: The block generates a control.
• Write symbol: The block generates a control.

[9] TypeInfo LabVIEW™ string as XML description of TwinCAT 3 data type
[12] Block Diagram Type
Stype

LabVIEW™ Enum:
• Constant
• Control/Indicator

[13] Control/Indicator/
Constant Name

LabVIEW™ string.
Empty string: Default name of the TypeInfo.
Otherwise: Name of the Control/Indicator/Constant.

[8] Generated Type Name LabVIEW™ string as the name of the generated type
[10] Loaded Type LabVIEW™ Enum

Describes which data type was generated.

"Symbol Group" parameter
The Symbol Group parameter can be used to select whether a control/display element must be
generated. For the control, the TypeGenerator generates the type without name, because the
TypeResolver supports the control without name. If the control is a LabVIEW™ cluster, then the
cluster members are also generated without names.

7.10.1 Notification
The Notification folder contains additional blocks that can be used with ADS notifications when reading. The
folder contains the following VIs:

• ADS To LabVIEW Timestamp
• Notification Data To Variant Array
• Stop Notification
• Unregister Notification

ADS To LabVIEW Timestamp

The ADS To LabVIEW Timestamp block is a polymorpohic VI and supports single and multiple ADS
timestamps (as array). The block converts ADS timestamps, as transmitted by an ADS notification from
TwinCAT, into LabVIEW™ timestamps.

Notification Timestamp Single

The Notification Timestamp Single block converts single ADS timestamps to LabVIEW™ timestamps.

Input/output Meaning
[1] ADS Timestamp Single ADS timestamp
[0] LabVIEW Timestamp Single converted LabVIEW™ timestamp

LabVIEW™ VIs

TF371078 Version: 1.5.2

Notification Timestamp Buffered

The Notification Timestamp Buffered block converts multiple ADS timestamps to LabVIEW™ timestamps.

Input/output Meaning
[1] ADS Timestamp Array of ADS timestamps
[0] LabVIEW Timestamp Array of converted LabVIEW™ timestamps

Notification Data To Variant Array

The Notification Data To Variant Array block converts ADS raw data that has been read with ADS notification
into a suitable LabVIEW™ Variant.

Input/output Meaning
[11] Notification Data ADS raw data
[10] Samples Number of samples
[3] Notification Data Converted raw data in LabVIEW™ variant

Stop Notification

The Stop Notification block stops receiving ADS notifications.

Input/output Meaning
[5] Notification/Reader handle Handle to the ADS Notification/Reader
[2] Notification/Reader handle Handle to the ADS notification/ADS reader
[1] Has stopped? Boolean flag (TRUE if notification is stopped, FALSE otherwise)

Start Notification

The Start Notification block starts the registered notification.

LabVIEW™ VIs

TF3710 79Version: 1.5.2

Input/output Meaning
[5] Reader Handle Handle to the ADS reader
[2] Reader Handle Handle to the ADS reader
[1] Has started? Boolean flag (TRUE if notification is started, FALSE otherwise)

Unregister Notification

The Unregister Notification block unregisters the notification on the ADS server.

Input/output Meaning
[0] Handle The handle to the client (can also be left blank)
[5] Reader Handle The handle to the ADS reader
[4] Handle The handle to the client
[6] Reader Handle The handle to the ADS reader
[8] Has unregistered? Boolean flag (TRUE if notification is registered, FALSE otherwise)

7.10.1.1 Notification controls
These controls can be found at:
Front Panel Palette > User Controls > Beckhoff LabVIEW Interface > Notification.

Single Buffer Info

The Single Buffer Info control describes/defines the information needed for reading the Noti. Buffered [} 68].

Single User-Event Data

The Single User-Event Data control describes/defines information needed for continuous reading of the E-
Noti. Single [} 68] with LabVIEW™ events.

Buffered User-Event Data

The Buffered User-Event Data control describes/defines information needed for continuous reading of the E-
Noti. Buffered [} 69] with LabVIEW™ events.

7.10.2 LVBuffer
The LVBuffer folder contains blocks that can be used when reading an ADS notification. The folder contains
the following VIs:

• Init LVBuffer Handle
• Read From LVBuffer
• LVBuffer status
• Release LVBuffer Handle

Init LVBuffer Handle

The Init LVBuffer Handle block initializes a handle on the LVBuffer.

LabVIEW™ VIs

TF371080 Version: 1.5.2

Output Meaning
[4] Buffer handle The handle to the LVBuffer

Read From LVBuffer

The Read from LVBuffer block waits for samples in the LVBuffer (LabVIEW™-side data buffer, cf.
Communication modes [} 25]). The TimeoutMs influences the waiting. The block waits for a defined time if
TimeoutMs > 0, otherwise the block waits forever. If the LVBuffer receives a sample while waiting, the block
reads the sample and passes it to LabVIEW™.

Relevant parameters: LVBufferSize

Input/output Meaning
[0] Buffer handle The handle to the LVBuffer
[5] TimeoutMs The waiting time in milliseconds:

• TimeoutMs>0: Read From Buffer block waits for the defined time.
• TimeoutMs<0: Read From Buffer block waits forever.

[4] Buffer handle The handle to the LVBuffer
[6] bTimeout Boolean flag:

• True: if there is no sample in the LVBuffer in the defined time.
• False: LVBuffer continuously gets new samples and the Read From Buffer

block can read them.
[10] Buffer Data Samples from the LVBuffer
[14] DataBytes Number of bytes in LVBuffer

LVBuffer status

The LVBuffer Status block returns the current state of the LVBuffer regarding samples in the LVBuffer.

Input/Output Meaning
[0] Buffer handle The handle to the LVBuffer
[4] Buffer handle The handle to the LVBuffer
[6] Elements In Buffer Number of samples in LVBuffer that are still to be read.

LabVIEW™ VIs

TF3710 81Version: 1.5.2

Release LVBuffer Handle

The release LVBuffer Handle block releases the handle to the LVBuffer from memory.

Input Meaning
[0] Buffer handle The handle to the LVBuffer

7.10.3 CoE
The CoE (CANopen over EtherCAT) section contains blocks that enable the reading and writing of CoE
objects. The AMS address of the EtherCAT device is used here. The address is made up of the master AMS
NetId and the AMS port of the client. The folder contains the following VIs:

• Read CoE List
• Read CoE Description
• Read CoE Entry
• Read CoE Value
• Write CoE Value

The example CoE Read or Write [} 109] describes the use of CoE blocks.

Read CoE List

The VI Read CoE List reads a CoE directory of a subscriber and lists all objects in an array that are available
for the selected device. The objects are identified via indices that are used by subsequent CoE VIs for
access.

Input/output Meaning
[0][4] Handle Handle to the ADS client
[5][6] DeviceAddress AMS address of the device consisting of:

• AMS NetId of the master
• AMS port of the client

[7] ListType LabVIEW™ Enum
Describes which indices from the directory are to be listed:
• TotalNumberOfLists: Lists the number of elements in the AllCoEObjects,

RxPDOs, TxPDOs, StoredForDevice and StartUp directories.
• AllCoEObjects: List of all CoE objects
• RxPDOs: List of all RxPDO objects
• TxPDOs: List of all TxPDO objects
• SettingObjects: List of all objects that are relevant when the device is

replaced.

LabVIEW™ VIs

TF371082 Version: 1.5.2

Input/output Meaning
• StartUp: List of objects that can be used as StartUp parameters.

[8] List 1D array of the indices of the objects

Read CoE Description

The VI Read CoE Description calls up the CoE object description of the device and sends it to LabVIEW™.
The description includes the object name and the number of entries or subindices of the object.

Input/output Meaning
[0][4] Handle Handle to the ADS client
[5][6] DeviceAddress AMS address of the device consisting of:

• AMS NetId of the master
• AMS port of the client

[7] Index Index of the object
[8] ObjectName Name of the object
[10] ObjectDescription LabVIEW™ cluster consisting of the following elements:

• Index: Index of the object
• DataType: Data type of the object
• MaxSubIndex: Number of subindices of the object

Read CoE Entry

The VI Read CoE Entry reads a CoE entry of an object. The object is referenced via the index and subindex.
Information is returned, such as the name of the entry and the access.

Input/output Meaning
[0][4] Handle Handle to the ADS client
[5][6] DeviceAddress AMS address of the device consisting of:

• AMS NetId of the master
• AMS port of the slave

[7] Index Index of the object
[8] Entry Name Type of entry
[9] SubIndex Subindex of the entry
[10] CoE Entry LabVIEW™ cluster consisting of the following elements:

• Index: Index of the object
• SubIndex: Subindex of the entry

LabVIEW™ VIs

TF3710 83Version: 1.5.2

Input/output Meaning
• BitLength: The length of the entry in bits
• ObjectAccess: Information on changeability, e.g. whether it can only be

read or also written.

Read CoE Value

The VI Read CoE Value reads the value of a CoE entry. An array of the length BitLength in bytes is returned.
The array specifies the value in hexadecimal numbers in little-endian format.

Input/output Meaning
[0][4] Handle Handle to the ADS client
[5][6] DeviceAddress AMS address of the device consisting of:

• AMS NetId of the master
• AMS port of the slave

[7] CoE Entry LabVIEW™ cluster consisting of the following elements:
• Index: Index of the object
• SubIndex: Subindex of the entry
• DataType: Data type of the entry
• BitLength: The length of the value of the entry in bits
• ObjectAccess: Describes the EtherCAT state in which the object can be

accessed.
[8] Data 1D byte array with the value of the CoE entry

The value of the CoE entry is displayed in hexadecimal and the bytes are transferred in little-endian order.
Character strings and arrays are transferred from left to right, whereby the elements of the array are stored in
little-endian.

Write CoE Value

The Write CoE Value block writes the value of the CoE entry. The value to be written is an array of bytes of
the size BitLength. The values must be specified in hexadecimal numbers in little-endian format.

[0][4] Handle Handle to the ADS client
[5][6] DeviceAddress AMS address of the device consisting of:

• AMS NetId of the master
• AMS port of the slave

[7] Object Entry LabVIEW™ cluster consisting of the following elements:
• Index: Index of the object

LabVIEW™ VIs

TF371084 Version: 1.5.2

[0][4] Handle Handle to the ADS client
• SubIndex: SubIndex of the entry
• DataType: Data type of the entry
• BitLength: The length of the value of the entry in bits
• ObjectAccess: Describes the EtherCAT state in which the object can be

accessed.
[9] Data 1D byte array with the value of the CoE entry

7.11 Low-Level
Low-Level VIs [} 40] can be used to provide more programming flexibility in certain situations, or to increase
read or write speed.

7.11.1 Init
The subfolder Init contains low-level blocks that are necessary for initializing and connecting the ADS client.

Base Init

The Base Init block initializes and establishes a connection between ADS client and ADS router. The block
checks the licenses on the target systems after a successful connection. After successful verification the
block returns a valid handle to the ADS client.

Input/output Meaning
[0] XML Description LabVIEW™ XML string with ADS read and write symbols or the path as a

string to an existing, already created (exported) XML file.
[4] Handle Handle to the ADS client
[8] LicenseState List of license states of the TwinCAT target systems

Get List of Registered Targets

The Get List of Registered Targets block creates a list of ADS target systems which have been selected by
the user in Symbol Interface [} 64] or entered in the directly loaded XML file.

Input/output Meaning
[0] Handle Handle to the ADS client
[4] Handle Handle to the ADS client
[6] List of Registered Targets List of registered target systems

LabVIEW™ VIs

TF3710 85Version: 1.5.2

Get List of ReadWrite Symbols

The Get List of ReadWrite Symbols block creates a list of registered ADS read and write symbols, which
have been selected by the user in Symbol Interface [} 64] or entered in the directly loaded XML file.

Input/output Meaning
[0] Handle Handle to the ADS client
[5] List of Registered Targets List of registered target systems
[4] Handle Handle to the ADS client
[8] ReadGrpSymbols List of ADS reading symbols
[10] WriteGrpSymbols List of ADS writing symbols

7.11.2 Read
The subfolder Read contains low-level blocks which are necessary for reading via ADS.

Init Reader

The Init Reader block initializes the ADS reader. When a call is successful the block returns a handle to the
ADS reader.

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[7] ReaderMode The reading mode (ENUM: Sync/Async)
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] ReaderMode The reading mode (Sync/Async)
[10] ReadHandle Handle to the ADS reader

Send Reader-Request

The Send Reader-Request block sends a read request to the ADS server. The block waits for a response
from the server if the reader has been initialized with the "Synchronous" operation mode. Otherwise the
block does not wait for the response and passes the ReadHandle.

LabVIEW™ VIs

TF371086 Version: 1.5.2

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[7] ReaderMode The reading mode (ENUM: Sync/Async)
[9] ReadHandle Handle to the ADS reader
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] ReadHandle Handle to the ADS reader
[10] Read status? Read status
[14] ADS-Read Data ADS raw data

Register Notification

The Register Notification block registers the ADS notification with the ADS server and waits until the
notification is explicitly unregistered from the outside. The registration does not start the notifications
automatically. They have to be started explicitly.

Input/output Meaning
[0] Handle Handle to the ADS client
[1] ElapseTimeMs ADS symbol consisting of AMSNetId and symbol name
[5] ReaderMode The type of reading: LabVIEW™-ENUM:

• Noti. Single [} 67]

• Noti. Buffered [} 68]

• E-Noti. Single [} 68]

• E-Noti. Buffered [} 69]

• LVB-Noti. Single Symbol [} 70]
[7] Reader Argument Reader arguments vary with the ReaderMode:

• Noti. Single: no argument

• Noti. Buffered: Single Buffer Info [} 79]

• E-Noti. Single: LabVIEW™ Event Ref to Single User-Event Data [} 79]

LabVIEW™ VIs

TF3710 87Version: 1.5.2

Input/output Meaning
• E-Noti.Buffered: LabVIEW™ Event Ref to Buffered User-Event Data

[} 79]
• LVB-Noti.Single Symbol: Handle to LVBuffer to type (UINT32)

[9] ReadHandle Handle to the ADS reader
[4] Handle Handle to the ADS client
[10] ReadHandle Handle to the ADS reader

TryReadData

In connection with the "Asynchronous" operation mode the TryReadData block checks for successful receipt
of a response (ADS data packet) from the ADS server.

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[9] ReadHandle Handle to the ADS reader
[4] Handle Handle to the ADS client
[6] ReadHandle Handle to the ADS reader
[8] Read status? Read status
[10] ADS-Read Data ADS raw data

Release Reader

The Release Reader releases the handle to the reader from memory.

Input/output Meaning
[0] Handle Handle to the ADS client
[5] ReadHandle Handle to the ADS reader
[4] Handle Handle to the ADS client

7.11.3 Write
The subfolder Write contains low-level blocks that are necessary for writing via ADS.

Init Writer

The Init Writer block initializes the ADS writer. When a call is successful the block returns a handle to the
ADS writer.

LabVIEW™ VIs

TF371088 Version: 1.5.2

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[7] WriterMode Writing mode (Sync/Async)
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] WriterMode Writing mode (Sync/Async)
[10] WriteHandle Handle to the ADS Writer

Send Writer Request

The Send Writer-Request block sends a write request to the ADS server. The block waits for a response
from the server if the writer has been initialized with the "Synchronous" operation mode. Otherwise the block
does not wait for the response and passes the WriteHandle.

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[7] WriterMode Writing mode (Sync/Async)
[9] WriteHandle Handle to the ADS Writer
[12] ADS-Write Data TypeResolved ADS data package
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] WriteHandle Handle to the ADS Writer
[10] Write status? Write status

CheckWriteStatus

The CheckWriteStatus block checks for successful write access to the ADS server in connection with the
"Asynchronous" operation mode.

LabVIEW™ VIs

TF3710 89Version: 1.5.2

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[9] WriteHandle Handle to the ADS Writer
[4] Handle Handle to the ADS client
[6] WriteHandle Handle to the ADS Writer
[8] Write status? Write status

Release Writer

The Release Writer releases the handle to the writer from memory.

Input/output Meaning
[0] Handle Handle to the ADS client
[5] WriteHandle Handle to the ADS Writer
[4] Handle Handle to the ADS client

7.11.4 TypeResolver
The subfolder TypeResolver contains low-level blocks necessary for converting and comparing between the
LabVIEW™ data type and the TC3 data type.

Init Type

The Init Type block initializes the TypeResolver based on SymbolName and Handle. Upon successful
initialization, the block passes the handle to the TypeResolver and the TC3 data type of the ADS symbol as
a LabVIEW™ string in XML description to the LabVIEW™ process.

LabVIEW™ VIs

TF371090 Version: 1.5.2

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] TypeHdl Handle to the TypeResolver
[10] Type Size Data type size in bytes
[14] TypeInfo Type Description in XML as LabVIEW™ string

Resolve From TC Type

The Resolve From TC Type block compares and converts the raw data from the ADS read to the
corresponding LabVIEW™ data type "Variant". The conversion only takes place if the comparison between
the two data types was successful.

Input/output Meaning
[0] Handle Handle to the ADS client
[7] TypeHdl Handle to the TypeResolver
[9] ADSRData ADS data package as raw data
[4] Handle Handle to the ADS client
[6] TypeHdl Handle to the TypeResolver
[8] RDataArray TypeResolved ADS raw data as Variant array
[10] RData TypeResolved ADS raw data as Variant

Resolve To TC Type

The Resolve To TC Type block converts the raw data for ADS-Read from a LabVIEW™ data type "Variant"
to the appropriate TC3 data type. The conversion only takes place if the comparison between the two data
types was successful.

Input/output Meaning
[0] Handle Handle to the ADS client
[7] TypeHdl Handle to the TypeResolver
[9] WData ADS data package as raw data

LabVIEW™ VIs

TF3710 91Version: 1.5.2

Input/output Meaning
[4] Handle Handle to the ADS client
[6] TypeHdl Handle to the TypeResolver
[8] bHasMatched Flag (TRUE if TC3 and LabVIEW™ data type are identical, otherwise

FALSE)
[10] ADSWData TypeResolved ADS raw data as Variant

Release Type

The Release Type releases the handle to the TypeResolver from memory.

Input/output Meaning
[0] Handle Handle to the ADS client
[5] TypeHandle Handle to the TypeResolver
[4] Handle Handle to the client

7.11.4.1 TypeGenerator
The subfolder TypeGenerator contains LabVIEW™ classes that are responsible for generating a supported
LabVIEW™-Data types [} 115]. The following graphic shows the relationship or inheritance between the
TypeGenerator classes.

Use of the classes
The TypeGnerator classes of the respective data types were derived from the Base class and have
inherited the functions. See also the information about the wrapper block Utilities [} 76].

CBaseTypeDescriptor class

The CBaseTypeDescriptor class is the top class in the hierarchy. This class provides general methods and
properties for the other classes that inherit from it. The table presents general information about the public
properties and methods. The LabVIEW™ blocks provide further detailed information.

VI Property/method Access (Scope) Meaning
Read m_TCName Public Reads the property

m_TCName (name of the
loaded type)

LabVIEW™ VIs

TF371092 Version: 1.5.2

VI Property/method Access (Scope) Meaning
Write m_TCName Public Writes the property

m_TCName (name of the
loaded type)

Read m_TypeCode Public Reads the property
m_TypeCode (defines a
numeric value for the
loaded type)

Read m_TypeID Public Reads the property
m_TypeID (ID as GUID of
the loaded type)

Read m_TypeStyle Public Reads the property
m_TypeStyle (LabVIEW™
Enum: Describes how the
loaded type should be
generated)

Write m_TypeStyle Public Writes the property
m_TypeStyle (LabVIEW™
Enum: Describes how the
loaded type should be
generated).

Load Public, Static
Dispatch

Loads TwinCAT3 type
information into memory
based on TypeResolver or
TypeInfo.

Create Type Public, Dynamic
Dispatch

The method is empty. The
classes that inherit from
this class implement this
method.

Create SubType Public, Dynamic
Dispatch

The method is empty. The
classes that inherit from
this class implement this
method.

Unload and Save Public, Static
Dispatch

Unloads the loaded type
from memory and saves
the new type (if Ctl).

CBooleanTypeDescriptor class

The CBooleanTypeDescriptor class generates a Boolean type as a constant or control (in a block diagram)
or as a ctl on the hard disk. The table presents general information about public methods. The LabVIEW™
blocks provide further detailed information.

Method Access (Scope) Meaning
Init Public, Static Dispatch Initializes a Boolean type

based on the loaded
TypeInfo.

Create Type Public, Static Dispatch Generates a Boolean type
based on the loaded
TwinCAT 3 type
information.

Create SubType Public, Static Dispatch Generates a Boolean type
as a sub-type, e.g. the
element of a cluster.

LabVIEW™ VIs

TF3710 93Version: 1.5.2

IEC 61131-3 BIT data type
The CBooleanTypeDescriptor class supports BOOL and BIT data types and can therefore be used
to generate both.

CNumericTypeDescriptor class

The CNumericTypeDescriptor class generates a numeric type with proper representation (I8, I16, I32,
Single, ...) as constant or controls (in a block diagram) or as ctl on the hard disk. The table presents general
information about public methods. The LabVIEW™ blocks provide further detailed information.

Method Access (Scope) Meaning
Init Public, Static Dispatch Initializes the numeric

type, based on the loaded
TypeInfo.

Create Type Public, Static Dispatch Generates a numeric type
based on the loaded
TypeInfo.

Create SubType Public, Static Dispatch Generates a numeric type
as a sub-type, e.g. the
element of a cluster.

CStringTypeDescriptor class

The CStringTypeDescriptor class generates a LabVIEW™ string as a constant or control (in a block diagram)
or as a ctl on the hard disk. The table presents general information about public methods. The LabVIEW™
blocks provide further detailed information.

Property/method Access (Scope) Meaning
Read m_Length Public Reads the property

m_Length (length of the
TwinCAT 3 string of the
loaded TypeInfo).

Init Public, Static Dispatch Initializes a LabVIEW™
string based on the
loaded TypeInfo.

Create Type Public, Static Dispatch Generates a LabVIEW™
string based on loaded
TypeInfo.

Create SubType Public, Static Dispatch Generates a LabVIEW™
string as a sub-type, e.g.
an element of a
LabVIEW™ cluster.

CTimestampTypeDescriptor class

The CTimestampTypeDescriptor class generates a timestamp LabVIEW™ type as a constant or control (in a
block diagram) or as a ctl on the hard disk. The table presents general information about public methods.
The LabVIEW™ blocks provide further detailed information.

Method Access (Scope) Meaning
Init Public, Static Dispatch Initializes the timestamp

based on the loaded
TypeInfo.

Create Type Public, Static Dispatch Generates a timestamp
based on the loaded
TypeInfo.

LabVIEW™ VIs

TF371094 Version: 1.5.2

Method Access (Scope) Meaning
Create SubType Public, Static Dispatch Generates a timestamp as

a sub-type, e.g. an
element of a LabVIEW™
cluster.

CArrayTypeDescriptor class

The CArrayTypeDescriptor class generates an array LabVIEW™ type as a constant or control (in a block
diagram) or as a ctl on the hard disk. The table presents general information about public methods. The
LabVIEW™ blocks provide further detailed information.

Property/method Access (Scope) Meaning
Read m_ArrayInfo Public Reads the property

m_ArrayInfo (information
regarding TwinCAT 3
Array Dimension
elements)

Read m_BaseTypeID Public Reads the property
m_BaseTypeID (ID as
GUID of the loaded base
type)

Read m_Dimensions Public Reads the property
m_Dimensions (number of
TwinCAT 3 Array
Dimensions)

Read m_SubTypes Public Reads the property
m_SubTypes (for arrays
of LabVIEW™ clusters,
this property specifies the
number of cluster
elements generated)

Init Public, Static Dispatch Initializes the array based
on the loaded TypeInfo.

Create Type Public, Static Dispatch Generates an array based
on the loaded TypeInfo.

Create SubType Public, Static Dispatch Generates an array as a
sub-type, e.g. an element
of a LabVIEW™ cluster.

Get Tot SubTypes Public, Static Dispatch Returns information about
the number of complex
sub-types of the array and
their IDs as GUID (e.g.:
array with complex
BaseType, where the
BaseType contains further
arrays with complex
BaseTypes).

Get Sub-TypeInfo Public, Static Dispatch Reads TypeInfo of the
complex BaseType or
SubType with entered ID
as GUID.

Create Type From Existing
BaseType

Public, Static Dispatch Generates an array of a
ctl from a path.

LabVIEW™ VIs

TF3710 95Version: 1.5.2

CClusterTypeDescriptor class

The CClusterTypeDescriptor class generates a cluster LabVIEW™ type as a constant or control (in a block
diagram) or as a ctl on the hard disk. The table presents general information about public methods. The
LabVIEW™ blocks provide further detailed information.

Property/method Access (Scope) Meaning
Read m_SubItems Public Reads the property

m_SubItems (the number
of elements in the current
cluster).

Read
m_GeneratedSubItems

Public Reads the property
m_GeneratedSubItems
(the number of generated
elements in the current
cluster).

Read m_NestedLevel Public Reads the property
m_NestedLevel (the
nested level of the current
cluster).

Read
m_RemainingSubItems

Public Reads the property
m_RemainingSubItems
(the number of elements
of the current cluster that
are yet to be generated).

Read m_ActualPosition Public Reads the property
m_ActualPosition (iterator
of the SubTypes in the
cluster).

InitC Public, Static Dispatch Initializes the clusters,
based on the loaded
TypeInfo.

Create Type Public, Static Dispatch Generates a cluster based
on the loaded TypeInfo.

Create SubType Public, Static Dispatch Generates a cluster as a
sub-type, e.g. an element
of a LabVIEW™ cluster.

CEnumTypeDescriptor class

The CEnumTypeDescriptor class generates an Enum LabVIEW™ type as a constant or control (in a block
diagram) or as a ctl on the hard disk. The table presents general information about public methods. The
LabVIEW™ blocks provide further detailed information.

Property/method Access (Scope) Meaning
Read m_Keys Public Reads the property

m_Keys (All text elements
of the Enum).

Read m_Representation Public Reads the property
m_Representation (The
underlying memory of the
Enum).

Init Public, Static Dispatch Initializes the Enum,
based on the loaded
TypeInfo.

LabVIEW™ VIs

TF371096 Version: 1.5.2

Property/method Access (Scope) Meaning
Create Type Public, Static Dispatch Generates an Enum

based on the loaded
TypeInfo.

Create SubType Public, Static Dispatch Generates an Enum as a
sub-type, e.g. an element
of a LabVIEW™ cluster.

7.11.5 SumUp
The subfolder SumUp contains low-level blocks that allow writing or reading multiple ADS symbols with one
API call. Compared to simple ADS Read or Write statements, only one handle is needed for writing or
reading multiple symbols with the SumUp. The handle can in turn contain several subcommands that are
sent simultaneously to the TwinCAT 3 Runtime.

Init SumUp

The block Init SumUp initializes the ADS SumUp. If the call is successful, the block returns a handle to the
ADS SumUp.

Input/output Meaning
[0] [4] Handle Handle to the client
[1] bAutosend Autosend flag enables automatic sending of the SubCommand
[5] SumUp mode SumUp modes:

• Write
• Read

[6] SumUp handle Handle on the SumUp

Add SubCommand

The block Add SubCommand initializes a new subcommand and adds it to the SumUp handle.

LabVIEW™ VIs

TF3710 97Version: 1.5.2

Input/output Meaning
[0] [4] Handle Handle to the client
[5] [6] SumUpHandle Handle on the SumUp
[7] [8] Symbol Sub-command symbol

Put Data

The block Put Data adds new data to the initialized sub-command. For this the block needs the symbol name
to identify the sub-command. The block can only be used for writing SumUp commands.

Input/output Meaning
[0] [4] Handle Handle to the client.
[5] [6] SumUpHandle Handle on the SumUp
[7] Symbol Sub-command symbol
[9] WriteData Data that is to be written

Get Data

The block Get Data retrieves new data from the initialized sub-command. For this the block needs the
symbol name to identify the sub-command. The block can only be used for reading SumUp commands.

Input/output Meaning
[0] [4] Handle Handle to the client
[5] [6] SumUpHandle Handle on the SumUp

LabVIEW™ VIs

TF371098 Version: 1.5.2

Input/output Meaning
[7] Symbol Sub-command symbol
[9] Wait? Wait flag that defines whether to wait for the data to be read.

• True: The block waits until the timeout to see if the new data has come
in.

• False: The block does not wait for the new data.
[15] Read Data The data to be read

Enable Autosend

The block Enable Autosend enables the automatic sending of the SumUp command.

Input/output Meaning
[0] [4] Handle Handle to the client
[1] bAutosend The Autosend flag enables automatic sending of the SubCommand
[5] [6] SumUpHandle Handle on the SumUp

NOTICE
Sub-commands without data
Automatic sending fails for initialized sub-commands that do not contain any data.

Send SumUp

The block Send SumUp sends the sub-commands added to the SumUp handle to the TwinCAT 3 Runtime.
In contrast to SumUp [} 98], the Send SumUp must be explicitly called cyclically to send the data to
TwinCAT.

Input/output Meaning
[0] [4] Handle Handle to the client
[5] [6] SumUpHandle Handle on the SumUp

NOTICE
Sub-commands without data
Sending fails for initialized sub-commands that do not contain any data.

LabVIEW™ VIs

TF3710 99Version: 1.5.2

Release SumUp

The block Release SumUp releases the SumUp handle from memory.

Input/output Meaning
[0] [4] Handle Handle to the client
[5] SumUpHandle Handle on the SumUp

7.12 With TypeResolving
The folder With TypeResolving contains blocks that integrate reading and writing via ADS with TypeResolver
and, accordingly, further simplify programming in LabVIEW™.

Read TypeResolved

The Read TypeResolved block is a polymorphic block that integrates reading via ADS with TypeResolver.
The block offers synchronous and asynchronous reading via ADS.

Read Sync Single TypeResolved

The Read Sync Single TypeResolved block calls the block ADS-Read [} 66] to receive the ADS data packet
(as raw ADS data), synchronously from the ADS server, and then convert it to a LabVIEW™ data type
using the block TypeResolver [} 73].

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[4] Handle Handle to the ADS client
[8] Read Status? Read status
[10] RData TypeResolved ADS raw data as Variant

Read Async Single TypeResolved

The Read Async Single TypeResolved block calls the block ADS-Read [} 67] to receive the ADS data packet
(as raw ADS data) asynchronously from the ADS server and then convert it to a LabVIEW™ data type
using the block TypeResolver [} 73].

LabVIEW™ VIs

TF3710100 Version: 1.5.2

Input/output Meaning
[0] Handle Handle to the ADS client
[1] Wait? TRUE = wait for server response (sync)

FALSE (default) = do not wait for server response (async)
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] Read Status? Read status
[10] RData TypeResolved ADS raw data as Variant
[14] ReadHdl Handle to the ADS reader

Write TypeResolved

The Write TypeResolved block is a polymorphic block that integrates writing via ADS with TypeResolver. The
block offers synchronous and asynchronous writing via ADS.

Write Sync Single TypeResolved

The Write Sync Single TypeResolved block calls the block TypeResolver [} 72] to convert the LabVIEW™
data type to a TC3 data type and then synchronously send the converted data packet to the ADS server
with the call of block ADS-Write [} 71].

Input/output Meaning
[0] Handle Handle to the ADS client
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[9] WData ADS data package as raw data
[4] Handle Handle to the ADS client
[8] Write Status? Write status
[10] Has Matched? Flag indicating whether conversion and comparison between LabVIEW™

and TC3 data type was successful

LabVIEW™ VIs

TF3710 101Version: 1.5.2

Write Async Single TypeResolved

The Write Async Single TypeResolved block calls the block TypeResolver [} 72] to convert the LabVIEW™
data type to a TC3 data type and then send the converted data packet to the ADS server asynchronously
with the call of block ADS-Write [} 71].

Input/output Meaning
[0] Handle Handle to the ADS client
[1] Wait? TRUE = wait for server response (sync)

FALSE (default) = do not wait for server response (async)
[5] SymbolName ADS symbol consisting of AMSNetId and symbol name
[9] WData ADS data package as raw data
[4] Handle Handle to the ADS client
[6] SymbolName ADS symbol consisting of AMSNetId and symbol name
[8] Write Status? Write status
[10] Has Matched? Flag indicating whether conversion and comparison between LabVIEW™

and TC3 data type was successful
[14] WriteHandle Handle to the ADS Writer

Samples

TF3710102 Version: 1.5.2

8 Samples
The TF3710 TwinCAT 3 Interface for LabVIEW™ product categorizes the examples into two different
groups, which are described as follows:

8.1 Basic examples
A large number of basic examples are included in the LabVIEW™ environment during the installation of the
Interface for LabVIEW™. These can be found with the help of the NI Example Finder.

The following keywords facilitate the search for the examples:

• TC3
• Beckhoff
• Beckhoff-LabVIEW-Interface
• ADS
• TwinCAT
• TF3710

The NI Example Finder can be started in LabVIEW™ under Menu > Help > Find Examples.

Likewise, you can find all examples via the Directory Structure at
Beckhoff Automation > Beckhoff-LabVIEW-Interface.

The examples are categorized into the communication modes [} 25] described at the beginning of the
documentation:

• One-time reading
• One-time writing
• Reading data continuously
• Writing data continuously
• Generate LabVIEW™ type
• SumUp Read or Write
• CoE Read or Write

One-time reading

Simple Read with TypeResolving.vi

The example, like the other examples in Basic examples [} 102], uses the basic VIs from the LabVIEW™ VIs
[} 40] in the following steps:

1. In the first step, the Symbol Interface [} 64] basic block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime.

Samples

TF3710 103Version: 1.5.2

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The ReadGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example, Index Array selects the first ADS symbol in the list.
4. After initialization the polymorphic ADS-Read [} 66] block is called. The Read Choice input can be

used to select which read mode is to be used. The Read Choice input is a LabVIEW™ Enum and
provides the following options:

◦ Read Sync: For this, a synchronous read request is first sent to the TwinCAT runtime and a
response is waited for. The received ADS data packet is then converted from raw data to the
LabVIEW™ data type "Variant" using the TypeResolver.

◦ Noti. Single: For this, an ADS notification is registered and individual received notifications are
passed on to LabVIEW™. After reading the notification, the notifications are unregistered again.
The received ADS data is then converted from raw data to the LabVIEW™ data type "Variant" with
the help of the TypeResolver.

◦ Noti. Buffered: For this, an ADS notification is registered and a block of received notifications is
passed on to LabVIEW™. The number of notifications buffered in the block is determined by the
LVBufferSize symbol parameter. After reading the notifications, they are unregistered. The
received ADS data is then converted from raw data to the LabVIEW™ data type "Variant" with the
help of the TypeResolver.

5. Interaction: Variant-to-Data can be used to customize the example to translate the Variant to an
appropriate data type. The data type depends on the ADS symbol selected in the Symbol Interface.
See Type Resolving [} 37].

6. In the last step, the Release [} 73] basic block is called and the ADS client is released from memory.

NOTICE
Noti. Single
Noti. Single supports only the Transmode=OnChange

Read Async with TypeResolving.vi

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40] in the following steps:

1. In the first step, the Symbol Interface [} 64] basic block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime.

◦ If you have already exported an XML description of the ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The ReadGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example, Index Array selects the first ADS symbol in the list.
4. After initialization the With TypeResolving [} 99] block is called. An asynchronous read request is sent

to the TwinCAT runtime for this purpose. The program code continues running without waiting for
feedback.

5. In this example, the Read [} 87] low-level block is called in a while loop, waiting for a response from
the addressed ADS server. Please note that this is an illustrative example. The implementation in
actual applications may differ considerably. Once feedback has been received, the received data
packet is converted to the appropriate LabVIEW™ data type "Variant".

6. Interaction: Variant-to-Data can be used to customize the example to translate the Variant to an
appropriate data type. The data type depends on the ADS symbol selected in the Symbol Interface.
See Type Resolving [} 37].

7. The next step is to call a Read [} 87] low-level block and thus release the Reader from memory.
8. In the last step the Release [} 73] basic block is called and thus the ADS client is released from

memory.

Samples

TF3710104 Version: 1.5.2

One-time writing

Write Sync with TypeResolving.vi

The example, like the other examples in Basic examples [} 102], uses the basic VIs from LabVIEW™ VIs [} 40]
in the following steps:

1. In the first step, the basic Symbol Interface [} 64] block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime.

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The WriteGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example, Index Array selects the first ADS symbol in the list.
4. Interaction: Insert the appropriate data type in the place marked in red. The data type depends on the

ADS symbol selected in the Symbol Interface. See Data types [} 115].
5. After initialization, the block Write Sync Single TypeResolved [} 100] is called. For this purpose, the raw

data is first converted from the LabVIEW™ data type to a suitable TwinCAT 3 data type and then a
synchronous write request is sent to TwinCAT. The block waits for a response from the server to
ensure that the data was sent successfully.

6. In the last step the Release [} 73] basic block is called and thus the ADS client is released from
memory.

Write Async with TypeResolving.vi

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40] in the following steps:

1. In the first step, the basic Symbol Interface [} 64] block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime.

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The WriteGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example, Index Array selects the first ADS symbol in the list.
4. Interaction: Insert the appropriate data type in the place marked in red. The data type depends on the

ADS symbol selected in the Symbol Interface. See Data types [} 115].
5. After initialization, the block Write Async Single TypeResolved [} 101] is called. For this purpose, first

the raw data is converted from the LabVIEW™ data type to a suitable TwinCAT 3 data type and then
an asynchronous write request is sent to TwinCAT. The block does not wait for a response from the
ADS server.

6. In this example the low-level block CheckWriteStatus [} 88] is called in a While loop and waits for a
response from the requested ADS server. Please note that this is an illustrative example. The
implementation in actual applications may differ considerably.

7. The next step is to call the low-level block Release Writer [} 89] to release the writer from memory.
8. In the last step the Release [} 73] basic block is called and thus the ADS client is released from

memory.

Reading data continuously

The examples in this group use the polling procedure or LabVIEW™ event-based procedures to request the
data packets cyclically.

Continuos Read Sync Base.vi

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40] in the following steps:

Samples

TF3710 105Version: 1.5.2

1. In the first step, the basic Symbol Interface [} 64] block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime.

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the low-level blocks Base Init [} 84], Get List of ReadWrite Symbols [} 85] and Get
List of Registered Targets [} 84] are called to initialize the ADS client.

3. To speed up reading and type resolving, the ADS Reader, with the call of Init Reader [} 85], and the
TypeResolver, with the call of Init Type [} 89], are initialized in advance and only once in the next step.

4. In the next step the Send Reader-Request [} 85] block requests a new data packet from TwinCAT with
each cycle of the loop. The received data packet is converted to a suitable LabVIEW™ data type
"Variant" using the call Resolve From TC Type [} 90].

5. Interaction: Variant-to-Data can be used to customize the example to translate the Variant to an
appropriate data type. The data type depends on the ADS symbol selected in the Symbol Interface.
See Type Resolving [} 37].

6. When the termination condition for the loop is reached, the ADS reader is released from memory with
the call Release Reader [} 87] and the TypeResolver with the call Release Type [} 91].

7. In the last step the Release [} 73] basic block is called and thus the ADS client is released from
memory.

Read Notification-Event Single

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40] in the following steps:

1. In the first step, the basic Symbol Interface [} 64] block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime. When selecting,
note the parameter settings of the symbols for this operation mode: E-Noti. Single.

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The ReadGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example, Index Array selects the first ADS symbol in the list.
4. A User Event is created and registered. See also the LabVIEW™ documentation on user events.
5. When E-Noti. Single [} 68] is called, an ADS notification is registered on the ADS server for the

selected ADS symbol.
6. The next step is to wait for the ADS notifications in the event structure. If no notification is received,

the event structure times out. Calling the block Stop Notification [} 78] stops the ADS notification. The
stop occurs at the ADS server so that no more messages are sent.

7. Interaction: Type Resolving [} 37] is not implemented in the example. Two options are available. The
Resolving type is either realized within the event loop or after the ADS notification has been
completed/unregistered. The following items in the event structure are relevant: Data and
TimeStamps. The latter are the ADS timestamps.

8. When the block Unregister Notification [} 79] is called, the ADS notification of the symbol is
unregistered at the ADS server and the handle to the ADS notification is released from memory.

9. In the last step the Release [} 73] basic block is called and thus the ADS client is released from
memory.

Read Notification-Event Buffered.vi

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40]. The example is identical in structure to Read Notification-Event Single [} 105].
The only differences are:

• The polymorphic VI is set to E-Noti. Buffered [} 69].
• At the Data point in the event loop an array of size LVBufferSize is always passed.

https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/creating_user_events/

Samples

TF3710106 Version: 1.5.2

Read Notification-Event Multiple

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40]. The example is identical in structure to Read Notification-Event Buffered [} 105].
The only differences are:

• The polymorphic VI is set to E-Noti. Multiple Symbols [} 70].
• For each ADS symbol a corresponding measurement duration ElapseTimeMs (in milliseconds) can be

selected.
• Reading from each ADS symbol requires corresponding LabVIEW™ event case.

Read Notification-LVBuffer Multiple

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40] in the following steps:

1. In the first step, the basic Symbol Interface [} 64] block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime. When selecting,
observe the parameter settings of the symbols for the operation mode LVB-Noti. Multiple Symbols.

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The ReadGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example, Array Subset selects the first 3 ADS symbols in the list.
4. For each selected ADS symbol, a handle to the LVBuffer is initialized with the call to Init LVBuffer

Handle [} 79].
5. When LVB-Noti. Multiple Symbols [} 71] is called, ADS notifications are registered on the ADS server

for the selected ADS symbols. For this purpose the block takes an array of ADS symbols as input. In
addition, the duration of the individual notification can be entered in milliseconds. Thus, the
notifications are automatically stopped after the time expires.

6. In the next step, the individual symbols are read in a while loop. Reading can be waited for a defined
time (timeout) or infinitely long.

7. When the block Unregister Notification [} 79] is called, the ADS notification of the symbol is
unregistered at the ADS server and the handle to the ADS notification is released from memory.

8. When the block Release LVBuffer Handle [} 81] is called, the handle to the LVBuffer is released from
memory.

9. In the last step the Release [} 73] basic block is called and thus the ADS client is released from
memory.

Read Notification-LVBuffer Single

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40] in the following steps:

1. In the first step, the basic Symbol Interface [} 64] block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime. When selecting,
observe the parameter settings of the symbols for the operation mode LVB-Noti. Single Symbol.

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The ReadGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example, Index Array selects the first ADS symbol in the list.
4. A handle to the LVBuffer is initialized for the selected ADS symbol, with the call of Init LVBuffer Handle

[} 79].
5. When LVB-Noti. Single Symbol [} 70] is called, ADS notifications are registered on the ADS server for

the selected ADS symbol. In addition, the block allows to enter a measurement duration in
milliseconds. Thus, the notifications are automatically stopped after the time expires.

Samples

TF3710 107Version: 1.5.2

6. In the next step, the selected symbol can be read in a while loop. Reading can be waited for a defined
time (timeout) or infinitely long. It is important to consider whether the ADS notifications are sent Cyclic
or OnChange from the server.

7. When the block Unregister Notification [} 79] is called, the ADS notification of the symbol is
unregistered at the ADS server and the handle to the ADS notification is released from memory.

8. When the block Release LVBuffer Handle [} 81] is called, the handle to the LVBuffer is released from
memory.

9. In the last step the Release [} 73] basic block is called and thus the ADS client is released from
memory.

Writing data continuously

Continuos Write Sync Base.vi

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40] in the following steps:

1. In the first step, the basic Symbol Interface [} 64] block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime.

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The WriteGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example, Index Array selects the first ADS symbol in the list.
4. To speed up writing and type resolving, the ADS Writer, with the call of Init Writer [} 87], and the

TypeResolver, with the call of Init Type [} 89], are initialized in advance and only once in the next step.
5. In the next step the Send Writer-Request [} 88] block sends a new data packet to TwinCAT with each

cycle of the loop. Before writing, the LabVIEW™ data type Variant is converted to a suitable
TwinCAT 3 data type by calling Resolve To TC Type [} 90] block.

6. After reaching the termination condition of the loop, the ADS reader is released from memory by
calling Release Writer [} 89] and the TypeResolver by calling Release Type [} 91].

7. In the last step, the Release [} 73] basic block is called and the ADS client is released from memory.

Generate LabVIEW™ type

To automatically generate a LabVIEW™ data type to an ADS symbol, the TypeResolver [} 89] and the
Generate Type [} 76] wrapper block are used. The following examples describe two different ways to
implement this:

• Generate Type using Symbol Interface or Symbol's file
• Generate Type using TypeInfo file

Generate Type using Symbol Interface or Symbol's file

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40] in the following steps:

1. In the first step, the basic Symbol Interface [} 64] block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol in the TwinCAT runtime.

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The ReadGrpSymbols and WriteGrpSymbols output may contain more than one ADS symbol (if you

selected more than one symbol in step 1).
4. In a For loop is executed:

Samples

TF3710108 Version: 1.5.2

◦ TypeResolver: With Init Type [} 89] the type description is loaded in the TypeResolver and passed
to the LabVIEW™ process as XML string (TypeInfo).

◦ TypeGenerator: Calling the Generate Type [} 76] Wrapper VI generates a LabVIEW™ type.
◦ Release-Type: Releases the handle to the TypeResolver from memory.

5. Releases the handle to the client.

Generate Type using TypeInfo file

In contrast to Generate Type using Symbol Interface or Symbol’s file [} 107], the example uses a pre-
generated TypeInfo file to generate a LabVIEW™ type.

SumUp Read or Write

Read SumUp with TypeResolving.vi

The example, like the other examples in Basic examples [} 102], uses the basic VIs from the LabVIEW™ VIs
[} 40] in the following steps:

1. In the first step, the Symbol Interface [} 64] basic block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol from his TwinCAT runtime.

◦ If you have already exported an XML description of your ADS symbols from the Symbol Interface,
you can also select the exported file in the Front Panel before starting the VI, so that the XML is
loaded rather than calling the UI.

2. In the second step, the Init [} 65] basic block is called and the ADS client is initialized.
3. The ReadGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example, Index Array selects the first and second ADS symbols of the list.
4. After initialization of the ADS client, the TypeResolvers [} 37] are initialized with the selected symbols.
5. After that the SumUp handle is initialized for reading with the help of Init SumUp [} 96]. Here the flag

bAutosend is set to true so that new data is read automatically.
6. The Add Request block assembles the SumUp sub-commands.
7. After that, the example splits into two different threads:

◦ Loop 1: Reads cyclically the new data one after the other from the sub-commands. The read data
is converted to corresponding LabVIEW™ data types using the initialized TypeResolver.

◦ Loop 2: Enables or disables the automatic sending of ADS requests.
8. In the last step, all initialized handles are released from memory.

NOTICE
ADS error message when reading symbols with bAutosend set to false
ADS error messages may occur in Loop 1 if the flag bAutosend is set to false when initializing the SumUp
handle. In this case, the block Get Data starts reading the data from the sub-commands even though they
have not yet been sent to the ADS server and therefore do not contain any data.

Write SumUp with TypeResolving.vi

The example, like the other examples in Basic examples [} 102], uses the basic VIs and the low-level VIs
from LabVIEW™ VIs [} 40] in the following steps:

1. In the first step, the basic Symbol Interface [} 64] block is called. When the example is executed, the
user interface opens and the user can select an ADS symbol from his TwinCAT runtime.

◦ If you have already exported an XML description of the ADS symbols from the Symbol Interface,
you can select it as a path so that the XML is loaded rather than calling the UI.

2. In the second step, the basic Init [} 65] block is called and the ADS client is initialized.
3. The WriteGrpSymbols output may contain more than one ADS symbol (if you selected more than one

symbol in step 1). In the example two ADS symbols of the types timestamp and string are expected.
With Index Array the first and the second ADS symbol of the list are selected.

Samples

TF3710 109Version: 1.5.2

4. After initialization, the TypeResolvers [} 37] are initialized to the selected symbols. Then it is checked
whether the first symbol has the timestamp data type and the second has the string data type.

5. After that the SumUp handle is initialized for writing with the help of Init SumUp [} 96]. Here the flag
bAutosend is set to false so that the new data is not written automatically.

6. After that, the example splits into two different threads:
◦ Loop 1: Waits in an event structure for new data generated by Loop 2. The new data is distributed

to the appropriate sub-commands and waited to be sent. Before that the raw data is transformed
into a TwinCAT 3 data type. If the sub-command already contains data, these are replaced by the
new data. In the event structure, automatic sending can be enabled or disabled.

◦ Loop 2: Generates the block diagram events in a cycle of 250 ms.
7. In the last step, all initialized handles are released from memory.

CoE Read or Write

The example, like the other examples in this chapter, uses the basic VIs and the low-level VIs from
LabVIEW™ VIs [} 40] in the following steps:

1. In the first step, the basic Init [} 65] block is called up with an empty character string and the ADS
client is initialized.

2. The CoE blocks [} 81] expect the AMS address as a string of the EtherCAT device from which the CoE
configuration is to be read. The Device Address control element expects a character string with the
following format: AMS Net-Id of the master and AMS Port of the device (AMS NetId:Port).

If the control element is left empty, the example opens a dialog box for selecting an EtherCAT device.

1. The example reads the CoE list from the EtherCAT device.
2. Interaction:

◦ Double-click on an object in the CoE list to select it and read the object description. This calls up
the low-level VI.

◦ An entry with a subindex can be read using the Check Entry button.
◦ In the next step, various CoE entries can be read or written.

3. In the last step, the client handle is released from the memory.

8.2 Application example
The TwinCAT Solution and the corresponding VI (for x86 and x64 LabVIEW™ bit version) can be
downloaded here: https://infosys.beckhoff.com/content/1033/TF3710_TC3_Interface_for_LabVIEW/
Resources/10083995531/.zip.

The VIs are currently compiled with LabVIEW™ 2017 and can be used for subsequent LabVIEW™ versions
(2018, 2019, 2020, 2021, 2022) as well.

Description of the example

TwinCAT: The TwinCAT project generates signals in the PLC via signal generator function blocks (sine,
amplitude modulated signal, triangle signal,). The PLC runs with a cycle time of 5 ms. The signal
generator generates 10 values per cycle for the generated signals. Accordingly, an oversampling of 10 is
simulated here with the Beckhoff measurement terminals.

LabVIEW™: The LabVIEW™ project uses the Basic examples [} 105] example to read the ADS notifications
as LabVIEW™ events. Two while loops are used in parallel.

1. The first while loop receives the ADS notifications and converts the raw ADS data to an appropriate
LabVIEW™ data type "Variant" using the TypeResolver. The converted raw data is then inserted into
a queue.

2. The second while loop reads the elements from the queue and uses the "Variant to Data" block to
finally display the data in a graph. The received data and the ADS timestamps are displayed in two
different graphs.

https://infosys.beckhoff.com/content/1033/TF3710_TC3_Interface_for_LabVIEW/Resources/10083995531.zip
https://infosys.beckhoff.com/content/1033/TF3710_TC3_Interface_for_LabVIEW/Resources/10083995531.zip

Samples

TF3710110 Version: 1.5.2

Opening and starting the example

The example contains a TC3 folder and a LabVIEW folder. In the TC3 folder there is a tnzip, which you can
open with TwinCAT 3 via File > Open > Open Solution From Archive and then save as TwinCAT Solution
on your PC.

You can start the TwinCAT Solution with activate configuration on the target system of your choice. Make
sure that a TF3710 license is available on your target system. If you do not have a valid license, you can
create a 7-day trial license.

If your TwinCAT runtime is active, you can display the generated signals in TwinCAT with the TC3 Scope.
Depending on the selected target system, you only have to select your target system in the properties under
TC Signals > DataPool > aAM (aNoise_1, aNoise_2, aSine).

In the LabVIEW folder select either 32bit (x86) or 64bit (x64) and open the VI contained in it. When you start
the program the interface icon opens. Navigate to your target system and select one of the signals.

Appendix

TF3710 111Version: 1.5.2

9 Appendix

9.1 Overview of error codes
Error checking in the TF3710 TwinCAT 3 interface for LabVIEW™ product follows the standard LabVIEW™
data flow model. During the execution of LabVIEW™ VIs [} 40], error checking takes place at each executed
node. The blocks only continue if no errors occur. If an error occurs in a block, it is passed to the next block
and the affected part of the function or the block is no longer executed accordingly.

The LabVIEW™ error clusters are used for error checking, which then forwards the following information
accordingly:

• Status: a Boolean value that returns TRUE if an error occurred.
• Error code: an error identifier in the form of a signed 32-bit integer. If the error code is not 0 and the

status output is FALSE, it is a warning rather than an error.
• Source: specifies the source of the error in the form of a LabVIEW™ string.

The description of the error code can be found in LabVIEW™

Menu > Help > Describe Error.

To avoid collision with existing LabVIEW™ errors, all error codes are described in user-defined error codes.
The following error codes may occur when running LabVIEW™ VIs [} 40].

error value See…
16#FFFF_DE04 - 16#FFFF_DCD9 Listed in ADS Return Codes (there without high-order

WORD). Further information below on this page.

16#0000_1414 - 16#0000_1432 Listed in Support Return Codes [} 119].

16#0000_1464 - 16#0000_157C
16#FFFF_E05C – 16xFFFF_DFF9

Listed in Runtime Return Codes [} 116].

If an error occurs during initialization, the function block cannot be used.

Appendix

TF3710112 Version: 1.5.2

Further information on standard TwinCAT Error Codes:

error value symbol Error description Remedy option
16#FFFF_DDFA NOMEMORY No memory Incorrect memory settings

=> Increase router memory.
16#FFFF_DDEB TIMEOUT Device has a timeout A timeout can occur while waiting for

feedback or sending a request. This
can often be the case if the network is
overloaded. With One-time reading
[} 28] or One-time writing [} 30] the
timeout is not so critical, because here
the data packet is read or written in one
pass.

9.2 ADS Return Codes
Grouping of error codes: ADS Return Codes [} 113], ADS Return Codes [} 112], ADS Return Codes [} 112],
ADS Return Codes [} 115], ADS Return Codes [} 115]...

Global error codes

Hex Dec Name Description
0xFFFFE504 -6908 ERR_NOERROR No error.
0xFFFFE503 -6909 ERR_INTERNAL Internal error.
0xFFFFE502 -6910 ERR_NORTIME No real-time.
0xFFFFE501 -6911 ERR_ALLOCLOCKEDMEM Allocation locked – memory error.
0xFFFFE500 -6912 ERR_INSERTMAILBOX Mailbox full – the ADS message could not be sent.

Reducing the number of ADS messages per cycle will help.
0xFFFFE4FF -6913 ERR_WRONGRECEIVEHMSG Wrong HMSG.
0xFFFFE4FE -6914 ERR_TARGETPORTNOTFOUND Target port not found – ADS server is not started or is not

reachable.
0xFFFFE4FD -6915 ERR_TARGETMACHINENOTFOUND Target computer not found – AMS route was not found.
0xFFFFE4FC -6916 ERR_UNKNOWNCMDID Unknown command ID.
0xFFFFE4FB -6917 ERR_BADTASKID Invalid task ID.
0xFFFFE4FA -6918 ERR_NOIO No IO.
0xFFFFE4F9 -6919 ERR_UNKNOWNAMSCMD Unknown AMS command.
0xFFFFE4F8 -6920 ERR_WIN32ERROR Win32 error.
0xFFFFE4F7 -6921 ERR_PORTNOTCONNECTED Port not connected.
0xFFFFE4F6 -6922 ERR_INVALIDAMSLENGTH Invalid AMS length.
0xFFFFE4F5 -6923 ERR_INVALIDAMSNETID Invalid AMS Net ID.
0xFFFFE4F4 -6924 ERR_LOWINSTLEVEL Installation level is too low –TwinCAT 2 license error.
0xFFFFE4F3 -6925 ERR_NODEBUGINTAVAILABLE No debugging available.
0xFFFFE4F2 -6926 ERR_PORTDISABLED Port disabled – TwinCAT system service not started.
0xFFFFE4F1 -6927 ERR_PORTALREADYCONNECTED Port already connected.
0xFFFFE4F0 -6928 ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.
0xFFFFE4EF -6929 ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.
0xFFFFE4EE -6930 ERR_AMSSYNC_AMSERROR AMS Sync error.
0xFFFFE4ED -6931 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.
0xFFFFE4EC -6932 ERR_INVALIDAMSPORT Invalid AMS port.
0xFFFFE4EB -6933 ERR_NOMEMORY No memory.
0xFFFFE4EA -6934 ERR_TCPSEND TCP send error.
0xFFFFE4E9 -6935 ERR_HOSTUNREACHABLE Host unreachable.
0xFFFFE4E8 -6936 ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.
0xFFFFE4E7 -6937 ERR_TLSSEND TLS send error – secure ADS connection failed.
0xFFFFE4E6 -6938 ERR_ACCESSDENIED Access denied – secure ADS access denied.

Router error codes

Appendix

TF3710 113Version: 1.5.2

Hex Dec Name Description
0xFFFFE004 -8188 ROUTERERR_NOLOCKEDMEMOR

Y
Locked memory cannot be allocated.

0xFFFFE003 -8189 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.
0xFFFFE002 -8190 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of possible

messages.
0xFFFFE001 -8191 ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum number of

possible messages.
0xFFFFE000 -8192 ROUTERERR_UNKNOWNPORTTYP

E
The port type is unknown.

0xFFFFDEEF -8193 ROUTERERR_NOTINITIALIZED The router is not initialized.
0xFFFFDFFE -8194 ROUTERERR_PORTALREADYINUS

E
The port number is already assigned.

0xFFFFDFFD -8195 ROUTERERR_NOTREGISTERED The port is not registered.
0xFFFFDFFC -8196 ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.
0xFFFFDFFB -8197 ROUTERERR_INVALIDPORT The port is invalid.
0xFFFFDFFA -8198 ROUTERERR_NOTACTIVATED The router is not active.
0xFFFFDFF9 -8199 ROUTERERR_FRAGMENTBOXFUL

L
The mailbox has reached the maximum number for
fragmented messages.

0xFFFFDFF8 -8200 ROUTERERR_FRAGMENTTIMEOU
T

A fragment timeout has occurred.

0xFFFFDFF7 -8201 ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

Hex Dec Name Description
0xFFFFDE04 -8700 ADSERR_DEVICE_ERROR General device error.
0xFFFFDE03 -8701 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0xFFFFDE02 -8702 ADSERR_DEVICE_INVALIDGRP Invalid index group.
0xFFFFDE01 -8703 ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0xFFFFDE00 -8704 ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0xFFFFDDFF -8705 ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0xFFFFDDFE -8706 ADSERR_DEVICE_INVALIDDATA Invalid data values.
0xFFFFDDFD -8707 ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0xFFFFDDFC -8708 ADSERR_DEVICE_BUSY Device is busy.
0xFFFFDDFB -8709 ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result from use

of ADS function blocks in different tasks. It may be possible
to resolve this through multitasking synchronization in the
PLC.

0xFFFFDDFA -8710 ADSERR_DEVICE_NOMEMORY Insufficient memory.
0xFFFFDDF9 -8711 ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0xFFFFDDF8 -8712 ADSERR_DEVICE_NOTFOUND Not found (files, ...).
0xFFFFDDF7 -8713 ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0xFFFFDDF6 -8714 ADSERR_DEVICE_INCOMPATIBLE Objects do not match.
0xFFFFDDF5 -8715 ADSERR_DEVICE_EXISTS Object already exists.
0xFFFFDDF4 -8716 ADSERR_DEVICE_SYMBOLNOTFOUN

D
Symbol not found.

0xFFFFDDF3 -8717 ADSERR_DEVICE_SYMBOLVERSIONI
NVALID

Invalid symbol version. This can occur due to an online
change. Create a new handle.

0xFFFFDDF2 -8718 ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0xFFFFDDF1 -8719 ADSERR_DEVICE_TRANSMODENOTS

UPP
AdsTransMode not supported.

0xFFFFDDF0 -8720 ADSERR_DEVICE_NOTIFYHNDINVALI
D

Notification handle is invalid.

0xFFFFDDEF -8721 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0xFFFFDDEE -8722 ADSERR_DEVICE_NOMOREHDLS No further notification handle available.
0xFFFFDDED -8723 ADSERR_DEVICE_INVALIDWATCHSIZ

E
Notification size too large.

0xFFFFDDEC -8724 ADSERR_DEVICE_NOTINIT Device not initialized.
0xFFFFDDEB -8725 ADSERR_DEVICE_TIMEOUT Device has a timeout.
0xFFFFDDEA -8726 ADSERR_DEVICE_NOINTERFACE Interface query failed.
0xFFFFDDE9 -8727 ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0xFFFFDDE8 -8728 ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.

Appendix

TF3710114 Version: 1.5.2

Hex Dec Name Description
0xFFFFDDE7 -8729 ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.
0xFFFFDDE6 -8730 ADSERR_DEVICE_PENDING Request pending.
0xFFFFDDE5 -8731 ADSERR_DEVICE_ABORTED Request is aborted.
0xFFFFDDE4 -8732 ADSERR_DEVICE_WARNING Signal warning.
0xFFFFDDE3 -8733 ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.
0xFFFFDDE2 -8734 ADSERR_DEVICE_SYMBOLNOTACTIV

E
Symbol not active.

0xFFFFDDE1 -8735 ADSERR_DEVICE_ACCESSDENIED Access denied.
0xFFFFDDE0 -8736 ADSERR_DEVICE_LICENSENOTFOUN

D
Missing license.

0xFFFFDDDF -8737 ADSERR_DEVICE_LICENSEEXPIRED License expired.
0xFFFFDDDE -8738 ADSERR_DEVICE_LICENSEEXCEEDE

D
License exceeded.

0xFFFFDDDD -8739 ADSERR_DEVICE_LICENSEINVALID Invalid license.
0xFFFFDDDC -8740 ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0xFFFFDDDB -8741 ADSERR_DEVICE_LICENSENOTIMELI

MIT
License not limited in time.

0xFFFFDDDA -8742 ADSERR_DEVICE_LICENSEFUTUREIS
SUE

License problem: Time in the future.

0xFFFFDDD9 -8743 ADSERR_DEVICE_LICENSETIMETOLO
NG

License period too long.

0xFFFFDDD8 -8744 ADSERR_DEVICE_EXCEPTION Exception at system startup.
0xFFFFDDD7 -8745 ADSERR_DEVICE_LICENSEDUPLICAT

ED
License file read twice.

0xFFFFDDD6 -8746 ADSERR_DEVICE_SIGNATUREINVALI
D

Invalid signature.

0xFFFFDDD5 -8747 ADSERR_DEVICE_CERTIFICATEINVAL
ID

Invalid certificate.

0xFFFFDDD4 -8748 ADSERR_DEVICE_LICENSEOEMNOTF
OUND

Public key not known from OEM.

0xFFFFDDD3 -8749 ADSERR_DEVICE_LICENSERESTRICT
ED

License not valid for this system ID.

0xFFFFDDD2 -8750 ADSERR_DEVICE_LICENSEDEMODEN
IED

Demo license prohibited.

0xFFFFDDD1 -8751 ADSERR_DEVICE_INVALIDFNCID Invalid function ID.
0xFFFFDDD0 -8752 ADSERR_DEVICE_OUTOFRANGE Outside the valid range.
0xFFFFDDCF -8753 ADSERR_DEVICE_INVALIDALIGNMEN

T
Invalid alignment.

0xFFFFDDCE -8754 ADSERR_DEVICE_LICENSEPLATFOR
M

Invalid platform level.

0xFFFFDDCD -8755 ADSERR_DEVICE_FORWARD_PL Context – forward to passive level.
0xFFFFDDCC -8756 ADSERR_DEVICE_FORWARD_DL Context – forward to dispatch level.
0xFFFFDDCB -8757 ADSERR_DEVICE_FORWARD_RT Context – forward to real-time.
0xFFFFDDC4 -8764 ADSERR_CLIENT_ERROR Client error.
0xFFFFDDC3 -8765 ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.
0xFFFFDDC2 -8766 ADSERR_CLIENT_LISTEMPTY Polling list is empty.
0xFFFFDDC1 -8767 ADSERR_CLIENT_VARUSED Var connection already in use.
0xFFFFDDC0 -8768 ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.
0xFFFFDDBF -8769 ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred – the remote terminal is not

responding in the specified ADS timeout. The route setting
of the remote terminal may be configured incorrectly.

0xFFFFDDBE -8770 ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.
0xFFFFDDBD -8771 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.
0xFFFFDDBC -8772 ADSERR_CLIENT_PORTNOTOPEN Port not open.
0xFFFFDDBB -8773 ADSERR_CLIENT_NOAMSADDR No AMS address.
0xFFFFDDB4 -8780 ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.
0xFFFFDDB3 -8781 ADSERR_CLIENT_ADDHASH Hash table overflow.
0xFFFFDDB2 -8782 ADSERR_CLIENT_REMOVEHASH Key not found in the table.
0xFFFFDDB1 -8783 ADSERR_CLIENT_NOMORESYM No symbols in the cache.
0xFFFFDDB0 -8784 ADSERR_CLIENT_SYNCRESINVALID Invalid response received.
0xFFFFDDAF -8785 ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

Appendix

TF3710 115Version: 1.5.2

RTime error codes

Hex Dec Name Description
0xFFFFD504 -11004 RTERR_INTERNAL Internal error in the real-time system.
0xFFFDD503 -11005 RTERR_BADTIMERPERIODS Timer value is not valid.
0xFFFFD502 -11006 RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).
0xFFFFD501 -11007 RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).
0xFFFFD500 -11008 RTERR_PRIOEXISTS The request task priority is already assigned.
0xFFFFD4FF -11009 RTERR_NOMORETCB No free TCB (Task Control Block) available. The maximum

number of TCBs is 64.
0xFFFFD4FE -11010 RTERR_NOMORESEMAS No free semaphores available. The maximum number of

semaphores is 64.
0xFFFFD4FD -11011 RTERR_NOMOREQUEUES No free space available in the queue. The maximum

number of positions in the queue is 64.

0xFFFFD4FC -11012 RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.
0xFFFFD4FB -11013 RTERR_EXTIRQNOTDEF No external sync interrupt applied.
0xFFFFD4FA -11014 RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has

failed.
0xFFFFD4F9 -11015 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0xFFFFD4F8 -11016 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.
0xFFFFD4F7 -11017 RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.
0xFFFFD4F6 -11018 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.
0xFFFFD4F5 -11019 RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

TCP Winsock error codes

Hex Dec Name Description
0xFFFFBDB8 -16968 WSAETIMEDOUT A connection timeout has occurred - error while establishing the connection, because

the remote terminal did not respond properly after a certain period of time, or the
established connection could not be maintained because the connected host did not
respond.

0xFFFFBDB7 -16969 WSAECONNREF
USED

Connection refused - no connection could be established because the target computer
has explicitly rejected it. This error usually results from an attempt to connect to a
service that is inactive on the external host, that is, a service for which no server
application is running.

0xFFFFBDB6 -16970 WSAEHOSTUNR
EACH

No route to host - a socket operation referred to an unavailable host.

More Winsock error codes: Win32 error codes

9.3 Data types
TwinCAT data type Memory requirement LabVIEW™ data type
BIT 1 bit LabVIEW™ Boolean
BOOL 8 bits LabVIEW™ Boolean
BYTE/USINT 8 bits LabVIEW™ U8
WORD/UINT 16 bits LabVIEW™ U16
DWORD/UDINT 32 bits LabVIEW™ U32
ULINT 64 bits LabVIEW™ U64
SINT 8 bits LabVIEW™ I8
INT 16 bits LabVIEW™ I16
DINT 32 bits LabVIEW™ I32
LINT 64 bits LabVIEW™ I64
REAL 32 bits LabVIEW™ Single (sgl)
LREAL 64 bits LabVIEW™ Double (dbl)
String - LabVIEW™ String
TIME - LabVIEW™ Timestamp
DATE - LabVIEW™ Timestamp
TOD/ TIME_OF_DAY - LabVIEW™ Timestamp

Appendix

TF3710116 Version: 1.5.2

TwinCAT data type Memory requirement LabVIEW™ data type
DT/DATE_AND_TIME - LabVIEW™ Timestamp
DCTIME - LabVIEW™ Timestamp
FILETIME - LabVIEW™ Timestamp
LTIME - LabVIEW™ Timestamp
ARRAY - LabVIEW™ ARRAY
STRUCT - LabVIEW™ Cluster
Enum 16 bits (Default) LabVIEW™ Enum

9.4 Runtime Return Codes
Errors that occur during: initialization of the ADS client; establishing the connection; sending requests or
receiving data packets; converting the LabVIEW™ data type to TC3 data type or vice versa are described as
runtime errors.

error value symbol Error description Remedy option
16#00001464 5220 TF3710_ERR_E_POINTER Invalid pointer 0 (null).
16#00001465 5221 TF3710_ERR_E_OUT_OF_

RANGE
The value is not in the range

16#00001466 5222 TF3710_ERR_E_INVALID_
ARG

The parameters are invalid

16#00001467 5223 TF3710_ERR_E_OUT_OF_
MEMORY

The memory is full

16#00001468 5224 TF3710_ERR_E_NOT_A_N
UMBER

Is not a number

16#00001469 5225 TF3710_ERR_E_BAD_ALL
OCATION

Wrong allocation

16#0000146A 5226 TF3710_ERR_E_NOT_A_S
TRING

Is not a string

16#0000146B 5227 TF3710_ERR_E_UNINITIA
LIZED_TIMESTAMP

Timestamp is not initialized

16#0000146D 5229 TF3710_ERR_E_CONFIGU
RATION_NON_EXISTENT

The configuration was not found

16#0000146E 5230 TF3710_ERR_E_FLOATIN
G_OBJECT

Floating/Non-saved object (VI,
Project, ...)

16#0000146F 5231 TF3710_ERR_E_INVALID_
CONFIGURATION

The configuration is incorrect

16#0000146C 5228 TF3710_ERR_E_LOCKFAI
LED

Lock has failed

16#00001479 5241 TF3710_ERR_FAILED_WAI
T_ON_A_REQUEST

Waiting for the request has failed

16#00001483 5251 TF3710_ERR_INVALID_PO
RT_GROUP

Invalid ADS port type

16#00001484 5252 TF3710_ERR_NEW_NODE
_FAILED

The new node has failed

16#00001485 5253 TF3710_ERR_APPEND_B
UFFER_FAILED

Writing to the node has failed

16#00001486 5254 TF3710_ERR_MISSING_N
ODE

Node missing

16#00001487 5255 TF3710_ERR_PARSE_ER
ROR

Parsing has failed

16#0000148D 5261 TF3710_ERR_PORT_ALRE
ADY_EXIST

ADS port is still present

Appendix

TF3710 117Version: 1.5.2

error value symbol Error description Remedy option
16#0000148E 5262 TF3710_ERR_PORT_OPE

N_FAILED
Opening the ADS port has failed

16#0000148F 5263 TF3710_ERR_INVALID_TA
RGET_ID

AmsNetID of the target system is invalid

16#00001490 5264 TF3710_ERR_UNDEFINED
_TARGET_PORT

ADS port of the target system is invalid

16#00001491 5265 TF3710_ERR_CONNECTI
ON_FAILED

Failed to connect to the router

16#00001492 5266 TF3710_ERR_NO_PORT_
OPENED

Port is not open

16#00001493 5267 TF3710_ERR_DISCONNE
CT_FAILED

Disconnect from router has failed

16#00001494 5268 TF3710_ERR_READ_STAT
E_REQUEST_FAILED

Read state request has failed

16#00001495 5269 TF3710_ERR_VARHANDL
E_FAILED

Loading var handler has failed

16#00001496 5270 TF3710_ERR_VARHANDL
E_ALREADY_EXIST

Var handler is already present

16#00001497 5271 TF3710_ERR_VARHANDL
E_RELEASE_FAILED

Releasing var handler has failed

16#00001498 5272 TF3710_ERR_VARHANDL
E_ALREADY_RELEASED

Var handler has already been released

16#00001499 5273 TF3710_ERR_INVALID_VA
R_HANDLER

Var handler is invalid

16#0000149A 5274 TF3710_ERR_MISSING_R
OUTE

ADS route is not available

16#0000149B 5275 TF3710_ERR_CONNECTI
ON_ALREADY_EXISTS

The connection is already established

16#000014A6 5286 TF3710_ERR_EMPTY_SY
MBOL_TABLE

Currently no symbols available in table

16#000014A7 5287 TF3710_ERR_MISSING_T
ARGETS

Target systems are missing

16#000014A8 5288 TF3710_ERR_TYPESYSTE
M_PROVIDER_FAILED

The TypeSystem provider has failed

16#000014A9 5289 TF3710_ERR_TYPERESO
LVERPROXY_FAILED

The TypeResolverProxy has failed

16#000014AA 5290 TF3710_ERR_TYPERESO
LVERPROXY_LOAD_GUID
_FAILED

Loading of TC-GUID has failed.

16#000014AB 5291 TF3710_ERR_TYPERESO
LVERPROXY_LOAD_TYPE
_COLLECTION_FAILED

Loading of TypeCollection has failed.

16#000014AC 5292 TF3710_ERR_TYPERESO
LVERPROXY_SYMBOL_G
UID_ERROR

GUID is invalid

16#000014AD 5293 TF3710_ERR_LVTYPEDES
CRIPTOR_INVALID_ELEM
ENT_RANGE

Number of elements in the
TypeResolver do not match.

16#000014AE 5294 TF3710_ERR_LVTYPEDES
CRIPTOR_TYPE_NOT_SU
PPORTED

Data type is not currently supported

16#000014AF 5295 TF3710_ERR_LVTYPEDES
CRIPTOR_INVALID_ARRA
Y_SYMBOLINFO

Elements are missing in the array data
type

Appendix

TF3710118 Version: 1.5.2

error value symbol Error description Remedy option
16#000014B0 5296 TF3710_ERR_LVTYPEDES

CRIPTOR_MISSING_ARRA
Y_SYMBOLINFO_ELEMEN
TS

Symbol info for array data type is invalid

16#000014B1 5297 TF3710_ERR_LVTYPEDES
CRIPTOR_MISSING_ARRA
Y_BASE_TYPE

Array data type has no base type

16#000014B2 5298 TF3710_ERR_LVTYPEDES
CRIPTOR_LOAD_FAILDED

Loading of TypeResolver has failed

16#000014B3 5299 TF3710_ERR_LVTYPEDES
CRIPTOR_INVALID_PRIM
ARY_TYPE

The primary data type is invalid

16#000014B4 5300 TF3710_ERR_LVTYPEDES
CRIPTOR_TYPE_UNINITIA
LIZED

TypeResolver is not initialized

16#000014C4 5316 TF3710_ERR_LVTYPEDES
CRIPTOR_INVALID_CLUS
TER_SYMBOLINFO

Symbol info for cluster data type is
invalid

16#000014C5 5317 TF3710_ERR_LVTYPEDES
CRIPTOR_NON_CLUSTER
_TYPE

Data type is not of the LabVIEW™
cluster data type

16#000014C6 5318 TF3710_ERR_LVTYPEDES
CRIPTOR_INVALID_CLUS
TER_SYMBOLPOSITION

Elements are missing in the cluster data
type

16#000014D4 5331 TF3710_ERR_LVTYPEDES
CRIPTOR_INVALID_TIMES
TAMP_VALUE

Invalid TC timestamp value

16#000014D5 5332 TF3710_ERR_LVTYPEDES
CRIPTOR_UNSUPORTED_
TIMESTAMP

This TC timestamp data type is
currently not supported

16#000014D9 5337 TF3710_ERR_LVTYPEDES
CRIPTOR_TYPE_SIZE_MI
SMATCH

Data types are not identical

16#000014DA 5338 TF3710_ERR_LVTYPEDES
CRIPTOR_TYPE_MISMAT
CH

Data types are not identical

16#000014DB 5339 TF3710_ERR_LVTYPEDES
CRIPTOR_DATA_SIZE_MI
SMATCH

Data type content does not match

16#00001504 5380 TF3710_ERR_TYPEGENE
RATOR_SUBTYPE_NOT_F
OUND

TypeGenerator cannot find the
SubType or the BaseType

16#00001519 5401 TF3710_ERR_READ_REQ
UEST_FAILED

Read request has failed

16#0000151A 5402 TF3710_ERR_INVALID_RE
AD_BUFFER

ADS raw data incorrectly packed

16#0000151B 5403 TF3710_ERR_INVALID_RE
AD_DATA_FORMAT

ADS raw data invalid

16#0000151C 5404 TF3710_ERR_NOTIFICATI
ON_HANDLER_FAILED

Notification handler has failed

16#0000151D 5405 TF3710_ERR_ATLEAST_O
NE_MISSED_NOTIFICATI
ON

At least one/several notifications is/are
not received correctly

16#0000151E 5406 TF3710_ERR_NOTIFICATI
ON_REQUEST_FAILED

Notification request has failed

Appendix

TF3710 119Version: 1.5.2

error value symbol Error description Remedy option
16#0000151F 5407 TF3710_ERR_UNSUPPOR

TED_NOTIFICATION_MOD
E

Notification mode is currently not
supported

16#00001520 5408 TF3710_ERR_NOTIFICATI
ON_BUFFER_FAILED

Buffered notification has failed

16#00001534 5428 TF3710_ERR_WRITE_REQ
UEST_FAILED

Write request has failed

16#00001565 5429 TF3710_ERR_WRITE_BUF
FER

Write buffer invalid

16#FFFFE05C -8100 TF3710_ERR_INVALID_HA
NDLE

Invalid handle

16#FFFFE05B -8101 TF3710_ERR_HANDLE_IN
_USE

The handle is still in use

16#FFFFE052 -8110 TF3710_ERR_INVALID_AR
RAY

Invalid array

0xFFFFE051 -8111 TF3710_ERR_INVALID_AR
RAY_SIZE

Array size invalid

0xFFFFE050 -8112 TF3710_ERR_SYMBOL_N
OT_FOUND

Symbol not found

0xFFFFE04F -8113 TF3710_ERR_LVBUFFER_
NOT_REGISTERED

LVBuffer was not registered

9.5 Support Return Codes
error value symbol Error description Remedy option
16#00001414 5140 TF3710_ERR_INVALID_RE

QUEST
The request is not currently supported

16#00001415 5141 TF3710_ERR_BETA_TRIA
L_EXPIRED

Beta trial period has expired

16#00001416 5142 TF3710_ERR_LICENSE_S
TATE_ISSUE

The license state is invalid

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/TF3710

mailto:info@beckhoff.de?subject=TF3710
https://www.beckhoff.com
https://www.beckhoff.com/TF3710

	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security
	1.4 Documentation issue status

	 Table of contents
	2 Overview
	3 Installation
	4 Licensing
	5 Quick start
	6 Technical introduction
	6.1 TwinCAT ADS
	6.2 Communication modes
	6.2.1 One-time reading
	6.2.2 One-time writing
	6.2.3 Reading data continuously
	6.2.3.1 Event driven reading

	6.2.4 Writing data continuously

	6.3 Type Resolving

	7 LabVIEW™ VIs
	7.1 ADS DAQ
	7.2 ADS FlexDAQ
	7.3 ADS Write Assistant
	7.4 Symbol Interface
	7.5 Init
	7.6 ADS-Read
	7.7 ADS-Write
	7.8 TypeResolver
	7.9 Release
	7.10 Utilities
	7.10.1 Notification
	7.10.1.1 Notification controls

	7.10.2 LVBuffer
	7.10.3 CoE

	7.11 Low-Level
	7.11.1 Init
	7.11.2 Read
	7.11.3 Write
	7.11.4 TypeResolver
	7.11.4.1 TypeGenerator

	7.11.5 SumUp

	7.12 With TypeResolving

	8 Samples
	8.1 Basic examples
	8.2 Application example

	9 Appendix
	9.1 Overview of error codes
	9.2 ADS Return Codes
	9.3 Data types
	9.4 Runtime Return Codes
	9.5 Support Return Codes

		documentation@beckhoff.com
	2024-04-15T11:10:20+0200
	Beckhoff Automation, Verl
	Documentation Publishing

