BECKHOFF New Automation Technology

Dokumentation | DE

EP7041

Schrittmotormodule

Inhaltsverzeichnis

1	Vorw	-		
	1.1	Hinweis	e zur Dokumentation	5
	1.2		eitshinweise	
	1.3	Ausgabestände der Dokumentation		
2	Ethe	rCAT Bo	x - Einführung	9
3 Prod		luktübersicht		
	3.1	Einführu	ing	12
		3.1.1	EP7041-0002, EP7041-1002	12
		3.1.2	EP7041-2002	13
		3.1.3	EP7041-3002, EP7041-3102	14
	3.2	Technis	che Daten	15
	3.3	Lieferun	nfang	17
	3.4	Prozess	abbild	18
4	Insta	llation		21
•	4.1		÷	
		4.1.1	Abmessungen	
		4.1.2	Befestigung	
		4.1.3	Anzugsdrehmomente für Steckverbinder	
	4.2		SS	
		4.2.1	Versorgungsspannungen	
		4.2.2	EtherCAT	
		4.2.3	Schrittmotor, Bremse, Encoder	
	4.3		linweise	
		4.3.1	ATEX - Besondere Bedingungen	
		4.3.2	BG2000 - Schutzgehäuse für EtherCAT Box	
		4.3.3	ATEX-Dokumentation	
	4.4		ung	
5	Inhot	Ū	me/Konfiguration	
•	5.1		en in ein TwinCAT-Projekt	
	5.2		ung in die NC-Konfiguration	
	5.3		ration der wichtigsten Parameter	
	5.4	_	gen zum Positioning Interface	
	•	5.4.1	Predefined PDO Assignment	
		5.4.2	Parametersatz	
		5.4.3	Informations- und Diagnosedaten	
		5.4.4	Zustände der internen Statemachine	
		5.4.5	Standard Ablauf eines Fahrauftrags	
		5.4.6	Starttypen	
		5.4.7	Modulo - allgemeine Beschreibung	
		5.4.8	Beispiele von zwei Fahraufträgen mit dynamischer Änderung der Zielposition	
	5.5		ungsbeispiel	
	5.6		nerstellen des Auslieferungszustands	
6	CoE-		EP7041-0002, EP7041-1002, EP7041-2002	

	6.1	Objekt	peschreibung und Parametrierung	72
		6.1.1	Objekte für die Inbetriebnahme	73
		6.1.2	Standardobjekte (0x1000 0x1FFF)	78
		6.1.3	Profilspezifische Objekte (0x6000 0xFFFF)	90
7	CoE	-Objekte	EP7041-3002, EP7041-3102	97
	7.1		peschreibung und Parametrierung	
		7.1.1	Objekte für die Inbetriebnahme	98
		7.1.2	Standardobjekte (0x1000 0x1FFF)	103
		7.1.3	Profilspezifische Objekte (0x6000 0xFFFF)	115
8	Anha	ang		121
	8.1		eine Betriebsbedingungen	
	8.2		òr	
	8.3	Version	nsidentifikation von EtherCAT-Geräten	123
		8.3.1	Allgemeine Hinweise zur Kennzeichnung	123
		8.3.2	Versionsidentifikation von IP67-Modulen	124
		8.3.3	Beckhoff Identification Code (BIC)	125
		8.3.4	Elektronischer Zugriff auf den BIC (eBIC)	127
	8.4	Support und Service		

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.3 Ausgabestände der Dokumentation

Version	Kommentar	
2.8	Technische Daten aktualisiert	
2.7	Kapitel "Anschluss" aktualisiert	
2.6	Technische Daten aktualisiert	
	Pinbelegungen aktualisiert	
2.5	Abmessungen aktualisiert	
	CoE-Objekte aktualisiert	
2.4	Titelseite aktualisiert	
2.3	Technische Daten aktualisiert	
2.2.0	Sicherheitshinweise neues Layout	
	Kapitel Montage aktualisiert	
2.1.0	EP7041-3102 hinzugefügt	
2.0.0	Migration	
1.7.0	Vorwort aktualisiert	
	Kapitel Anzugsmomente für Steckverbinder aktualisiert	
	Kapitel EtherCAT-Anschluss aktualisiert	
	Kapitel Signalleitungen aktualisiert	
	Kapitel Zubehör aktualisiert	
	Kapitel Leitungsverluste aktualisiert	
1.6.0	Power-Anschluss aktualisiert	
1.5.0	Technische Daten aktualisiert	
1.4.0	Technische Daten aktualisiert	
1.3.0	Technische Daten aktualisiert	
	Objektbeschreibungen aktualisiert	
	Grundlagen zum Positions-Interface hinzugefügt	
	Kapitel Zubehör aktualisiert	
	Kapitel Anzugsmomente für Steckverbinder aktualisiert	
	Kapitel Power-Anschluss aktualisiert	
1.2.0	Kapitel Konfiguration der wichtigsten Parameter aktualisiert	
	Kapitel Zubehör hinzugefügt	
1.1.0	Technische Daten aktualisiert	
	• EP7041-2002 und EP7041-3002 hinzugefügt	
	Übersicht der EtherCAT-Kabel erweitert	
	Übersicht der Signalleitungen aktualisiert	
	Beschreibung des Power-Anschlusses aktualisiert	
	ATEX-Hinweise hinzugefügt	
	Erweiterter Temperaturbereich für freigegebene Module dokumentiert	
1.0.0	Kapitel zu Inbetriebnahme und Konfiguration überarbeitet	
0.6	EP7041-1002 hinzugefügt	
	Objektbeschreibung aktualisiert	
	Anzugsmomente für Steckverbinder hinzugefügt	
	Übersicht der Signalleitungen hinzugefügt	
0.5	Erste vorläufige Version für EP7041-0002	
	·	

Firm- und Hardware-Stände

Diese Dokumentation bezieht sich auf den zum Zeitpunkt ihrer Erstellung gültigen Firm- und Hardware-Stand.

Die Eigenschaften der Module werden stetig weiterentwickelt und verbessert. Module älteren Fertigungsstandes können nicht die gleichen Eigenschaften haben, wie Module neuen Standes. Bestehende Eigenschaften bleiben jedoch erhalten und werden nicht geändert, so dass ältere Module immer durch neue ersetzt werden können.

Den Firm- und Hardware-Stand (Auslieferungszustand) können Sie der auf der Seite der EtherCAT Box aufgedruckten Batch-Nummer (D-Nummer) entnehmen.

Syntax der Batch-Nummer (D-Nummer)

D: WW YY FF HH

WW - Produktionswoche (Kalenderwoche)
YY - Produktionsjahr
FF - Firmware-Stand
HH - Hardware-Stand

Beispiel mit D-Nr. 29 10 02 01:
29 - Produktionswoche 29
10 - Produktionsjahr 2010
02 - Firmware-Stand 02
01 - Hardware-Stand 01

Weitere Informationen zu diesem Thema: Versionsidentifikation von EtherCAT-Geräten [> 123].

2 EtherCAT Box - Einführung

Das EtherCAT-System wird durch die EtherCAT-Box-Module in Schutzart IP67 erweitert. Durch das integrierte EtherCAT-Interface sind die Module ohne eine zusätzliche Kopplerbox direkt an ein EtherCAT-Netzwerk anschließbar. Die hohe EtherCAT-Performance bleibt also bis in jedes Modul erhalten.

Die außerordentlich geringen Abmessungen von nur 126 x 30 x 26,5 mm (H x B x T) sind identisch zu denen der Feldbus Box Erweiterungsmodule. Sie eignen sich somit besonders für Anwendungsfälle mit beengten Platzverhältnissen. Die geringe Masse der EtherCAT-Module begünstigt u. a. auch Applikationen, bei denen die I/O-Schnittstelle bewegt wird (z. B. an einem Roboterarm). Der EtherCAT-Anschluss erfolgt über geschirmte M8-Stecker.

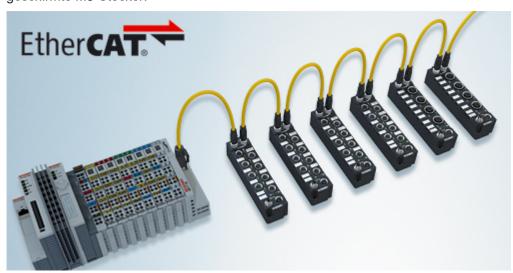


Abb. 1: EtherCAT-Box-Module in einem EtherCAT-Netzwerk

Die robuste Bauweise der EtherCAT-Box-Module erlaubt den Einsatz direkt an der Maschine. Schaltschrank und Klemmenkasten werden hier nicht mehr benötigt. Die Module sind voll vergossen und daher ideal vorbereitet für nasse, schmutzige oder staubige Umgebungsbedingungen.

Durch vorkonfektionierte Kabel vereinfacht sich die EtherCAT- und Signalverdrahtung erheblich. Verdrahtungsfehler werden weitestgehend vermieden und somit die Inbetriebnahmezeiten optimiert. Neben den vorkonfektionierten EtherCAT-, Power- und Sensorleitungen stehen auch feldkonfektionierbare Stecker und Kabel für maximale Flexibilität zur Verfügung. Der Anschluss der Sensorik und Aktorik erfolgt je nach Einsatzfall über M8- oder M12-Steckverbinder.

Die EtherCAT-Module decken das typische Anforderungsspektrum der I/O-Signale in Schutzart IP67 ab:

- digitale Eingänge mit unterschiedlichen Filtern (3,0 ms oder 10 μs)
- digitale Ausgänge mit 0,5 oder 2 A Ausgangsstrom
- analoge Ein- und Ausgänge mit 16 Bit Auflösung
- · Thermoelement- und RTD-Eingänge
- · Schrittmotormodule

Auch XFC (eXtreme Fast Control Technology)-Module wie z. B. Eingänge mit Time-Stamp sind verfügbar.

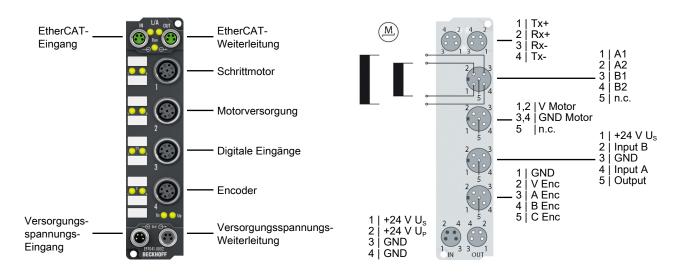
Abb. 2: EtherCAT Box mit M8-Anschlüssen für Sensor/Aktoren

Abb. 3: EtherCAT Box mit M12-Anschlüssen für Sensor/Aktoren

Basis-Dokumentation zu EtherCAT

Eine detaillierte Beschreibung des EtherCAT-Systems finden Sie in der System Basis-Dokumentation zu EtherCAT, die auf unserer Homepage (www.beckhoff.de) unter Downloads zur Verfügung steht.

3 Produktübersicht


Die folgende Tabelle zeigt die in dieser Dokumentation beschriebenen Produkte und die wichtigsten Unterscheidungsmerkmale.

Modul	Ausgangsstrom für Schrittmotor	Integrierter Anschluss für Motorversorgung	Kommentar
EP7041-0002 [▶ 12]	2 x 3,5 A Nennstrom, 2 x 5,0 A Spitzenstrom	M12-Buchse	Für besonders ruhigen und präzisen Motorlauf ausgelegt.
<u>EP7041-1002</u> [▶ <u>12]</u>	2 x 1,0 A Nennstrom, 2 x 1,5 A Spitzenstrom	M12-Buchse	 Für besonders ruhigen und präzisen Motorlauf ausgelegt. Kleinerer Ausgangsstrom für Schrittmotoren mit geringerer Leistungsaufnahme.
EP7041-2002 [▶ 13]	2 x 3,5 A Nennstrom, 2 x 5,0 A Spitzenstrom	M12-Stecker	 Für besonders ruhigen und präzisen Motorlauf ausgelegt. Eingebauter Anschluss für die Einspeisung der Motorversorgungsspannung mit Stiften (male) ausgeführt.
EP7041-3002 [▶ 14]	2 x 3,5 A Nennstrom, 2 x 5,0 A Spitzenstrom	M12-Stecker	 Für höhere Geschwindigkeiten ausgelegt. Eingebauter Anschluss für die Einspeisung der Motorversorgungsspannung mit Stiften (male) ausgeführt.
EP7041-3102 [▶_14]	2 x 3,5 A Nennstrom, 2 x 5,0 A Spitzenstrom	M12-Stecker	 Für höhere Geschwindigkeiten ausgelegt. Eingebauter Anschluss für die Einspeisung der Motorversorgungsspannung mit Stiften (male) ausgeführt. Encoder-Versorgung: 5 V_{DC}

3.1 Einführung

3.1.1 EP7041-0002, EP7041-1002

Schrittmotormodule mit Interface für Inkremental-Encoder

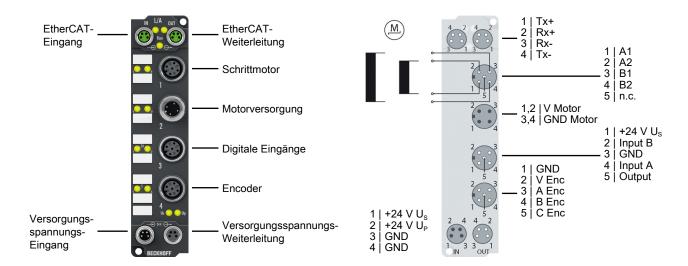
Die EtherCAT-Box-Module EP7041-0002 und EP7041-1002 sind für den direkten Anschluss unterschiedlicher Schrittmotoren vorgesehen.

Es sind zwei Versionen Verfügbar:

- EP7041-0002: 2 x 3,5 A Nennstrom, (2 x 5,0 A Spitzenstrom)
- EP7041-1002: 2 x 1,0 A Nennstrom, (2 x 1,5 A Spitzenstrom)

Die PWM-Endstufen für zwei Motorspulen sind bei geringster Bauform, zusammen mit zwei Eingängen für Endlagenschalter, in der Baugruppe untergebracht und decken einen großen Spannungs- und Strombereich ab.

Durch den Anschluss eines Inkremental-Encoders ist die Realisierung einer einfachen Servo-Achse möglich. Zwei digitale Eingänge und ein digitaler Ausgang (0,5 A) erlauben die Verbindung von Endschaltern und Motorbremse.


Mit verschiedenen Parametern können die Module an den Motor und die Anwendung angepasst werden. Ein besonders ruhiger und präziser Motorlauf ist durch ein 64-faches Microstepping sichergestellt.

Quick Links

- Installation [▶ 21]
- Konfiguration [▶ 36]
- CoE-Objekte [▶ 72]

3.1.2 EP7041-2002

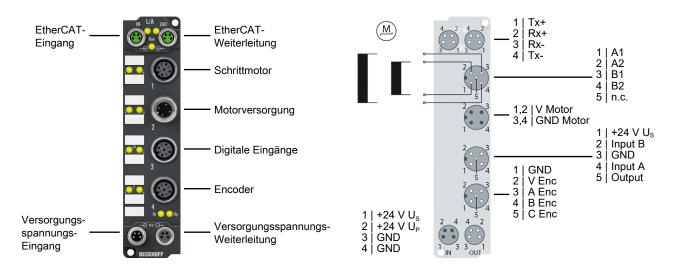
Schrittmotormodul mit Interface für Inkremental-Encoder

Die EtherCAT Box EP7041-2002 ist für den direkten Anschluss unterschiedlicher Schrittmotoren vorgesehen.

Die PWM-Endstufen für zwei Motorspulen sind bei geringster Bauform, zusammen mit zwei Eingängen für Endlagenschalter, in der Baugruppe untergebracht und decken einen großen Spannungs- und Strombereich ab.

Durch den Anschluss eines Inkremental-Encoders ist die Realisierung einer einfachen Servo-Achse möglich. Zwei digitale Eingänge und ein digitaler Ausgang (0,5 A) erlauben die Verbindung von Endschaltern und Motorbremse.

Die externe Motoreinspeisung erfolgt über einen integrierten Stecker.


Mit verschiedenen Parametern kann die EP7041-2002 an den Motor und die Anwendung angepasst werden. Ein besonders ruhiger und präziser Motorlauf ist durch ein 64-faches Microstepping sichergestellt.

Quick Links

- Installation [▶ 21]
- Konfiguration [▶ 36]
- <u>CoE-Objekte</u> [▶ <u>72</u>]

3.1.3 EP7041-3002, EP7041-3102

Schrittmotormodule mit Interface für Inkremental-Encoder

Die EtherCAT-Box-Module EP7041-3002 und EP7041-3102 sind für den direkten Anschluss unterschiedlicher Schrittmotoren vorgesehen. Die PWM-Endstufen für zwei Motorspulen sind bei geringster Bauform, zusammen mit zwei Eingängen für Endlagenschalter, in der Baugruppe untergebracht und decken einen großen Spannungs- und Strombereich ab.

Durch den Anschluss eines Inkremental-Encoders ist die Realisierung einer einfachen Servo-Achse möglich. Die Module versorgen den Inkremental-Encoder mit:

EP7041-3002: $24 V_{DC}$ EP7041-3102: $5 V_{DC}$

Zwei digitale Eingänge und ein digitaler Ausgang (0,5 A) erlauben die Verbindung von Endschaltern und Motorbremse.

Die externe Motoreinspeisung erfolgt über einen integrierten Stecker.

EP7041-3002 und EP7041-3102 sind für höhere Geschwindigkeiten ausgelegt und können mit verschiedenen Parametern an den Motor und die Anwendung angepasst werden.

Quick Links

- Installation [▶ 21]
- Konfiguration [▶ 36]
- <u>CoE-Objekte</u> [▶ <u>97</u>]

3.2 Technische Daten

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT		
Anschluss	2 x M8-Buchse, 4-polig, A-kodiert, geschirmt	
Potenzialtrennung	500 V	
Distributed Clocks	ja	

Versorgungsspannungen		
Anschluss	Eingang: M8-Stecker, 4-polig, A-kodiert	
	Weiterleitung: M8-Buchse, 4-polig, A-kodiert	
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)	
U _s Summenstrom: I _{s,sum}	max. 4 A	
Stromaufnahme aus U _s	120 mA	
U _P Nennspannung	24 V _{DC} (-15 % / +20 %)	
U _P Summenstrom: I _{P,sum}	max. 4 A	
Stromaufnahme aus U _P	= Stromaufnahme angeschlossener Geräte:	
	• Encoder	
	Bremse	

Motor	EP7041 -0002	EP7041 -1002	EP7041 -2002	EP7041 -3002	EP7041 -3102		
Motor-Art	2-Phasen-S	2-Phasen-Schrittmotor, unipolar oder bipolar					
Anschluss	M12-Buchs	е					
Leitungslänge	max. 30 m						
Motorversorgung	max. 48 V _D	c, nicht verpo	olungssicher				
Motorversorgungs-Anschluss	M12-Buchs	M12-Buchse "2" [> 29] M12-Stecke					
Nennstrom pro Phase	3,5 A	1,0 A	3,5 A	3,5 A			
Spitzenstrom pro Phase	5,0 A bei 50°C	1,5 A	5,0 A bei 5	5,0 A bei 50°C			
Microstepping	max. 64 Mi	max. 64 Microsteps			Microsteps		
Schrittfrequenz	max. 32.00	max. 32.000 Vollschritte/s (konfigurierbar)					
Stromreglerfrequenz	ca. 30 kHz	ca. 30 kHz					
Treiberschaltung	2 x H-Brück	е					
Schutzfunktionen	Überlast-So	Überlast-Schutz, Kurzschluss-Schutz					

Brems-Ausgang		
Anzahl	1	
Anschluss	M12-Buchse	
Leitungslänge	max. 30 m	
Ausgangsspannung	24 V _{DC} aus U _P	
Ausgangsstrom	0,5 A, kurzschlussfest	

Digitale Eingänge		
Anzahl	2	
Anschluss	M12-Buchse	
Leitungslänge	max. 30 m	
Signalspannung "0"	-3 2 V	
Signalspannung "1"	3,5 28 V	
Eingangsfilter	1 μs	
Eingangsstrom	5 mA	
Sensorversorgung (Pin 1)	24 V _{DC} aus U _s , max. 0,5 A, kurzschlussfest	

Encoder	EP7041 -0002	EP7041 -1002	EP7041 -2002	EP7041 -3002	EP7041 -3102
Encoder-Typ	Inkremental	geber mit sir	ngle-ended Au	usgangstreibe	ern:
	 Push-pul 				
	 Open col 	lector 1)			
Anschluss	M12-Buchs	е			
Leitungslänge	max. 30 m				
Signale	A, B, C (Re	ferenzimpuls	/Nullimpuls)		
Low-Pegel	-3 2 V _{DC}				max. 1 V _{DC} ²⁾
High-Pegel	3,5 28 V _I	DC .			2,5 28 V _{DC} ²⁾
Versorgungsspannungs-Ausgang	24 V _{DC} aus	U _P			5 V _{DC}
	max. 0,5 A,	nicht kurzsc	hlussfest		
Pulsfrequenz	max. 400.00	00 Inkrement	e / s (Vierfacl	nauswertung))

¹⁾ Pullup-Widerstand erforderlich

Low-Pegel: -3 ... 2 V_{DC}
 High-Pegel: 3,5 ... 28 V_{DC}

Gehäusedaten	
Abmessungen B x H x T	30 mm x 126 mm x 26,5 mm (ohne Steckverbinder)
Gewicht	ca. 165 g
Einbaulage	Bis 40°C Umgebungstemperatur: beliebig
	Über 40°C Umgebungstemperatur: mindestens 20 mm Abstand zwischen 2 Schrittmotormodulen
Material	PA6 (Polyamid)

Umgebungsbedingungen		
Umgebungstemperatur im Betrieb	-25 +60°C	
	0 +55°C gemäß ATEX	
Umgebungstemperatur bei Lagerung	-40 +85°C	
Schwingungsfestigkeit, Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27	
	Zusätzliche Prüfungen [▶ 17]	
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4	
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)	

²⁾ Diese Pegel gelten ab Hardware Stand 07. Bis einschließlich Hardware Stand 06 gelten die Pegel:

Zulassungen / Kennzeichnungen		
Zulassungen / Kennzeichnungen *)	<u>ATEX [▶ 32],</u> CE	

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

Zusätzliche Prüfungen

Die Geräte sind folgenden zusätzlichen Prüfungen unterzogen worden:

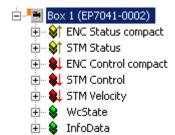
Prüfung	Erläuterung
Vibration	10 Frequenzdurchläufe, in 3 Achsen
	5 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude
	60,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude
Schocken	1000 Schocks je Richtung, in 3 Achsen
	35 g, 11 ms

3.3 Lieferumfang

Vergewissern Sie sich, dass folgende Komponenten im Lieferumfang enthalten sind:

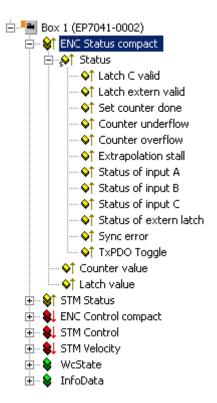
- 1x EtherCAT Box EP7041
- 1x Schutzkappe f
 ür Versorgungsspannungs-Eingang, M8, transparent (vormontiert)
- 1x Schutzkappe für Versorgungsspannungs-Ausgang, M8, schwarz (vormontiert)
- 2x Schutzkappe für EtherCAT-Buchse, M8, grün (vormontiert)
- 10x Beschriftungsschild unbedruckt (1 Streifen à 10 Stück)

Vormontierte Schutzkappen gewährleisten keinen IP67-Schutz


Schutzkappen werden werksseitig vormontiert, um Steckverbinder beim Transport zu schützen. Sie sind u.U. nicht fest genug angezogen, um die Schutzart IP67 zu gewährleisten.

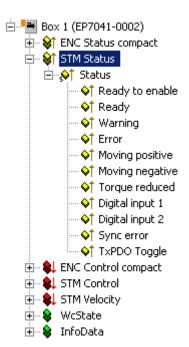
Stellen Sie den korrekten Sitz der Schutzkappen sicher, um die Schutzart IP67 zu gewährleisten.

3.4 Prozessabbild

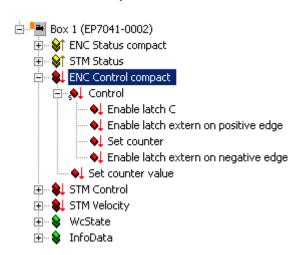

Der TwinCAT System Manager zeigt die Daten der EP7041 in einer Baumstruktur an.

Der Baum zeigt

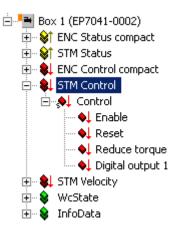
- · ENC Status compact: Encoder Status
- STM Status: Stepper Motor Status
- ENC Control compact: Encoder Control
- STM Control: Stepper Motor Control
- · STM Velocity: Stepper Motor Velocity


ENC Status compact

Unter **ENC Status compact** finden Sie die Statusinformationen des Encoders.

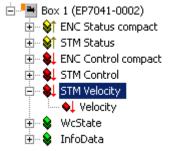


STM Status


Unter **STM Status** finden Sie die Statusinformationen des Schrittmotors (Stepper Motors).

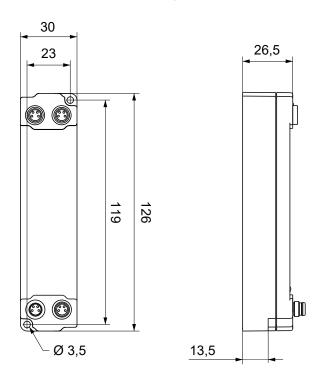
ENC Control compact

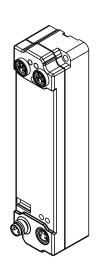
Unter **ENC Control compact** finden Sie Control-Parameter für den Encoder.


STM Control

Unter **STM Control** finden Sie Control-Parameter für den Schrittmotors (Stepper Motor).

STM Velocity


Unter **STM Velocity** finden Sie die Geschwindigkeitsvorgaben für den Schrittmotor (Stepper Motor).



4 Installation

4.1 Montage

4.1.1 Abmessungen

Alle Maße sind in Millimeter angegeben. Die Zeichnung ist nicht maßstabsgetreu.

Gehäuseeigenschaften

Gehäusematerial	PA6 (Polyamid)
Vergussmasse	Polyurethan
Montage	zwei Befestigungslöcher Ø 3,5 mm für M3
Metallteile	Messing, vernickelt
Kontakte	CuZn, vergoldet
Stromweiterleitung	max. 4 A
Einbaulage	beliebig
Schutzart	im verschraubten Zustand IP65, IP66, IP67 (gemäß EN 60529)
Abmessungen (H x B x T)	ca. 126 x 30 x 26,5 mm (ohne Steckverbinder)

4.1.2 Befestigung

HINWEIS

Verschmutzung bei der Montage

Verschmutzte Steckverbinder können zu Fehlfunktion führen. Die Schutzart IP67 ist nur gewährleistet, wenn alle Kabel und Stecker angeschlossen sind.

• Schützen Sie die Steckverbinder bei der Montage vor Verschmutzung.

Montieren Sie das Modul mit zwei M3-Schrauben an den Befestigungslöchern in den Ecken des Moduls. Die Befestigungslöcher haben kein Gewinde.

4.1.3 Anzugsdrehmomente für Steckverbinder

Schrauben Sie Steckverbinder mit einem Drehmomentschlüssel fest. (z.B. ZB8801 von Beckhoff)

Steckverbinder-Durchmesser	Anzugsdrehmoment
M8	0,4 Nm
M12	0,6 Nm

4.2 Anschluss

4.2.1 Versorgungsspannungen

WARNUNG

Spannungsversorgung aus SELV/PELV-Netzteil!

Zur Versorgung dieses Geräts müssen SELV/PELV-Stromkreise (Schutzkleinspannung, Sicherheitskleinspannung) nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung (Safety Extra Low Voltage) liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung (Protective Extra Low Voltage) benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

Die EtherCAT Box hat einen Eingang für zwei Versorgungsspannungen:

Steuerspannung U_s

Die folgenden Teilfunktionen werden aus der Steuerspannung Us versorgt:

- Der Feldbus
- · Die Prozessor-Logik
- typischerweise die Eingänge und die Sensorik, falls die EtherCAT Box Eingänge hat.

Peripheriespannung U_P

Bei EtherCAT-Box-Modulen mit digitalen Ausgängen werden die digitalen Ausgänge typischerweise aus der Peripheriespannung U_P versorgt. U_P kann separat zugeführt werden. Falls U_P abgeschaltet wird, bleiben die Feldbus-Funktion, die Funktion der Eingänge und die Versorgung der Sensorik erhalten.

Die genaue Zuordnung von U_s und U_P finden Sie in der Pinbelegung der I/O-Anschlüsse.

Weiterleitung der Versorgungsspannungen

Die Power-Anschlüsse IN und OUT sind im Modul gebrückt. Somit können auf einfache Weise die Versorgungsspannungen Us und Us von EtherCAT Box zu EtherCAT Box weitergereicht werden.

HINWEIS

Maximalen Strom beachten!

Beachten Sie auch bei der Weiterleitung der Versorgungsspannungen U_S und U_P, dass jeweils der für die Steckverbinder zulässige Strom nicht überschritten wird:

M8-Steckverbinder: max. 4 A 7/8"-Steckverbinder: max 16 A

HINWEIS

Unbeabsichtigte Aufhebung der Potenzialtrennung möglich

In einigen Typen von EtherCAT-Box-Modulen sind die Massepotenziale $\mathsf{GND}_{\mathtt{S}}$ und $\mathsf{GND}_{\mathtt{P}}$ miteinander verbunden.

• Falls Sie mehrere EtherCAT-Box-Module mit denselben galvanisch getrennten Spannungen versorgen, prüfen Sie, ob eine EtherCAT Box darunter ist, in der die Massepotenziale verbunden sind.

4.2.1.1 Steckverbinder

HINWEIS

Verwechselungs-Gefahr: Versorgungsspannungen und EtherCAT

Defekt durch Fehlstecken möglich.

 Beachten Sie die farbliche Codierung der Steckverbinder: schwarz: Versorgungsspannungen grün: EtherCAT

Stecker Buchse
Eingang Weiterleitung

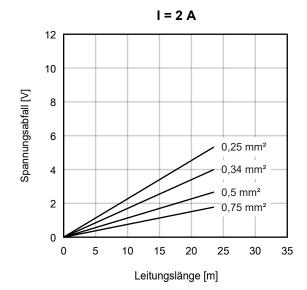
Abb. 4: M8-Steckverbinder

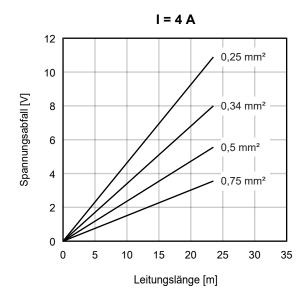
Kontakt	Funktion	Beschreibung	Aderfarbe 1)
1	Us	Steuerspannung	Braun
2	U _P	Peripheriespannung	Weiß
3	GNDs	GND zu U _s	Blau
4	GND _P	GND zu U _P	Schwarz

¹⁾ Die Aderfarben gelten für Leitungen vom Typ: Beckhoff ZK2020-3xxx-xxxx

4.2.1.2 Status-LEDs

LED	Anzeige	Bedeutung
U _s (Steuerspannung)	aus	Die Versorgungsspannung U _s ist nicht vorhanden.
	leuchtet grün	Die Versorgungsspannung U _s ist vorhanden.
U _P (Peripheriespannung)	aus	Die Versorgungsspannung U _P ist nicht vorhanden.
	leuchtet grün	Die Versorgungsspannung U _P ist vorhanden.


4.2.1.3 Leitungsverluste


Beachten Sie bei der Planung einer Anlage den Spannungsabfall an der Versorgungs-Zuleitung. Vermeiden Sie, dass der Spannungsabfall so hoch wird, dass die Versorgungsspannungen an der Box die minimale Nennspannung unterschreiten.

Berücksichtigen Sie auch Spannungsschwankungen des Netzteils.

Spannungsabfall an der Versorgungs-Zuleitung

4.2.2 EtherCAT

4.2.2.1 Steckverbinder

HINWEIS

Verwechselungs-Gefahr: Versorgungsspannungen und EtherCAT

Defekt durch Fehlstecken möglich.

• Beachten Sie die farbliche Codierung der Steckverbinder:

schwarz: Versorgungsspannungen

grün: EtherCAT

Für den ankommenden und weiterführenden EtherCAT-Anschluss haben EtherCAT-Box-Module zwei grüne M8-Buchsen.

Kontaktbelegung

Abb. 5: M8-Buchse

EtherCAT	M8-Buchse	Aderfarben	Aderfarben		
Signal	Kontakt	ZB9010, ZB9020, ZB9030, ZB9032, ZK1090-6292, ZK1090-3xxx-xxxx	ZB9031 und alte Versionen von ZB9030, ZB9032, ZK1090-3xxx- xxxx	TIA-568B	
Tx +	1	gelb ¹⁾	orange/weiß	weiß/orange	
Tx -	4	orange ¹⁾	orange	orange	
Rx +	2	weiß ¹⁾	blau/weiß	weiß/grün	
Rx -	3	blau ¹⁾	blau	grün	
Shield	Gehäuse	Schirm	Schirm	Schirm	

¹⁾ Aderfarben nach EN 61918

Anpassung der Aderfarben für die Leitungen ZB9030, ZB9032 und ZK1090-3xxxx-xxxx

Zur Vereinheitlichung wurden die Aderfarben der Leitungen ZB9030, ZB9032 und ZK1090-3xxx-xxxx auf die Aderfarben der EN61918 umgestellt: gelb, orange, weiß, blau. Es sind also verschiedene Farbkodierungen im Umlauf. Die elektrischen Eigenschaften der Leitungen sind bei der Umstellung der Aderfarben erhalten geblieben.

4.2.2.2 Status-LEDs

L/A (Link/Act)

Neben jeder EtherCAT-Buchse befindet sich eine grüne LED, die mit "L/A" beschriftet ist. Die LED signalisiert den Kommunikationsstatus der jeweiligen Buchse:

LED	Bedeutung	
aus	keine Verbindung zum angeschlossenen EtherCAT-Gerät	
leuchtet	LINK: Verbindung zum angeschlossenen EtherCAT-Gerät	
blinkt	ACT: Kommunikation mit dem angeschlossenen EtherCAT-Gerät	

Run

Jeder EtherCAT-Slave hat eine grüne LED, die mit "Run" beschriftet ist. Die LED signalisiert den Status des Slaves im EtherCAT-Netzwerk:

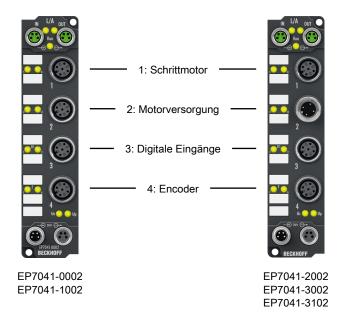
LED	Bedeutung	
aus	Slave ist im Status "Init"	
blinkt gleichmäßig	Slave ist im Status "Pre-Operational"	
blinkt vereinzelt	Slave ist im Status "Safe-Operational"	
leuchtet	Slave ist im Status "Operational"	

Beschreibung der Stati von EtherCAT-Slaves

4.2.2.3 Leitungen

Verwenden Sie zur Verbindung von EtherCAT-Geräten geschirmte Ethernet-Kabel, die mindestens der Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801 entsprechen.

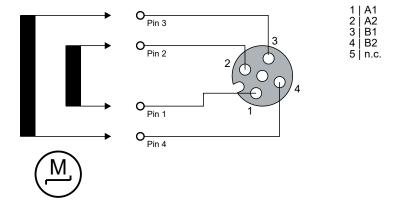
EtherCAT nutzt vier Adern für die Signalübertragung.


Aufgrund der automatischen Leitungserkennung "Auto MDI-X" können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte, als auch gekreuzte Kabel (Cross-Over) verwenden.

Detaillierte Empfehlungen zur Verkabelung von EtherCAT-Geräten

4.2.3 Schrittmotor, Bremse, Encoder

4.2.3.1 Signalanschluss



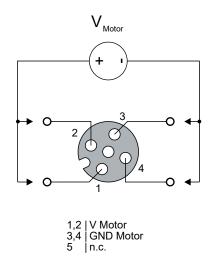
HINWEIS

Beachten Sie die Nummerierung der M12-Buchsen

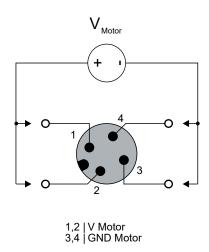
Das Verwechseln der M12-Steckverbinder kann das Modul beschädigen.

M12-Buchse Nr. 1: Schrittmotoranschluss

M12-Buchse Nr. 2: Anschluss für Motorversorgung


HINWEIS

Die Motorversorgung ist nicht verpolungssicher


Defekt durch Verpolung möglich.

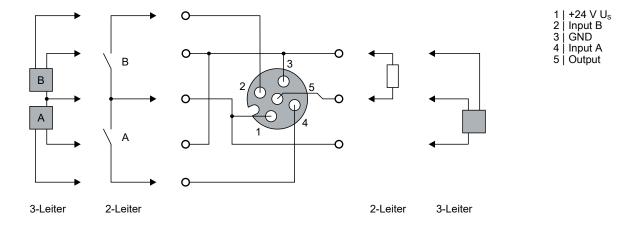
· Achten Sie auf korrekte Polung.

M12-Buchse, 5-polig

M12-Stecker, 4-polig

M12-Buchse Nr. 3: Anschluss für digitale Ein- und Ausgänge

HINWEIS


Falsche Signalpegel durch elektromagnetische Störungen

Die digitalen Eingänge sind für schnelle Signalübertragung optimiert und sind daher anfällig für elektromagnetische Störungen.

Unter dem Einfluss elektromagnetischer Störungen kann ein falscher Signalpegel detektiert werden.

• Gegebenenfalls geschirmte Signalleitungen verwenden.

Der Signalanschluss der digitalen Ein- und Ausgänge erfolgt über M12-Steckverbinder.

Die Sensoren werden aus der Steuerspannung U_s mit einem gemeinsamen, maximalen Strom von 0,5 A versorgt.

Der Ausgang ist kurzschlussfest und verpolungssicher.

Leuchtdioden zeigen den Signalzustand der Ein- und Ausgänge an.

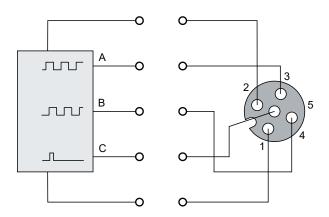
M12-Buchse Nr. 4: Encoder-Anschluss

HINWEIS

Die Encoder-Versorgungsspannung ist nicht kurzschlussfest.

Defekt durch Kurzschluss möglich.

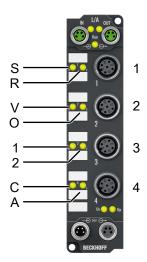
• Vermeiden Sie einen Kurzschluss der Encoder-Versorgungsspannung "V Enc".


HINWEIS

Falsche Signalpegel durch elektromagnetische Störungen

Die Encoder-Eingänge sind für schnelle Signalübertragung optimiert und sind daher anfällig für elektromagnetische Störungen.

Unter dem Einfluss elektromagnetischer Störungen kann ein falscher Signalpegel detektiert werden.


• Gegebenenfalls geschirmte Signalleitungen verwenden.

1 | GND 2 | V Enc 3 | A Enc 4 | B Enc 5 | C Enc

4.2.3.2 Status-LEDs

Anschluss	LED	Anzeige	Bedeutung
Anschluss 1: Schrittmotor	S	grün	Die Endstufe ist freigegeben.
		gelb	Wenn Motor disabled: Motoransteuerung im Standby
			Wenn Motor enabled: Warnung, Konfigurationsfehler. Überprüfen Sie den Motor-Status.
		rot	Fehler. Überprüfen Sie die Diag Messages
	R	grün	Motor dreht
		rot	interner Fehler
Anschluss 2:	V	aus	Die Motorversorgung ist nicht vorhanden.
Motorversorgung		grün	Die Motorversorgung ist vorhanden.
s-Eingang	0	aus	Der digitale Ausgang gibt einen Low-Pegel aus.
		grün	Der digitale Ausgang gibt einen High-Pegel aus.
Anschluss 3:	1	aus	Low-Pegel am digitalen Eingang 1.
digitale Eingänge		grün	High-Pegel am digitalen Eingang 1.
digitaler Ausgang	2	aus	Low-Pegel am digitalen Eingang 2.
		grün	High-Pegel am digitalen Eingang 2.
Anschluss 4:	С	blinkt	Encoder-Spur C
Encoder	Α	blinkt	Encoder-Spur A

4.3 ATEX-Hinweise

4.3.1 ATEX - Besondere Bedingungen

MARNUNG

Beachten Sie die besonderen Bedingungen für die bestimmungsgemäße Verwendung von EtherCAT-Box-Modulen in explosionsgefährdeten Bereichen – Richtlinie 94/9/EG!

- Die zertifizierten Komponenten sind mit einem <u>Schutzgehäuse BG2000-0000 oder BG2000-0010 [\rightarrow_33]</u> zu errichten, das einen Schutz gegen mechanische Gefahr gewährleistet!
- Wenn die Temperaturen bei Nennbetrieb an den Einführungsstellen der Kabel, Leitungen oder Rohrleitungen höher als 70°C oder an den Aderverzweigungsstellen höher als 80°C ist, so müssen Kabel ausgewählt werden, deren Temperaturdaten den tatsächlich gemessenen Temperaturwerten entsprechen!
- Beachten Sie beim Einsatz von EtherCAT-Box-Modulen in explosionsgefährdeten Bereichen den zulässigen Umgebungstemperaturbereich von 0 bis 55°C!
- Es müssen Maßnahmen zum Schutz gegen Überschreitung der Nennbetriebsspannung durch kurzzeitige Störspannungen um mehr als 40% getroffen werden!
- Die Anschlüsse der zertifizierten Komponenten dürfen nur verbunden oder unterbrochen werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!

Normen

Die grundlegenden Sicherheits- und Gesundheitsanforderungen werden durch Übereinstimmung mit den folgenden Normen erfüllt:

EN 60079-0: 2006EN 60079-15: 2005

Kennzeichnung

Die für den explosionsgefährdeten Bereich zertifizierten EtherCAT-Box-Module tragen folgende Kennzeichnung:

II 3 G Ex nA II T4 DEKRA 11ATEX0080 X Ta: 0 - 55°C

oder

II 3 G Ex nA nC IIC T4 DEKRA 11ATEX0080 X Ta: 0 - 55°C

Batch-Nummer (D-Nummer)

Die EtherCAT-Box-Module tragen eine Batch-Nummer (D-Nummer), die wie folgt aufgebaut ist:

D: KW JJ FF HH

WW - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr

FF - Firmware-Stand

HH - Hardware-Stand

Beispiel mit Batch-Nummer 29 10 02 01:

- 29 Produktionswoche 29
- 10 Produktionsjahr 2010
- 02 Firmware-Stand 02
- 01 Hardware-Stand 01

4.3.2 BG2000 - Schutzgehäuse für EtherCAT Box

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das EtherCAT-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Module beginnen!

ATEX

MARNUNG

Schutzgehäuse montieren!

Um die Einhaltung der <u>besonderen Bedingungen gemäß ATEX [▶ 32]</u> zu erfüllen, muss ein Schutzgehäuse BG2000-0000 oder BG2000-0010 über der EtherCAT Box montiert werden!

Installation

Schieben Sie die Anschlussleitungen für EtherCAT, Spannungsversorgung und die Sensoren/Aktoren durch die Öffnung des Schutzgehäuses.

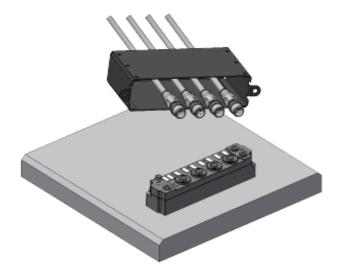


Abb. 6: BG2000 - Anschlussleitungen durchschieben

Schrauben Sie die Anschlussleitungen für die EtherCAT, Spannungsversorgung und die Sensoren/Aktoren an der EtherCAT Box fest.

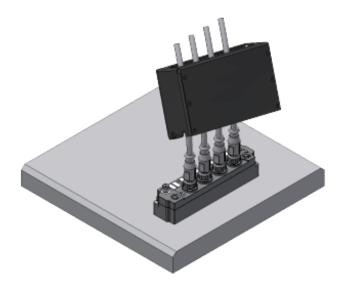


Abb. 7: BG2000 - Anschlussleitungen festschrauben

Montieren Sie das Schutzgehäuse über der EtherCAT Box.

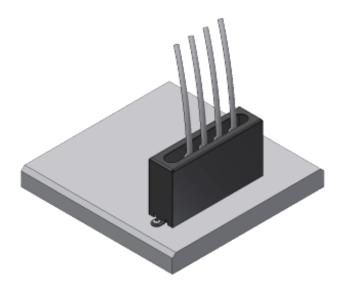


Abb. 8: BG2000 - Schutzgehäuse montieren

4.3.3 ATEX-Dokumentation

Hinweise zum Einsatz von EtherCAT-Box-Modulen (EPxxxx-xxxx) in explosionsgefährdeten Bereichen (ATEX)

Beachten Sie auch die weiterführende Dokumentation Hinweise zum Einsatz von EtherCAT-Box-Modulen (EPxxxx-xxxx) in explosionsgefährdeten Bereichen (ATEX) die Ihnen auf der Website von Beckhoff http://www.beckhoff.de im Bereich Download zur Verfügung steht!

4.4 Entsorgung

Mit einer durchgestrichenen Abfalltonne gekennzeichnete Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

5 Inbetriebnahme/Konfiguration

5.1 Einbinden in ein TwinCAT-Projekt

Die Vorgehensweise zum Einbinden in ein TwinCAT-Projekt ist in dieser <u>Schnellstartanleitung</u> beschrieben.

5.2 Einbindung in die NC-Konfiguration

(Master: TwinCAT 2.11)

Installation der neuesten XML-Device-Description

Stellen Sie sicher, dass Sie die entsprechende aktuellste XML-Device-Description in TwinCAT installiert haben. Diese kann auf der Beckhoff Website https://www.beckhoff.com heruntergeladen werden.

Die Einbindung an die NC kann wie folgt durchgeführt werden:

- Die Klemme muss bereits unter E/A-Geräte manuell eingefügt oder vom System eingescannt worden sein (siehe Kapitel "Einsetzen der Klemme in den EtherCAT-Klemmenverbund").
- Fügen Sie zuerst einen neuen Task an. Dazu klicken Sie mit der rechten Maustaste auf NC-Konfiguration und wählen Sie "Task Anfügen..." aus (siehe Abb. *Neuen Task einfügen*).
- Benennen Sie gegebenenfalls den Task um und bestätigen Sie mit OK.

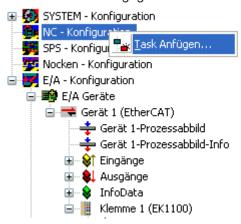


Abb. 9: Neuen Task einfügen

 Wählen Sie mit der rechten Maustaste Achsen aus und fügen anschließend eine neue Achse an (siehe Abb. Verknüpfung der Achse mit der Klemme).

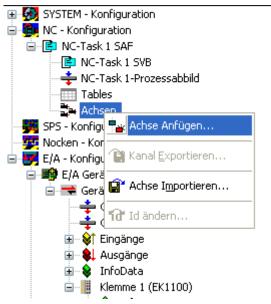


Abb. 10: Auswahl einer neuen Achse

Wählen Sie unter Typ eine Kontinuierliche Achse aus und bestätigen Sie mit OK (siehe Abb. 3).

Abb. 11: Achsentyp auswählen und bestätigen

• Markieren Sie Ihre Achse mit der linken Maustaste. Unter der Registerkarte *Einstellungen* wählen Sie "Verknüpft mit..." aus (siehe Abb. *Verknüpfung der Achse mit der Klemme*).

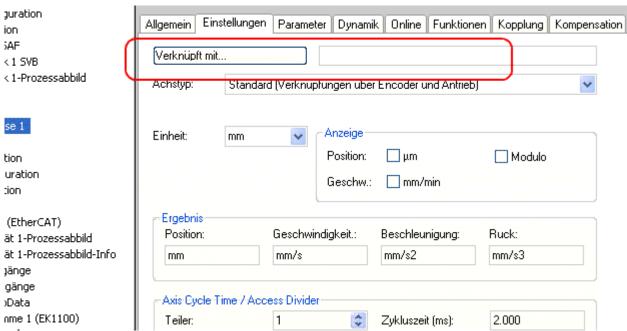


Abb. 12: Verknüpfung der Achse mit der Klemme

• Wählen Sie die passende Klemme aus (Stepper Drive (MDP 703)) und bestätigen Sie mit "OK ".

Abb. 13: Auswahl der richtigen Klemme

• Alle wichtigen Verknüpfungen zwischen der NC-Konfiguration und der Klemme werden dadurch automatisch durchgeführt (siehe Abb. *Automatische Verknüpfung aller wichtigen Variablen*)

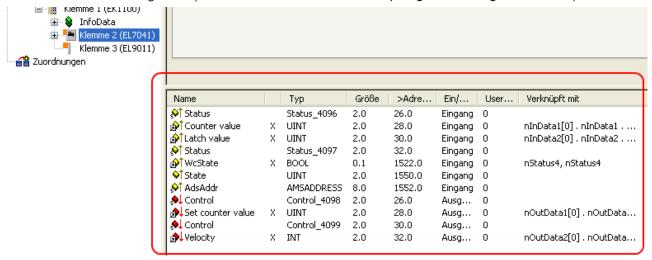


Abb. 14: Automatische Verknüpfung aller wichtigen Variablen

 Damit der Motor in Betrieb genommen werden kann, müssen noch einige Parameter eingestellt werden. Die Werte entnehmen Sie dem Kapitel "Konfiguration der wichtigsten Parameter [▶ 42]". Stellen Sie bitte diese Parameter ein, bevor Sie mit der Inbetriebnahme des Motors fortführen.

Inbetriebnahme des Motors mit der NC

- Sind die Parameter eingestellt, dann ist der Motor prinzipiell betriebsbereit. Einzelne weitere Parameter müssen der jeweiligen Applikation angepasst werden.
- Um die Achse in Betrieb zu nehmen, aktivieren Sie die Konfiguration (Ctrl+Shift+F4), markieren die Achse, wählen die Registerkarte Online aus und geben unter Set die Achse frei.
- Setzen Sie alle Häkchen und stellen Sie Override auf 100 (siehe Abb. 7). Anschließend kann die Achse bewegt werden.

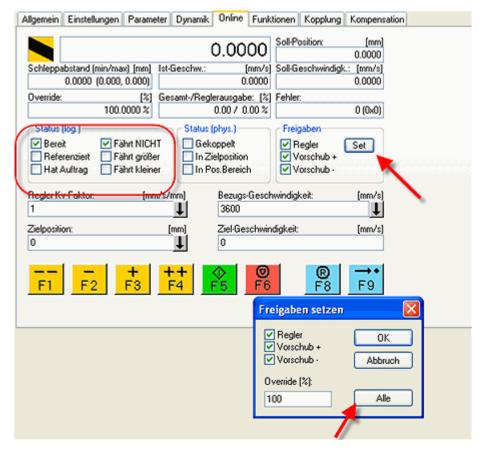


Abb. 15: Achse freigeben

Sie können nun die Achse mit Hilfe der Funktionstasten F1, F2 (Rückwärts) und F3, F4 (Vorwärts) bewegen.

Eine andere Möglichkeit besteht darin, unter der Registerkarte Funktionen die Achse anzusteuern.

Beispiel

- Wählen Sie als Starttyp Reversing Sequence.
- Geben Sie eine gewünschte Zielposition1 an, z. B. 5000°.
- Geben Sie eine gewünschte Zielgeschwindigkeit an, z. B. 1200°/s.
- Geben Sie eine gewünschte Zielposition2 an, z. B. 0°.
- Geben Sie den gewünschte Idle Time an, z. B. 1 s.
- · Wählen Sie Start.

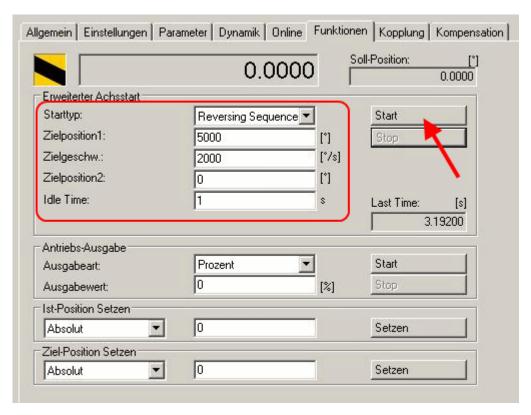


Abb. 16: Achse ansteuern, Reiter "Funktionen"

Der Motor fährt nun auf die Position 1, verbleibt dort 1 s und fährt wieder auf die Position 2. Das wird wiederholt, bis Sie mit Klick auf "Stop" beenden.

5.3 Konfiguration der wichtigsten Parameter

Die hier angegebenen Daten sind beispielhaft für einen Schrittmotor AS 1050-0120 aufgeführt. Bei anderen Motoren können die Werte je nach Applikation variieren.

Einstellen der CoE-Objekte

Ausführung von Änderungen

Änderungen der CoE-Objekte werden erst ausgeführt, nachdem das Modul in den Status Init gebracht wurde. Erst danach sind die Änderungen aktiv.

Anpassung von Strom und Spannung

HINWEIS

Überhitzung des Motors möglich!

Um den angeschlossenen Motor nicht zu überhitzen, ist es wichtig Strom und Spannung, die vom Stepper-Interface ausgegeben werden, an den Motor anzupassen.

Dazu müssen im CoE-Register der Index <u>0x8010:01</u> [▶ <u>73]</u> *Maximal current* und der Index <u>0x8010:03</u> [▶ <u>73]</u> *Nominal voltage* passend eingestellt werden (siehe Abb. *Anpassung von Strom und Spannung*).

Im Index <u>0x8010:02</u> [▶ <u>73</u>] kann der *Reduced current* eingestellt werden. Dadurch wird der Spulenstrom im Stillstand (und damit auch die Verlustleistung) reduziert. Es ist zu beachten, dass sich damit auch das Drehmoment reduziert.

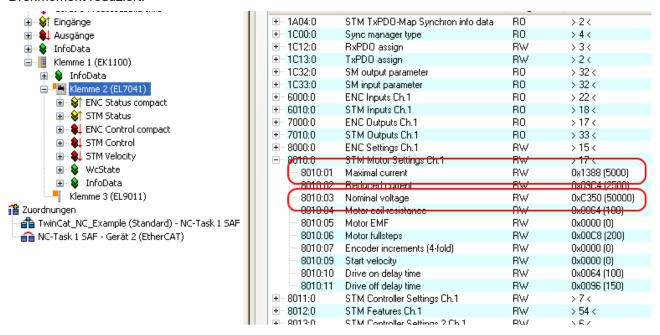


Abb. 17: Anpassung von Strom und Spannung

Auswahl der Grundfrequenz

Das Microstepping ist fest auf 1/64 eingestellt und kann nicht verändert werden. Es kann jedoch die Grundfrequenz verändert werden (default: 2000). Dazu markieren Sie das Modul und wählen die Registerkarte *CoE-Online* aus. Mit einem Doppelklick auf den Index <u>0x8012:05</u> [• <u>74] Speed range</u> können Sie die Grundfrequenz verändern (Abb. *Grundfrequenz einstellen*).

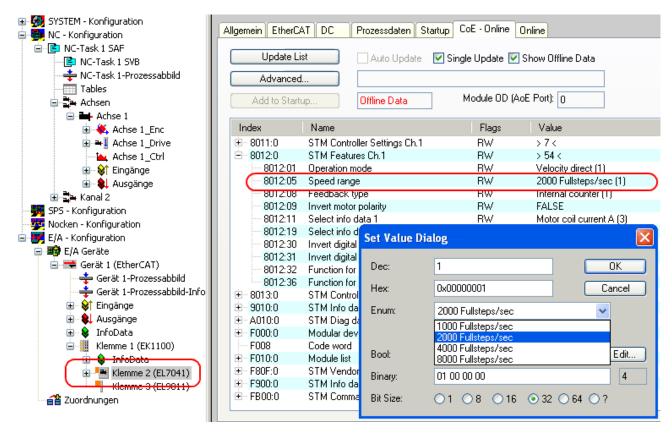


Abb. 18: Grundfrequenz einstellen

Auswahl des Feedbacksystems

Das Modul mit Encoder-Anschlüssen stellt 2 Möglichkeiten für das Feedback-System zur Auswahl:

- Internal Counter (default): Internen Zähler zur Positionsrückführung nutzen
- Encoder: Externen Encoder zur Positionsrückführung nutzen

Einstellen des Feedback-Typs

In der Grundeinstellung ist das Steppermodul auf den internen Zähler gesetzt. Wenn ein externer Encoder eingesetzt wird, muss die Einstellung mit einem Doppelklick auf den Index 0x8012:08 [▶ 74] Feedback type im Enum-Menü geändert werden (Abb. Feedbacksystem auswählen).

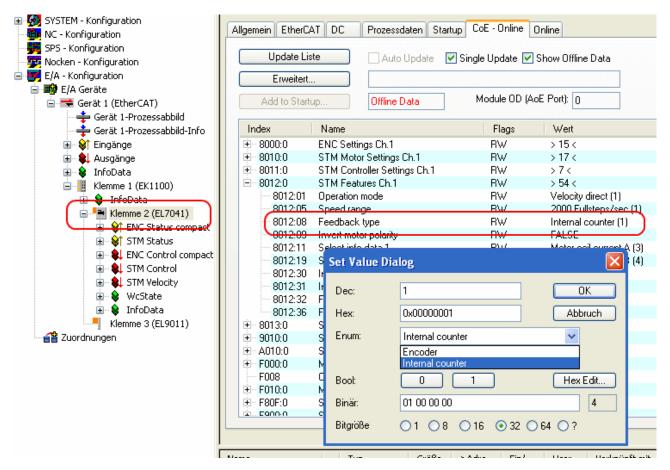


Abb. 19: Feedbacksystem auswählen

K_A-Faktor (nur <u>EP7041-0002</u> [<u>12</u>] und <u>EP7041-1002</u> [<u>12</u>])

Mit dem K_A -Faktor kann der Strom in den Beschleunigungsphasen angepasst werden. Die Stromerhöhung wird wie folgt berechnet.

Stromerhöhung in mA = Geschwindigkeitsdifferenz x $K_A/1000$

Je steiler also die Geschwindigkeitsrampen sind, desto höher ist die Erhöhung des Stroms.

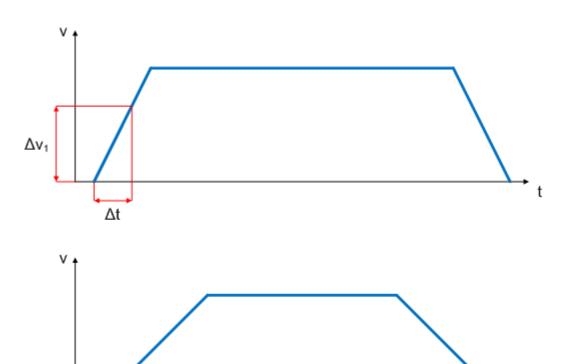


Abb. 20: Geschwindigkeitsrampen

Δt

 Δv_2

Dieser Wert lässt sich im Index <u>0x8011:07</u> [▶ <u>73]</u> Ka factor (curr.) einstellen (siehe Abb. K_A-Faktor einstellen).

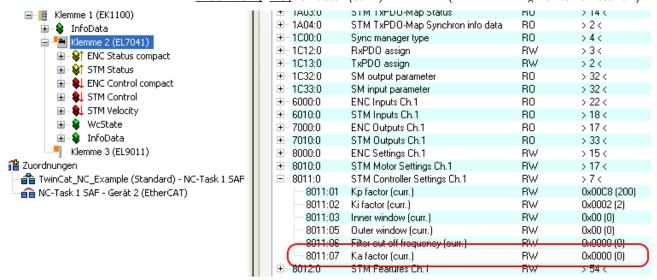


Abb. 21: K_A-Faktor einstellen

Einstellungen in der NC

Auswahl der Bezugsgeschwindigkeit

Die Maximalgeschwindigkeit errechnet sich anhand der Grundfrequenz und der Motorfrequenz.

v_{max} = Grundfrequenz / Motorfrequenz = (2000 Fullsteps / s) / (200 Fullsteps / Umdrehung) = 10 Umdrehungen / s

Multipliziert man die Maximalgeschwindigkeit mit dem Weg pro Umdrehung, erhält man die Bezugsgeschwindigkeit.

v_{ref} = 10 Umdrehungen / s x 360° = 3600 °/ s

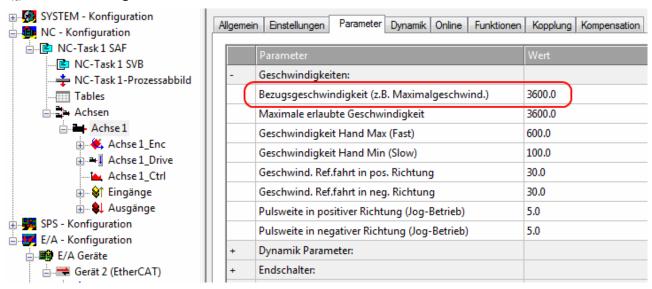


Abb. 22: Parameter Bezugsgeschwindigkeit

Totzeitkompensation

Die *Totzeitkompensation* sollte theoretisch 3 Zyklen der NC-Zykluszeit betragen, besser haben sich jedoch 4 Zyklen der NC-Zykluszeit erwiesen. Bei einer Zykluszeit von 2 ms sollte diese somit 0,008 s betragen. Sie finden die *Totzeitkompensation* unter *Weitere Einstellungen* der Encoder-Parameter.

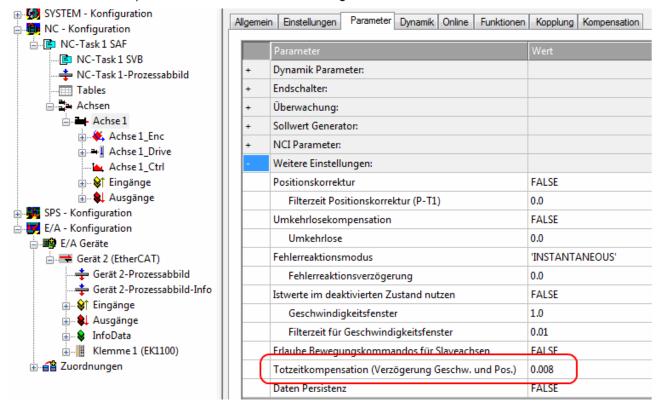


Abb. 23: Parameter Totzeitkompensation

Skalierungsfaktor

Den Skalierungsfaktor können Sie ändern, wenn Sie in der *NC Achse 1_Enc* und die Registerkarte *Parameter* auswählen (siehe Abb. *Skalierungsfaktor einstellen (Beispiel mit Encoder)*). Der Wert lässt sich mit den unten angegebenen Formeln berechnen.

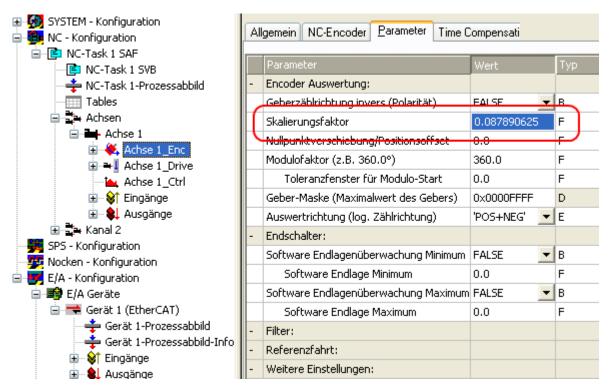


Abb. 24: Skalierungsfaktor einstellen (Beispiel mit Encoder)

Berechnung des Skalierungsfaktors

mit Encoder:

SF = Weg pro Umdrehung / Inkremente x 4 = 360° / $1024 \times 4 = 0,087890625 \text{ mm}$ / INC

ohne Encoder:

SF = Weg pro Umdrehung / Fullsteps x Microsteps = 360° / 200 x 64 = 0,028125 mm / INC

Schleppüberwachung Position

Die Schleppabstandsüberwachung überwacht, ob der aktuelle Schleppabstand einer Achse einen Grenzwert überschreitet. Als Schleppabstand wird die Differenz zwischen ausgegebenem Sollwert (Stellgröße) und zurückgemeldetem Istwert bezeichnet. Sind die Parameter der Klemme noch unzureichend eingestellt, kann es dazu führen, dass beim Verfahren der Achse die Schleppabstandsüberwachung einen Fehler ausgibt. Bei der Inbetriebnahme kann es deswegen eventuell von Vorteil sein, wenn man die Grenzen der Schleppüberwachung Position etwas erhöht.

HINWEIS

ACHTUNG: Beschädigung von Geräten, Maschinen und Peripherieteilen möglich!

Bei der Parametrierung der Schleppüberwachung können durch Einstellen zu hoher Grenzwerte Geräte, Maschinen und Peripherieteile beschädigt werden!

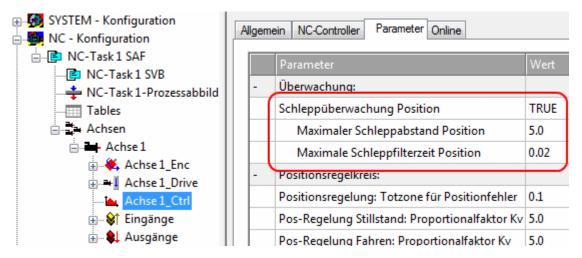


Abb. 25: Schleppüberwachung einstellen

K_v-Faktoren (nur mit externem Encoder)

In der NC lassen sich unter Achse 1_Ctrl in der Registerkarte Parameter zwei Proportionalfaktoren K_v einstellen. Wählen Sie jedoch vorher unter der Registerkarte NC-Controller den Typ Positionsregler mit zwei P-Konstanten (mit Ka) aus. Die beiden P-Konstanten sind einmal für den Bereich Stillstand und ein weiteres Mal für den Bereich Fahren (siehe Abb. Proportionalfaktor K_V einstellen). Damit hat man die Möglichkeit, im Anfahrmoment und im Bremsmoment ein anderes Drehmoment einzustellen als beim Fahren. Der Schwellwert lässt sich direkt darunter (Pos-Regelung: Geschw.schwelle V dyn) zwischen 0.0 (0%) und 1.0 (100%) einstellen. In der (Abb. Geschwindigkeitsrampe mit Genzwerten Geschwindigkeitsrampe Geschwindigkeitsrampe

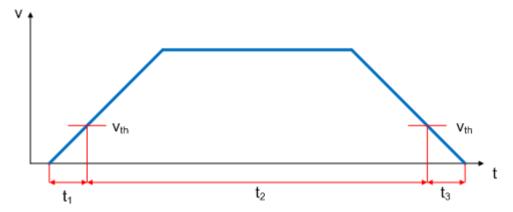


Abb. 26: Geschwindigkeitsrampe mit Grenzwerten des K_V-Faktors

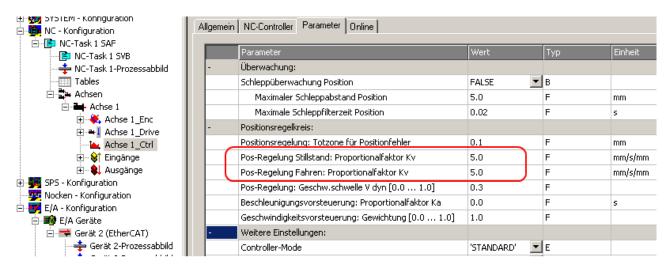


Abb. 27: Proportionalfaktor K_V einstellen

Totzone für Positionsfehler

Mit Hilfe des Microstepping können 200 x 64 = 12800 Positionen angefahren werden. Da der Encoder nur 1024 x 4 = 4096 Positionen abfragen kann, wird unter Umständen eine Position, die sich zwischen zwei Abtastpunkten des Encoders befindet, nicht richtig erfasst und die Klemme regelt um diese Position herum. Mit Hilfe der Totzone für Positionsfehler kann eine Toleranz angegeben werden, innerhalb der die Position als "erreicht" gesehen wird (Abb. *Totzone für Positionsfehler*).

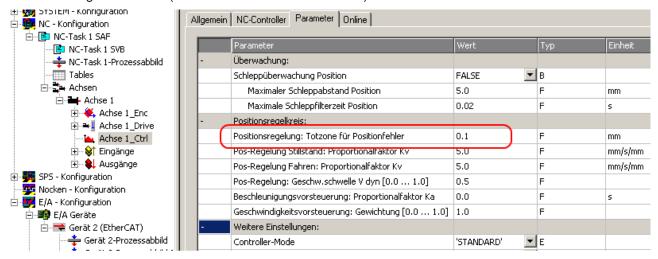


Abb. 28: Totzone für Positionsfehler

Einstellung der Hochlaufzeit

Um eventuell auftretende Resonanzen schnell zu durchfahren, sollten Hochlaufzeit und Bremszeit möglichst mit steilen Rampen gefahren werden.

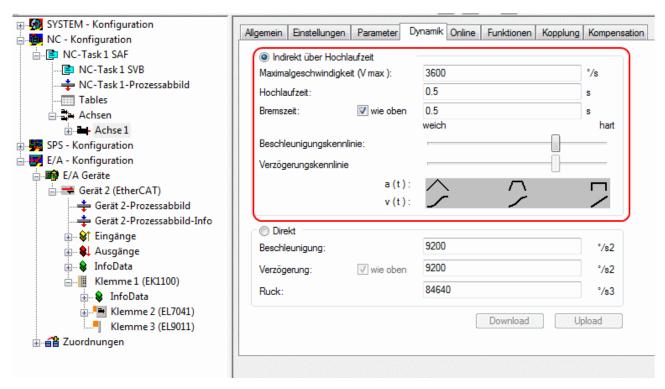


Abb. 29: Einstellung der Hochlaufzeit

5.4 Grundlagen zum Positioning Interface

Das *Positioning interface* bietet dem Anwender eine Möglichkeit direkt auf der Klemme Fahraufträge auszuführen.

5.4.1 Predefined PDO Assignment

Eine vereinfachte Auswahl der Prozessdaten ermöglicht das "Predefined PDO Assignment". Am unteren Teil des Prozessdatenreiters wählen Sie die Funktion "Positioning interface" oder "Positioning interface compact" aus. Es werden dadurch alle benötigten PDOs automatisch aktiviert, bzw. die nicht benötigten deaktiviert.

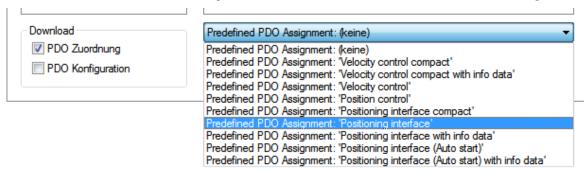


Abb. 30: Predefined PDO Assignment

5.4.2 Parametersatz

Für die Konfiguration stehen dem Anwender im CoE zwei Objekte zur Verfügung, die "POS Settings" (Index 0x8020 [▶ 76]) und die "POS Features" (Index 0x8021 [▶ 77]).

Index	Name	Flags	Wert
	POS Settings Ch.1	RW	> 16 <
8020:01	Velocity min.	RW	100
8020:02	Velocity max.	RW	10000
8020:03	Acceleration pos.	RW	0x03E8 (1000)
8020:04	Acceleration neg.	RW	0x03E8 (1000)
8020:05	Deceleration pos.	RW	0x03E8 (1000)
8020:06	Deceleration neg.	RW	0x03E8 (1000)
8020:07	Emergency deceleration	RW	0x0064 (100)
8020:08	Calibration position	RW	0x00000000 (0)
8020:09	Calibration velocity (towards plc cam)	RW	200
8020:0A	Calibration Velocity (off plc cam)	RW	50
8020:0B	Target window	RW	0x000A (10)
8020:0C	In-Target timeout	RW	0x03E8 (1000)
8020:0D	Dead time compensation	RW	50
8020:0E	Modulo factor	RW	0x00000000 (0)
8020:0F	Modulo tolerance window	RW	0x00000000 (0)
8020:10	Position lag max.	RW	0x0000 (0)
⊡ 8021:0	POS Features Ch.1	RW	> 22 <
8021:01	Start type	RW	Absolute (1)
8021:11	Time information	RW	Elapsed time (0)
8021:13	Invert calibration cam search direction	RW	TRUE
8021:14	Invert sync impulse search direction	RW	FALSE
8021:15	Emergency stop on position lag error	RW	FALSE
8021:16	Enhanced diag history	RW	FALSE

Abb. 31: Settings-Objekte im CoE

POS Settings: Velocity min.:

Die Klemme benötigt aus Gründen der Performance beim Herunterrampen auf die Zielposition einen Sicherheitsbereich von 0,5 %. Das bedeutet, dass abhängig von der erreichten Maximalgeschwindigkeit und der konfigurierten Verzögerung der Zeitpunkt errechnet wird, an dem die Bremsrampe beginnt. Um immer sicher ins Ziel zu gelangen, werden von der ermittelten Position 0,5 % abgezogen. Ist die Bremsrampe beendet und das Ziel noch nicht erreicht, fährt die Klemme mit der Geschwindigkeit "Velocity min." bis ins Ziel hinein. Sie muss so konfiguriert werden, dass der Motor in der Lage ist abrupt und ohne einen Schrittverlust mit dieser Geschwindigkeit abzustoppen.

Velocity max.:

Die maximale Geschwindigkeit, mit der der Motor während eines Fahrauftrages fährt

"Speed range" (Index <u>0x8012:05 [▶ 74]</u>) [gilt für EL70x1]

Velocity min./max. sind auf die konfigurierte "Speed range" (Index 0x8012:05 [▶ 74]) normiert. Das bedeutet, dass bei einer "Speed range" von beispielsweise 4000 Vollschritten/Sekunde für eine Geschwindigkeitsausgabe von 100 % (d. h. 4000 Vollschritte/Sekunde) in "Velocity max." eine 10000 und bei 50 % (d. h. 2000 Vollschritte/Sekunde) eine 5000 eingetragen werden muss.

Acceleration pos.:

Beschleunigungszeit in positiver Drehrichtung.

Die fünf Parameter der Beschleunigung beziehen sich ebenfalls auf die eingestellte "*Speed range*" und werden in ms angegeben. Mit der Einstellung von 1000 beschleunigt die Klemme den Motor in 1000 ms von 0 auf 100 %. Bei einer Geschwindigkeit von 50 % verringert sich die Beschleunigungszeit dementsprechend linear auf die Hälfte.

Acceleration neg.:

Beschleunigungszeit in negativer Drehrichtung.

Deceleration pos.:

Verzögerungszeit in positiver Drehrichtung.

Deceleration neg.:

Verzögerungszeit in negativer Drehrichtung.

Emergency deceleration:

Notfall-Verzögerungszeit (beide Drehrichtungen). Ist im entsprechenden PDO "*Emergency stop*" gesetzt, wird der Motor innerhalb dieser Zeit gestoppt.

Calibration position:

Der aktuelle Zählerstand wird nach erfolgter Kalibrierung mit diesem Wert geladen.

Calibration velocity (towards plc cam):

Geschwindigkeit, mit der der Motor, während der Kalibrierung auf die Nocke fährt.

Calibration velocity (off plc cam):

Geschwindigkeit, mit der der Motor, während der Kalibrierung von der Nocke herunter fährt.

Target window:

Zielfenster der Fahrwegsteuerung. Kommt der Motor innerhalb dieses Zielfensters zum Stillstand, wird "In-Target" gesetzt

In-Target timeout:

Steht der Motor nach Ablauf der Fahrwegsteuerung nach dieser eingestellten Zeit nicht im Zielfenster, wird "In-Target" nicht gesetzt. Dieser Zustand kann nur durch Kontrolle der negativen Flanke von "Busy" erkannt werden.

Dead time compensation:

Kompensation der internen Laufzeiten. Dieser Parameter muss bei Standardanwendungen nicht geändert werden.

Modulo factor:

Der "Modulo factor" wird zur Berechnung der Zielposition und der Drehrichtung in den Modulo-Betriebsarten herangezogen. Er bezieht sich auf das angesteuerte System.

Modulo tolerance window:

Toleranzfenster zur Ermittlung der Startbedingung der Modulo-Betriebsarten.

POS Features:

Start type:

Der "Start type" bestimmt die Art der Berechnung für die Ermittlung der Zielposition (siehe unten).

Time information:

Durch diesen Parameter wird die Bedeutung der angezeigten "*Actual drive time*" konfiguriert. Zurzeit kann dieser Wert nicht verändert werden, da es keine weitere Auswahlmöglichkeit gibt. Es wird die abgelaufene Zeit des Fahrauftrages angezeigt.

Invert calibration cam search direction:

Bezogen auf eine positive Drehrichtung wird hier die Richtung der Suche nach der Kalibrier-Nocke konfiguriert (auf die Nocke fahren).

Invert sync impulse search direction:

Bezogen auf eine positive Drehrichtung wird hier die Richtung der Suche nach dem HW-Sync-Impuls konfiguriert (von der Nocke herunter fahren).

5.4.3 Informations- und Diagnosedaten

Über die Informations- und Diagnosedaten kann der Anwender eine genauere Aussage darüber erhalten, welcher Fehler während eines Fahrauftrages aufgetreten ist.

Index	Name	Flags	Wert
9020:0	POS Info data Ch.1	RO	> 4 <
9020:01	Status word	RO	0x0000 (0)
9020:03	State (drive controller)	RO	Init (0)
9020:04	Actual position lag	RO	0
± ··· A010:0	STM Diag data Ch.1	RO	> 17 <
Ė··· A020:0	POS Diag data Ch.1	RO	>6<
A020:01	Command rejected	RO	FALSE
A020:02	Command aborted	RO	FALSE
A020:03	Target overrun	RO	FALSE
···· A020:04	Target timeout	RO	FALSE
A020:05	Position lag	RO	FALSE
A020:06	Emergency stop	RO	FALSE

Abb. 32: Diagnose-Objekte im CoE

POS Info data:

Status word:

Das "Status word" spiegelt die im Index 0xA020 verwendeten Status-Bits in einem Datenwort, um diese in der PLC einfacher verarbeiten zu können. Die Positionen der Bits entsprechen der Nummer des Subindizes-1.

Bit 0: Command rejected Bit 1: Command aborded Bit 2: Target overrun

State (drive controller):

Hier wird der aktuelle Status der internen Statemachine eingeblendet (siehe unten).

POS Diag data:

Command rejected:

Eine dynamische Änderung der Zielposition wird nicht zu jedem Zeitpunkt von der Klemme übernommen, da dies dann nicht möglich ist. Der neue Auftrag wird in diesem Fall abgewiesen und durch setzen dieses Bits signalisiert.

Diese 3 Diagnose-Bits werden durch Setzten von "Warning" im PDO zur Steuerung synchron übertragen.

Command aborted:

Der aktuelle Fahrauftrag wurde durch einen internen Fehler oder durch ein "Emergency stop" vorzeitig abgebrochen.

Target overrun:

Bei einer dynamischen Änderung der Zielposition kann es vorkommen, dass die Änderung zu einem relativ späten Zeitpunkt erfolgt. Dies kann zur Folge haben, dass ein Drehrichtungswechsel erforderlich ist und ggf. die neue Zielposition überfahren wird. Tritt dies ein, so wird "*Target overrun*" gesetzt.

5.4.4 Zustände der internen Statemachine

Der State (drive controller) (Index 0x9020:03) gibt Auskunft über den aktuellen Zustand der internen Statemachine. Zu Diagnosezwecken kann dieser zur Laufzeit von der PLC ausgelesen werden. Der interne Zyklus arbeitet konstant mit 250 µs. Ein angeschlossener PLC-Zyklus ist großer Wahrscheinlichkeit nach langsamer (z. B. 1 ms). Daher kann es vorkommen, dass manche Zustände in der PLC überhaupt nicht sichtbar sind, da diese teilweise nur einen internen Zyklus durchlaufen werden.

Name	ID	Beschreibung
INIT	0x0000	Initialisierung/Vorbereitung für den nächsten Fahrauftrag.
IDLE	0x0001	Warten auf den nächsten Fahrauftrag.
START	0x0010	Das neue Kommando wird ausgewertet und die entsprechenden Berechnungen durchgeführt.
ACCEL	0x0011	Beschleunigungs-Phase.
CONST	0x0012	Konstant-Phase
DECEL	0x0013	Verzögerungs-Phase
EMCY	0x0020	Es wurde ein <i>Emergency stop</i> ausgelöst.
STOP	0x0021	Der Motor ist gestoppt.
CALI_START	0x0100	Start eines Kalibrierkommandos.
CALI_GO_CAM	0x0110	Der Motor wird auf die Nocke gefahren.
CALI_ON_CAM	0x0111	Die Nocke wurde erreicht.
CALI_GO_SYNC	0x0120	Der Motor wird in Richtung des HW-Sync-Impulses gefahren.
CALI_LEAVE_CAM	0x0121	Der Motor wird von der Nocke herunter gefahren.
CALI_STOP	0x0130	Ende der Kalibrier-Phase.
CALIBRATED	0x0140	Der Motor ist kalibriert.
NOT_CALIBRATED	0x0141	Der Motor ist nicht kalibriert.
PRE_TARGET	0x1000	Sollposition ist erreicht, der Positionsregler "zieht" den Motor weiter ins Ziel, <i>In-Target timeout</i> wird hier gestartet.
TARGET	0x1001	Der Motor hat das Zielfenster innerhalb des Timeouts erreicht.
TARGET_RESTART	0x1002	Eine dynamische Änderung der Zielposition wird hier verarbeitet.
END	0x2000	Ende der Positionier-Phase.
WARNING	0x4000	Während des Fahrauftrages ist ein Warn-Zustand aufgetreten, dieser wird hier verarbeitet.
ERROR	0x8000	Während des Fahrauftrages ist ein Fehler-Zustand aufgetreten, dieser wird hier verarbeitet.
UNDEFINED	0xFFFF	Undefinierter Zustand (kann z. B. auftreten, wenn die Treiberstufe keine Steuerspannung hat).

5.4.5 Standard Ablauf eines Fahrauftrags

Im folgenden Ablaufdiagramm ist ein "normaler" Ablauf eines Fahrauftrags dargestellt. Es wird grob zwischen diesen vier Stufen unterschieden:

Startup

Überprüfung des Systems und der Betriebsbereitschaft des Motors.

Start positioning

Schreiben aller Variablen und Berechnung der gewünschten Zielposition mit dem entsprechenden "Start type". Anschließend den Fahrauftrag starten.

Evaluate status

Überwachung des Klemmen-Status und ggf. dynamische Änderung der Zielposition.

Error handling

Im Falle eines Fehlers die nötigen Informationen aus dem CoE beziehen und auswerten.

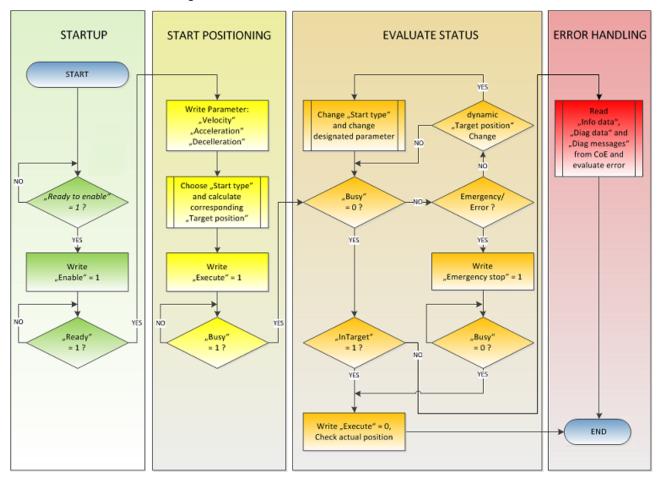


Abb. 33: Ablauf-Diagramm eines Fahrauftrages

5.4.6 Starttypen

Das Positioning Interface bietet verschiedene Arten der Positionierung. Die folgende Tabelle enthält alle unterstützten Kommandos, diese sind in vier Gruppen aufgeteilt.

Unterstützte Start Types des Positioning Interfaces

Name	Kommando	Gruppe	Beschreibung
ABSOLUTE	0x0001	Standard [57]	Absolute Positionierung auf eine vorgegebene Zielposition
RELATIVE	0x0002		Relative Positionierung auf eine berechnete Zielposition, ein vorgegebener Positionsunterschied wird zur aktuelle Position addiert
ENDLESS_PLUS	0x0003		Endlos fahren in positiver Drehrichtung (direkte Vorgabe einer Geschwindigkeit)
ENDLESS_MINUS	0x0004		Endlos fahren in negativer Drehrichtung (direkte Vorgabe einer Geschwindigkeit)
ADDITIVE	0x0006		Additive Positionierung auf eine berechnete Zielposition, ein vorgegebener Positionsunterschied wird zur letzten Zielposition addiert
ABSOLUTE_CHANGE	0x1001	Standard Ext. [▶ 59]	Dynamische Änderung der Zielposition währen eines Fahrauftrages auf eine neue, absolute Position
RELATIVE_CHANGE	0x1002		Dynamische Änderung der Zielposition währen eines Fahrauftrages auf eine neue, relative Position (es wird hier ebenfalls der aktuelle, sich verändernde Positionswert verwendet)
ADDITIVE_CHANGE	0x1006		Dynamische Änderung der Zielposition währen eines Fahrauftrages auf eine neue, additive Position (es wird hier die letzte Zielposition verwendet)
MODULO_SHORT	0x0105	Modulo [▶ 60]	Modulo Positionierung auf kürzestem Weg zur Moduloposition (positiv oder negativ), berechnet durch den konfigurierten " <i>Modulo factor</i> " (Index 0x8020:0E [▶ 76])
MODULO_SHORT_EXT	0x0115		Modulo Positionierung auf kürzestem Weg zur Moduloposition, das " <i>Modulo tolerance window</i> " (Index <u>0x8020:0F</u> [▶ <u>76]</u>) wird ignoriert
MODULO_PLUS	0x0205		Modulo Positionierung in positiver Drehrichtung auf die berechnete Moduloposition
MODULO_PLUS_EXT	0x0215		Modulo Positionierung in positiver Drehrichtung auf die berechnete Moduloposition, das " <i>Modulo tolerance window</i> " wird ignoriert
MODULO_MINUS	0x0305		Modulo Positionierung in negativer Drehrichtung auf die berechnete Moduloposition
MODULO_MINUS_EXT	0x0315		Modulo Positionierung in negativer Drehrichtung auf die berechnete Moduloposition, das " <i>Modulo tolerance window</i> " wird ignoriert
MODULO_CURRENT	0x0405		Modulo Positionierung mit der letzten Drehrichtung auf die berechnete Moduloposition
MODULO_CURRENT_EXT	0x0415		Modulo Positionierung mit der letzten Drehrichtung auf die berechnete Moduloposition, das "Modulo tolerance window" wird ignoriert
CALI_PLC_CAM	0x6000	Calibration [▶ 59]	Starten einer Kalibrierung mit Nocke (digitale Eingänge)
CALI_HW_SYNC	0x6100		Starten einer Kalibrierung mit Nocke und HW-Sync-Impuls (C-Spur)
SET_CALIBRATION	0x6E00		Manuelles Setzen der Klemme auf "Kalibriert"
SET_CALIBRATION_AUTO	0x6E01		Automatisches Setzen der Klemme auf "Kalibriert" bei der ersten steigenden Flanke von "Enable"
CLEAR_CALIBRATION	0x6F00		Manuelles Löschen der Kalibrierung

ABSOLUTE

Die absolute Positionierung stellt den einfachsten Fall einer Positionierung dar. Es wird eine Position B vorgegeben, welche vom Startpunkt A aus angefahren wird.

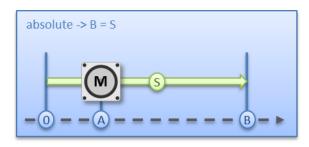


Abb. 34: Absolute Positionierung

RELATIVE

Bei der relativen Positionierung gibt der Anwender ein Positionsdelta S vor, welches zur aktuellen Position A addiert wird und die Zielposition B ergibt.

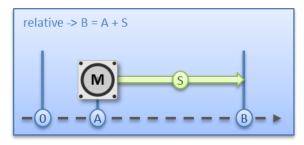


Abb. 35: Relative Positionierung

ENDLESS_PLUS / ENDLESS_MINUS

Die beiden Starttypen ENDLESS_PLUS und ENDLESS_MINUS bieten im *Positioning Interface* die Möglichkeit dem Motor eine direkte Geschwindigkeit vorzugeben, um endlos in positiver oder negativer Richtung, mit den vorgegebenen Beschleunigungen, zu fahren.

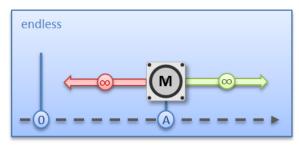


Abb. 36: Endlos fahren

ADDITIVE

Für die additive Positionierung wird, zur Berechnung der Zielposition B, das vom Anwender vorgegebene Positionsdelta S mit der beim letzten Fahrauftrag verwendeten Zielposition E addiert.

Diese Art der Positionierung ähnelt der relativen Positionierung, hat aber doch einen Unterschied. Wurde der letzte Fahrauftrag mit Erfolg abgeschlossen, ist die neue Zielposition gleich. Gab es aber einen Fehler, sei es dass der Motor in eine Stallsituation geraten ist oder ein *Emergency stop* ausgelöst wurde, ist die aktuelle Position beliebig und nicht vorausschaubar. Der Anwender hat jetzt den Vorteil, dass er die letzte Zielposition für die Berechnung der folgenden Zielposition nutzen kann.

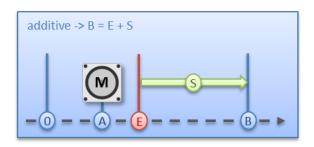


Abb. 37: Additive Positionierung

ABSOLUTE_CHANGE / RELATIVE_CHANGE / ADDITIVE_CHANGE

Diese drei Positionierarten sind komplett identisch zu den oben beschrieben. Der wichtige Unterschied dabei ist, dass der Anwender während eines aktiven Fahrauftrags diese Kommandos nutzt, um dynamisch eine neue Zielposition vorzugeben.

Es gelten dabei die gleichen Regeln und Voraussetzungen, wie bei den "normalen" Starttypen. ABSOLUTE_CHANGE und ADDITIVE_CHANGE sind in der Berechnung der Zielposition eindeutig d.h. bei der absoluten Positionierung wird eine absolute Position vorgegeben und bei der additiven Positionierung wird ein Positionsdelta zu der gerade aktiven Zielposition addiert.

HINWEIS

Vorsicht bei der Verwendung der Positionierung RELATIVE_CHANGE

Die Änderung per RELATIVE_CHANGE muss mit Vorsicht angewendet werden, da auch hier die aktuelle Position des Motors als Startposition verwendet wird. Durch Laufzeiten des Systems stimmt die im PDO angezeigte Position nie mit der realen Position des Motors überein! Daher wird sich bei der Berechnung des übergebenen Positionsdeltas immer eine Differenz zur gewünschten Zielposition einstellen.

Zeitpunkt der Änderung der Zielposition

Eine Änderung der Zielposition kann nicht zu jedem beliebigen Zeitpunkt erfolgen. Falls die Berechnung der Ausgabeparameter ergibt, dass die neue Zielposition nicht ohne weiteres erreicht werden kann, wird das Kommando von der Klemme abgewiesen und das Bit <u>Command rejected</u>

[• 54] gesetzt. Dies ist z. B. im Stillstand (da die Klemme hier eine Standard Positionierung erwartet) und in der Beschleunigungsphase (da zu diesem Zeitpunkt der Bremszeitpunkt noch nicht berechnet werden kann) der Fall.

CALI_PLC_CAM / CALI_HW_SYNC / SET_CALIBRATION / SET_CALIBRATION_AUTO / CLEAR_CALIBRATION

Der einfachste Fall einer Kalibrierung ist der, nur per Nocke (an einem dig. Eingang angeschlossen) zu kalibrieren.

Hier bei fährt der Motor im 1. Schritt mit der Geschwindigkeit 1 (Index <u>0x8020:09 [▶ 76]</u>) in Richtung 1 (Index <u>0x8021:13 [▶ 77]</u>) auf die Nocke. Anschließend im 2. Schritt mit der Geschwindigkeit 2 (Index <u>0x8020:0A</u> [▶ <u>76]</u>) in Richtung 2 (Index <u>0x8021:14 [▶ 77]</u>)) von der Nocke herunter. Nachdem das *In-Target timeout* (Index <u>0x8020:0C [▶ 76]</u>) abgelaufen ist wird die Kalibrierposition (Index <u>0x8020:08 [▶ 76]</u>) als aktuelle Position von der Klemme übernommen.

HINWEIS

Schalthysterese des Nockenschalters beachten

Bei dieser einfachen Kalibrierung muss beachtet werden, dass die Positionserfassung der Nocke nur bedingt genau ist. Die digitalen Eingänge sind nicht Interrupt gesteuert und werden "nur" gepollt. Durch die internen Laufzeiten kann sich deshalb eine systembedingte Positionsdifferenz ergeben.

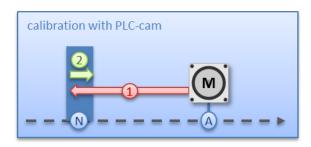


Abb. 38: Kalibrierung mit Nocke

Für eine genauere Kalibrierung wird zusätzlich zu der Nocke ein HW-Sync-Impuls (C-Spur) verwendet. Der Ablauf dieser Kalibrierung erfolgt genau wie oben beschrieben, bis zu dem Zeitpunkt, an dem der Motor von der Nocke herunterfährt. Jetzt wird nicht sofort gestoppt, sondern erst auf den Sync-Impuls gewartet. Anschließend läuft wieder das *In-Target timeout* ab und die Kalibrierposition wird als aktuelle Position von der Klemme übernommen.

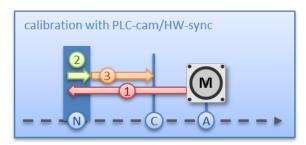


Abb. 39: Kalibrierung mit Nocke und C-Spur

Falls eine Kalibrierung per Hardware, aufgrund der applikatorischen Umstände, nicht möglich ist, kann der Anwender das Bit *Calibrated* auch manuell bzw automatisch setzen. Das manuelle Setzen bzw. Löschen erfolgt mit den Kommandos SET CALIBRATION und CLEAR CALIBRATION.

Einfacher ist es aber, wenn man den Standard-Starttypen (Index <u>0x8021:01 [▶ 77]</u>)) auf SET_CALIBRATION_AUTO konfiguriert. Jetzt wird bei der ersten steigenden Flanke von *Enable* das Bit *Calibrated* automatisch gesetzt. Das Kommando ist nur für diesen Zweck konzipiert, daher ist es nicht sinnvoll es über den synchronen Datenaustausch zu benutzen.

5.4.7 Modulo - allgemeine Beschreibung

MODULO

Die Modulo-Position der Achse ist eine zusätzliche Information zur absoluten Achsposition und die Modulo-Positionierung stellt die gewünschte Zielposition auf eine andere Art dar. Im Gegensatz zu den Standard-Positionierarten, birgt die Modulo-Positionierung einige Tücken, da die gewünschte Zielposition unterschiedlich interpretiert werden kann.

Die Modulo-Positionierung bezieht sich grundsätzlich auf den im CoE einstellbaren *Modulo factor* (Index <u>0x8020:0E [▶ 76]</u>). In den folgenden Beispielen wird von einer rotatorischen Achse mit einem *Modulo factor* von umgerechnet 360 Grad ausgegangen.

Das *Modulo tolerance window* (Index <u>0x8020:0F</u> [▶ <u>76]</u>) definiert ein Positionsfenster um die aktuelle Modulo-Sollposition der Achse herum. Die Fensterbreite entspricht dem doppelten angegebenen Wert (Sollposition ± Toleranzwert). Auf das Toleranzfenster wird im Folgenden näher eingegangen.

Die Positionierung einer Achse bezieht sich immer auf deren aktuellen Ist-Position. Die Ist-Position der Achse ist im Normalfall die Position, die mit dem letzten Fahrauftrag angefahren wurde. Unter Umständen (fehlerhafte Positionierung durch einen Stall der Achse, oder eine sehr grobe Auflösung des angeschlossenen Encoders) kann sich aber eine vom Anwender nicht erwartete Position einstellen. Wenn dieser Umstand nicht berücksichtigt wird, kann sich eine nachfolgende Positionierung unerwartet verhalten.

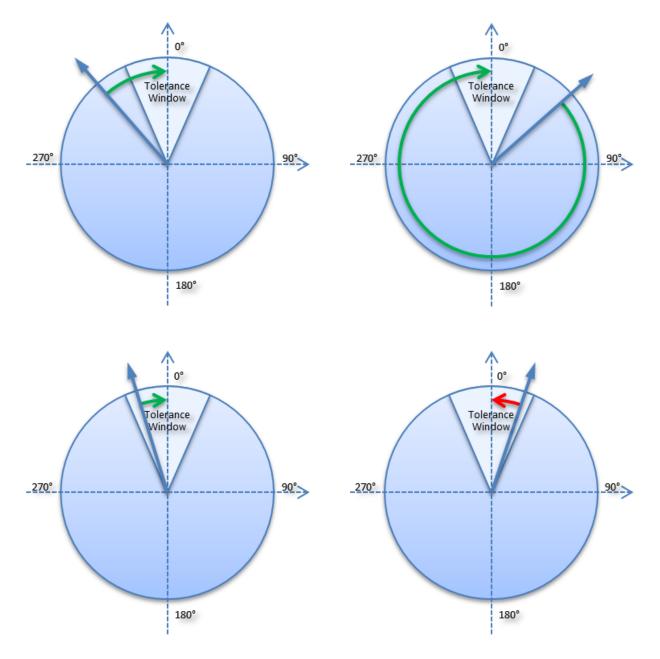


Abb. 40: Wirkung des Modulo-Toleranzfensters - Modulo-Zielposition 0° in positiver Richtung

Beispiel

Eine Achse wird auf 0° positioniert, wodurch die Ist-Position der Achse anschließend exakt 0° beträgt. Ein weiterer Modulo-Fahrauftrag auf 360° in *positiver Richtung* führt zu einer vollen Umdrehung und die Modulo-Position der Achse ist anschließend wieder exakt 0°. Kommt die Achse bedingt durch die Mechanik etwas vor oder hinter der Zielposition zum Stehen, so verhält sich das nächste Fahrkommando ggf. nicht so, wie man es erwartet. Liegt die Ist-Position leicht unter 0° (siehe Abb. *Kalibrierung mit Nocke*, links unten), so führt ein neues Fahrkommando auf 0° in *positiver Richtung* nur zu einer minimalen Bewegung. Die vorher entstandene Abweichung wird ausgeglichen und die Position ist anschließend wieder exakt 0°. Liegt aber die Position leicht über 0°, so führt dasselbe Fahrkommando zu einer vollen Umdrehung um wieder die exakte Position von 0° zu erreichen. Diese Problematik tritt auf, wenn volle Umdrehungen um 360° oder ein Vielfaches von 360° beauftragt werden. Bei Positionierungen auf einen von der aktuellen Modulo-Position entfernten Winkel ist der Fahrauftrag eindeutig.

Um das Problem zu lösen, kann ein *Modulo tolerance window* (Index <u>0x8020:0F [▶76]</u>) parametriert werden. Kleine Abweichungen der Position, die innerhalb des Fensters liegen, führen damit nicht mehr zu einem unterschiedlichen Verhalten der Achse. Wird beispielsweise ein Fenster von 1° parametriert, so verhält sich die Achse im oben beschriebenen Fall gleich, solange die Ist-Position zwischen 359° und 1°

liegt. Wenn jetzt die Position weniger als 1° über 0° liegt, wird die Achse bei einem Modulo-Start in *positiver Richtung* zurückpositioniert. Bei einer Zielposition von 0° wird also in beiden Fällen eine Minimalbewegung auf exakt 0° ausgeführt und bei einer Zielposition von 360° wird in beiden Fällen eine ganze Umdrehung gefahren.

Das Modulo-Toleranzfenster kann also innerhalb des Fensters zu Bewegungen gegen die beauftragte Richtung führen. Bei einem kleinen Fenster ist das normalerweise unproblematisch, weil auch Regelabweichungen zwischen Soll- und Ist-Position in beide Richtungen ausgeglichen werden. Das Toleranzfenster lässt sich also auch bei Achsen verwenden, die konstruktionsbedingt nur in einer Richtung verfahren werden dürfen.

Modulo-Positionierung um weniger als eine Umdrehung

Die Modulo-Positionierung von einer Ausgangsposition auf eine nicht identische Zielposition ist eindeutig und birgt keine Besonderheiten. Eine Modulo-Zielposition im Bereich [0 ≤ Position < 360] führt in weniger als einer ganzen Umdrehung zum gewünschten Ziel. Ist die Zielposition mit der Ausgangsposition identisch, so wird keine Bewegung ausgeführt. Bei Zielpositionen ab 360° aufwärts werden ein oder mehr vollständige Umdrehungen ausgeführt, bevor die Achse auf die gewünschte Zielposition fährt.

Für eine Bewegung von 270° auf 0° darf demnach nicht 360°, sondern es muss 0° als Modulo-Zielposition beauftragt werden, da 360° außerhalb des Grundbereiches liegt und zu einer zusätzlichen Umdrehung führen würde.

Die Modulo-Positionierung unterscheidet drei Richtungsvorgaben, positive Richtung, negative Richtung und auf kürzestem Weg (MODULO_PLUS, MODULO_MINUS, MODULO_SHORT). Bei der Positionierung auf kürzestem Weg sind Zielpositionen ab 360° nicht sinnvoll, da das Ziel immer direkt angefahren wird. Im Gegensatz zur positiven oder negativen Richtung können also nicht mehrere Umdrehungen ausgeführt werden, bevor das Ziel angefahren wird.

HINWEIS

Nur Grundperioden kleiner 360° sind erlaubt

Bei Modulo-Positionierungen mit dem Start-Typ MODULO_SHORT sind nur Modulo-Zielpositionen in der Grundperiode (z. B. kleiner als 360°) erlaubt, anderenfalls wird ein Fehler zurückgegeben.

Positionierung ohne Modulo-Toleranzfenster

Bei den "normalen" Modulo-Positionierarten wird immer das "Modulo tolerance window" (Index 0x8020:0F [> 76]) berücksichtigt. In manchen Situationen ist dies aber eher unerwünscht. Um diesen "Nachteil" zu eliminieren, können die vergleichbaren Starttypen "MODULO_SHORT_EXT", "MODULO_PLUS_EXT", "MODULO_MINUS_EXT" und "MODULO_CURRENT_EXT" verwendet werden, welche das Modulo-Toleranzfenster ignorieren.

Die folgende Tabelle zeigt Beispiele zur Modulo-Positionierung bei weniger als einer Umdrehung.

Modulo-Starttyp	Absolute Anfangsposition				Modulo Endposition
MODULO_PLUS	90°	0°	270°	360°	0°
MODULO_PLUS	90°	360°	630°	720°	0°
MODULO_PLUS	90°	720°	990°	1080°	0°
MODULO_MINUS	90°	0°	-90°	0°	0°
MODULO_MINUS	90°	360°	-450°	-360°	0°
MODULO_MINUS	90°	720°	-810°	-720°	0°
MODULO_SHORT	90°	0°	-90°	0°	0°

Modulo-Positionierung um ganze Umdrehungen

Modulo-Positionierungen um ein oder mehrere ganze Umdrehungen verhalten sich grundsätzlich nicht anders als Positionierungen auf von der Ausgangsposition entfernt liegende Winkel. Wenn die beauftragte Zielposition gleich der Ausgangsposition ist, so wird keine Bewegung ausgeführt. Für eine ganze Umdrehung muss zur Ausgangsposition 360° addiert werden. Das beschriebene Verhalten im Beispiel zeigt, dass Positionierungen mit ganzzahligen Umdrehungen besonders beachtet werden müssen. Die

nachfolgende Tabelle zeigt Positionierbeispiele für eine Ausgangsposition von ungefähr 90°. Das Modulo-Toleranzfenster (TF) ist hier auf 1° eingestellt. Besondere Fälle, in denen die Ausgangsposition außerhalb dieses Fensters liegt, sind gekennzeichnet.

Die folgende Tabelle zeigt Beispiele zur Modulo-Positionierung bei ganzen Umdrehungen.

Modulo-Starttyp	Absolute Anfangs- position		Relativer Verfahrweg	Absolute Endposition	Modulo End- position	Anmerkung
MODULO_PLUS	90,00°	90,00°	0,00°	90,00°	90,00°	
MODULO_PLUS	90,90°	90,00°	-0,90°	90,00°	90,00°	
MODULO_PLUS	91,10°	90,00°	358,90°	450,00°	90,00°	außerhalb TF
MODULO_PLUS	89,10°	90,00°	0,90°	90,00°	90,00°	
MODULO_PLUS	88,90°	90,00°	1,10°	90,00°	90,00°	außerhalb TF
MODULO_PLUS	90,00°	450,00	360,00°	450,00°	90,00°	
MODULO_PLUS	90,90°	450,00°	359,10°	450,00°	90,00°	
MODULO_PLUS	91,10°	450,00°	718,90°	810,00°	90,00°	außerhalb TF
MODULO_PLUS	89,10°	450,00°	360,90°	450,00°	90,00°	
MODULO_PLUS	88,90°	450,00°	361,10°	450,00°	90,00°	außerhalb TF
MODULO_PLUS	90,00°	810,00	720,00°	810,00°	90,00°	
MODULO_PLUS	90,90°	810,00	719,10°	810,00°	90,00°	
MODULO_PLUS	91,10°	810,00	1078,90°	1170,00°	90,00°	außerhalb TF
MODULO_PLUS	89,10°	810,00	720,90°	810,00°	90,00°	
MODULO_PLUS	88,90°	810,00	721,10°	810,00°	90,00°	außerhalb TF
MODULO_MINUS	90,00°	90,00°	0,00°	90,00°	90,00°	
MODULO_MINUS	90,90°	90,00°	-0,90°	90,00°	90,00°	
MODULO_MINUS	91,10°	90,00°	-1,10°	90,00°	90,00°	außerhalb TF
MODULO_MINUS	89,10°	90,00°	0,90°	90,00°	90,00°	
MODULO_MINUS	88,90°	90,00°	-358,90°	-270,00°	90,00°	außerhalb TF
MODULO_MINUS	90,00°	450,00°	-360,00°	-270,00°	90,00°	
MODULO_MINUS	90,90°	450,00°	-360,90°	-270,00°	90,00°	
MODULO_MINUS	91,10°	450,00°	-361,10°	-270,00°	90,00°	außerhalb TF
MODULO_MINUS	89,10°	450,00°	-359,10°	-270,00°	90,00°	
MODULO_MINUS	88,90°	450,00°	-718,90°	-630,00°	· · · · · · · · · · · · · · · · · · ·	außerhalb TF
MODULO_MINUS	90,00°	810,00°	-720,00°	-630,00°	90,00°	
MODULO_MINUS	90,90°	810,00°	-720,90°	-630,00°	90,00°	
MODULO_MINUS	91,10°	810,00°	-721,10°	-630,00°		außerhalb TF
MODULO_MINUS	89,10°	810,00°	-719,10°	-630,00°	90,00°	
MODULO_MINUS	88,90°	810,00°	-1078,90°	-990,00°	90,00°	außerhalb TF

5.4.8 Beispiele von zwei Fahraufträgen mit dynamischer Änderung der Zielposition

Ohne Überfahren der Zielposition

Zeitpunkt	POS Outputs	POS Inputs	Beschreibung
t1:	Execute = 1 Target position = 200000 Velocity = 2000 Start type = 0x0001 Acceleration = 1000 Deceleration = 1000	Busy = 1 Accelerate = 1	 Vorgabe der ersten Parameter Beginn der Beschleunigungsphase
t2:		Accelerate = 0	Ende der Beschleunigungsphase
t3:	Target position = 100000 Velocity = 1500 Start type = 0x1001 Acceleration = 2000 Deceleration = 2000		Änderung der ParameterAktivierung durch neuen Starttypen
t4:		Decelerate = 1	Beginn der Verzögerungsphase
t5:	Execute = 0	Busy = 0 In-Target = 1 Decelerate = 0	Ende der VerzögerungsphaseMotor ist auf neuer Zielposition
t6 - t9:			Absolute Fahrt zurück auf die Startposition 0

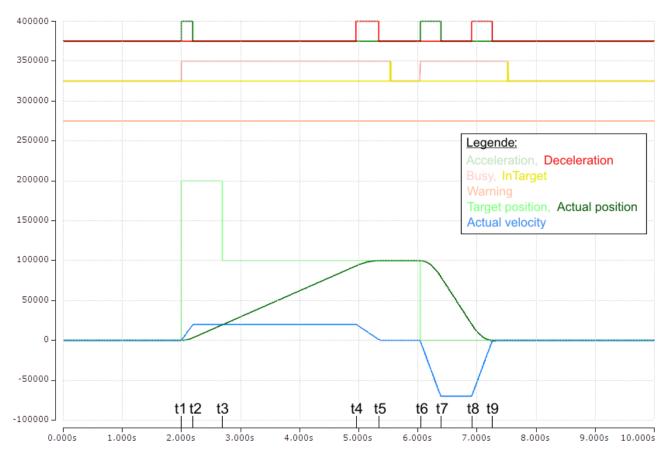


Abb. 41: Scope-Aufnahme ohne Überfahren der Zielposition

Die Achsen-Skalierung bezieht sich nur auf die Positionen, nicht auf die Geschwindigkeit und die Status-Bits.

Mit Überfahren der Zielposition

Zeitpunkt	POS Outputs	POS Inputs	Beschreibung	
t1	Execute = 1 Target position = 200000 Velocity = 5000 Start type = 0x0001 Acceleration = 3000 Deceleration = 5000	Busy = 1 Accelerate = 1	 Vorgabe der 1. Parameter Beginn der 1. Beschleunigungsphase 	
t2:		Accelerate = 0	Ende der 1. Beschleunigungsphase	
t3	Target position = 100000 Velocity = 1500 Start type = 0x1001 Acceleration = 1000 Deceleration = 2000	Warning = 1 Decelerate = 1	 Änderung der Parameter Aktivierung durch neuen Starttypen Warnung vor dem Überfahren der Zielposition Beginn der 1. Verzögerungsphase 	
t4		Accelerate = 1 Decelerate = 0	Ende der 1. VerzögerungsphaseBeginn der 2. Beschleunigungsphase in Gegenrichtung	
t5		Accelerate = 0 Decelerate = 1	Ende der 2. BeschleunigungsphaseBeginn der 2. Verzögerungsphase	
t6	Execute = 0	Busy = 0 In-Target = 1 Decelerate = 0	 Ende der 2.Verzögerungsphase Motor ist auf neuer Zielposition 	
t7 - t10			Absolute Fahrt zurück auf die Startposition 0	

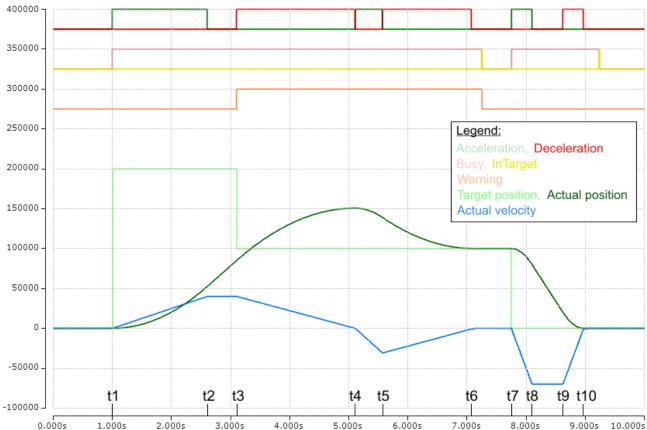


Abb. 42: Scope-Aufnahme mit Überfahren der endgültigen Zielposition

Die Achsen-Skalierung bezieht sich nur auf die Positionen, nicht auf die Geschwindigkeit und die Status-Bits.

5.5 Anwendungsbeispiel

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description. Es wird empfohlen, die entsprechende aktuellste XML-Datei im Download-Bereich auf der <u>Beckhoff Website</u> herunterzuladen und entsprechend der Installationsanweisungen zu installieren.

Motoransteuerung mit Visualisierung

Beispielprogramm (https://infosys.beckhoff.com/content/1031/ep7041/Resources/3696560907.zip)

Verwendeter Master: TwinCAT 2.11 (bei älteren Versionen muss der Regelkreis manuell programmiert werden, der in diesem Fall bereits in der NC implementiert ist).

Mit diesem Anwendungsbeispiel lässt sich ein Motor mit Hilfe der Visualisierung in eine beliebige Position fahren oder im Endlosmodus betreiben. Dabei kann die Geschwindigkeit, die Anfahrbeschleunigung und die Bremsbeschleunigung festgelegt werden.

Das Beispielprogramm besteht aus zwei Dateien (PLC-Datei und System Manager Datei).

Öffnen Sie zunächst die PLC-Datei und kompilieren Sie die Datei, damit Sie für den System Manager die *.tpy Datei zur Verfügung haben.

Beachten Sie, dass Sie im PLC-Programm gegebenenfalls die Zielplattform anpassen müssen (default: PC oder CX 8x86). Sollten Sie das ändern müssen, können Sie unter der Registerkarte *Ressourcen -> Steuerungskonfiguration* die richtige Zielplattform auswählen.

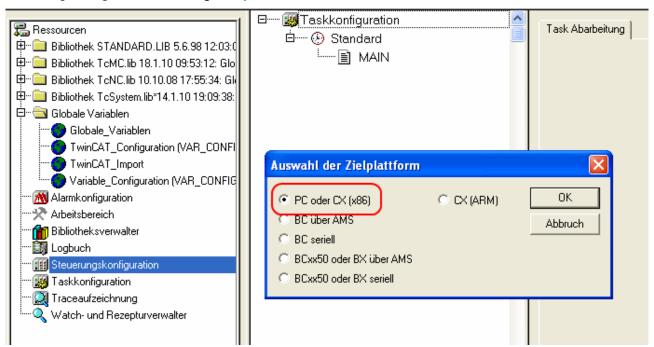


Abb. 43: Auswahl der Zielplattform

Bei der System Manager Datei muss folgendes beachtet werden:

- Starten Sie den System Manager im Konfig-Modus.
- Stellen Sie sicher, dass die E/A-Konfiguration mit Ihrer tatsächlichen Konfiguration übereinstimmt. Im Beispielprogramm ist nur eine EL7041 integriert. Wenn Sie weitere Klemmen angeschlossen haben, müssen Sie diese zusätzlich einfügen oder Ihre Konfiguration neu einscannen.
- Sie müssen die MAC-Adresse anpassen. Klicken Sie dazu auf Ihr EtherCAT-Gerät, anschließend wählen Sie die Registerkarte Adapter und klicken hinter der MAC-Adresse auf Suchen (siehe Abb. Auswahl der MAC-Adresse). Dort wählen Sie den richtigen Adapter aus.

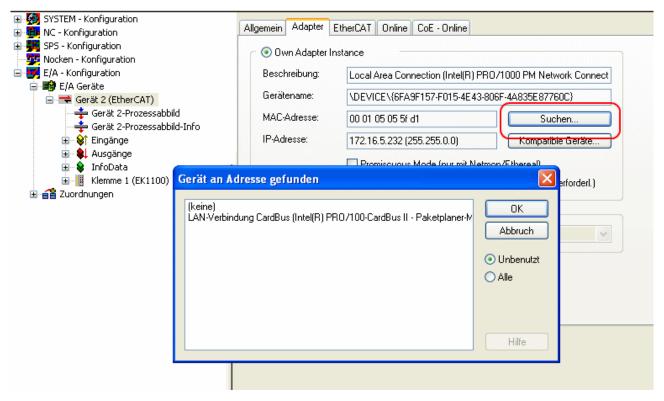


Abb. 44: Auswahl der MAC-Adresse

• Bei der SPS-Konfiguration muss der Pfad des SPS-Programms angepasst werden. Klicken Sie dazu auf das angefügte SPS-Programm und wählen Sie die Registerkarte *IEC1131* aus (siehe Abb. *Ändern des SPS-Pfades*). Dort müssen Sie *Ändern* anwählen und den richtigen Pfad bestimmen.

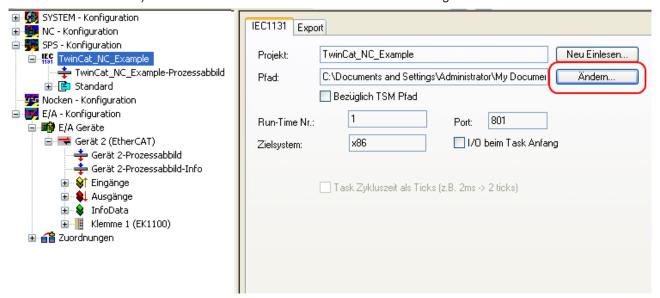


Abb. 45: Ändern des SPS-Pfades

 Unter NC-Konfiguration ist bereits eine EL7041 mit der NC verknüpft. Sollten Sie diese neu verknüpfen müssen oder zusätzliche hinzufügen wollen, dann gehen Sie bitte wie im Kapitel "Einbindung in die NC-Konfiguration" vor.

Das PLC-Programm setzt sich wie folgt zusammen. Die Bibliotheken *TcMC.lib* und *TcNC.lib* müssen eingebunden werden (siehe Abb. *Erforderliche Bibliotheken*).

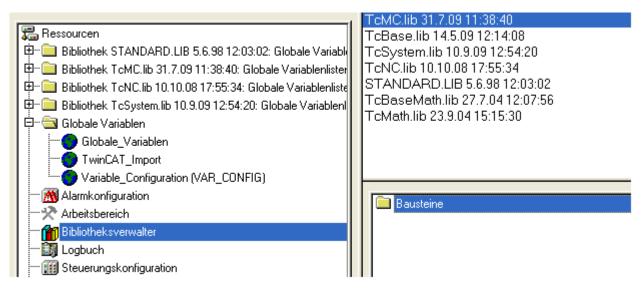


Abb. 46: Erforderliche Bibliotheken

Anschließend werden einige globale Variablen deklariert (siehe Abb. *Globale Variablen*). Die Datentypen *PLCTONC_AXLESTRUCT* und *NCTOPLC_AXLESTRUCT* sorgen für die Kommunikation zwischen der PLC und der NC.

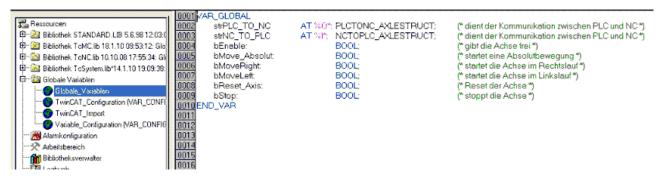


Abb. 47: Globale Variablen

Nachdem die globalen Variablen deklariert worden sind, können Sie mit der Programmierung starten. Dazu deklarieren Sie vorerst die lokalen Variablen (siehe Abb. *Lokale Variablen*).

MC_Direction ist ein Aufzählungstyp, der dem Baustein MC_MoveVelocity die Bewegungsrichtung vorgibt, der wiederum eine Endlosfahrt des Motors durchführt.

Mit dem Funktionsbaustein MC_Reset wird ein Reset der Achse durchgeführt. MC_MoveAbsolute ist ein Funktionsbaustein mit dem eine absolute Positionierung durchgeführt wird. Mit dem Funktionsbaustein MC ReadActualPosition kann die aktuelle Position der Achse gelesen werden.

MC Power gibt die Achse frei und MC Stop wird für das Stoppen der Achse benötigt.

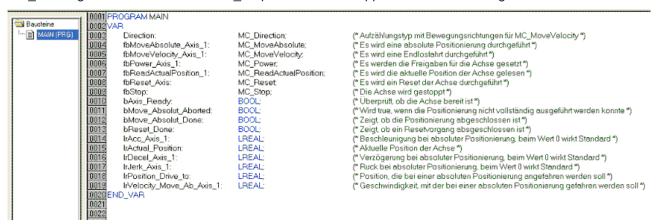


Abb. 48: Lokale Variablen

Der Programmcode lautet wie folgt (siehe Abb. Programmcode):


```
'Freigabesignale werden gesetzt*)
🔁 Bausteine
0002 fbPower_Axis_1(
                                  Enable_Positive :=
                                                           bEnable.
                        0005
                                  Enable_Negative :=
                                                          100.000,
strNC_TO_PLC,
                                  Override
                                  AxisRefln
                                  AxisRefOut
                                                          strPLC_TO_NC,
                                                      => .
                                  Status
                                                      =>, ErrorID
                       0012 (* Überprüft, ob die Achse bereit ist *)
0013 bAxis_Ready := AxisIsReady(strNC_TO_PLC.nStateDWord);
0014
0015 (* Reset der Achse *)
                        0016 fbReset_Axis(
                                  Execute := bReset_Axis,
Axis := strNC_TO_PLC,
Done => bReset_Done,
                        0018
0019
                                            => bReset_Done,
                                  Error
                                          => , ErrorlD => );
                              (* Führt eine Absolutbewegung durch *)
                       0023fbMoveAbsolute_Axis_1(
                                                         bMove_Absolut
                                  Execute
                                  Position
                                                           IrPosition Drive to.
                                                           IrVelocity_Move_Ab_Axis_1,
                                  Velocity
                                  Acceleration
                                                          IrAcc Axis 1,
                                                          IrDecel_Axis_1,
                                  Deceleration
                        0028
                                                     := IrJerk_Axis_1,
:= strNC_TO_PLC,
                                  Jerk
                                  Axis
                                                      => bMove_Absolut_Done
                                  CommandAborted => bMove_Absolut_Aborted ,
                        0032
0033
                                                               ErrorID
                        0034
0035 IF fbMoveAbsolute_Axis_1.Done THEN
                        0036
                                 bMove_Absolut := F
                        0037 END_IF
                        0039 (* Führt eine Endlosbewegung durch *)
0040 IF bMoveRight THEN
                                 Direction := MC_Positive_Direction;
                        0042 ELSIF bMoveLeft THEN
                                 Direction := MC_Negative_Direction;
                        0044END_IF
                       0046 fbMoveVelocity_Axis_1(
0047 Execute :=
                                                          bMoveRight OR bMoveLeft,
                        0048
                                  Velocity
                                                           1000.
                                                           IrAcc_Axis_1,
                                  Acceleration
                                  Deceleration
                                                     := IrDecel_Axis_1,
                        0051
                                  Jerk
                                                     := Direction,
:= strNC_TO_PLC,
                        0052
0053
                                  Direction
                                  Axis
                                  InVelocity
                                  CommandAborted =>
                        0055
0056
                              IF bMove_Absolut OR bMoveLeft OR bMoveRight THEN
                                  bStop := FALSE;
                        0060 ELSE
                                  bStop := TRUE;
                        0062END_IF
                        0064 (* Stoppt die Achse *)
                        0065 fbStop(
                                  Execute
                                                := bStop,
                                  Deceleration := 500.
                                            := ,
:= strNC_TO_PLC,
                        0069
                                  Axis
                        0070
                                                => ,
=> , Errorld
                                  Error
                                                                         => );
                        0072
                       0073 (* Auslesen der aktuellen I
0074 fbReadActualPosition_1(
                              (* Auslesen der aktuellen Position *)
                                  Enable :=
Axis :=
                                                strNC TO PLC.
                        0078
                                           => ,
                                  Frror
                                  ErrorID =>
                                  Position => IrActual_Position);
```

Abb. 49: Programmcode

Mit Hilfe der folgenden Visualisierung (siehe Abb. *Visualisierung*) kann der Motor anschließend betrieben werden.

Bitte betätigen Sie den Taster *Enable*, um die Freigaben für die Achse zu setzen. Sie können jetzt im "Free run mode" den Taster *Left* oder *Right* betätigen und der Motor dreht sich mit einer im *fbMoveVelocity_Axis_1* definierten Geschwindigkeit, in die ausgewählte Richtung, oder Sie können im "Absolute mode" *Geschwindigkeit*, *Beschleunigung*, *Bremsbeschleunigung* und die anzufahrende *Position* angeben und mit *Start Job* die Fahrt starten. Wenn Sie bei der *Beschleunigung* und der *Bremsbeschleunigung* nichts angeben, wird der Default-Wert der NC benutzt.

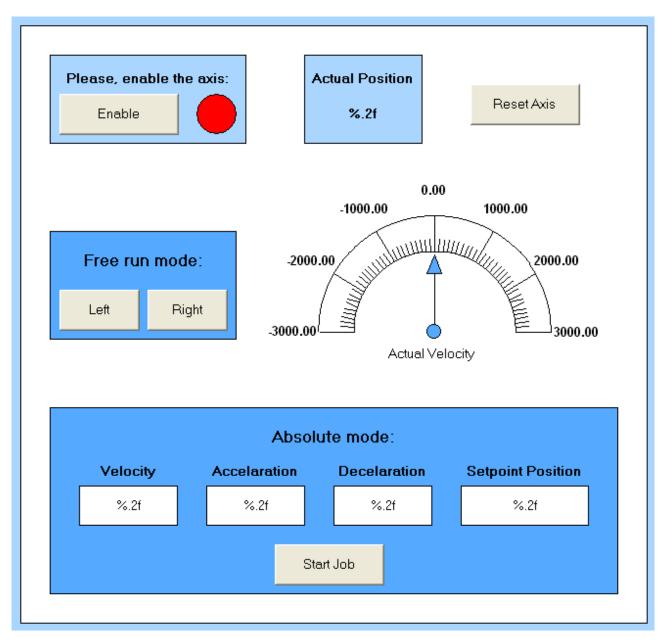
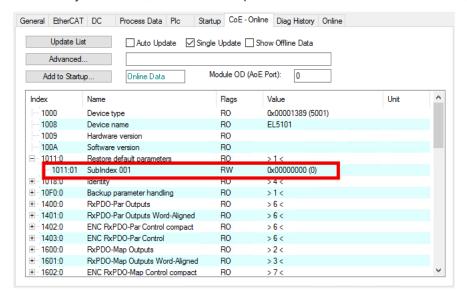
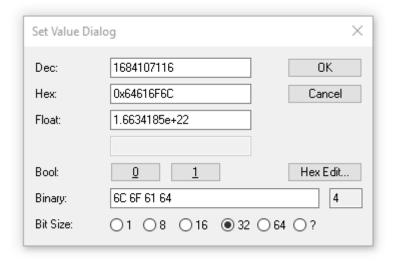


Abb. 50: Visualisierung

Informationen zu Funktionsbausteinen und Datentypen


Weitere Informationen zu den verwendeten Funktionsbausteinen und Datentypen erhalten Sie im aktuellen <u>Beckhoff Information System</u>.


5.6 Wiederherstellen des Auslieferungszustands

Sie können den Auslieferungszustand der Backup-Objekte wie folgt wiederherstellen:

- 1. Sicherstellen, dass TwinCAT im Config-Modus läuft.
- 2. Im CoE-Objekt 1011:0 "Restore default parameters" den Parameter 1011:01 "Subindex 001" auswählen.

- 3. Auf "Subindex 001" doppelklicken.
 - ⇒ Das Dialogfenster "Set Value Dialog" öffnet sich.
- 4. Im Feld "Dec" den Wert 1684107116 eintragen. Alternativ: im Feld "Hex" den Wert 0x64616F6C eintragen.

- 5. Mit "OK" bestätigen.
- ⇒ Alle Backup-Objekte werden in den Auslieferungszustand zurückgesetzt.

Alternativer Restore-Wert

Bei einigen Modulen älterer Bauart lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen:

Dezimalwert: 1819238756 Hexadezimalwert: 0x6C6F6164

Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung.

6 CoE-Objekte EP7041-0002, EP7041-1002, EP7041-2002

6.1 Objektbeschreibung und Parametrierung

Gültig für EP7041-0002 [▶ 12], EP7041-1002 [▶ 12] und EP7041-2002 [▶ 13].

Parametrierung

Sie können die Box über die Registerkarte "CoE - Online" in TwinCAT parametrieren.

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description.

Empfehlung: laden Sie die jeweils aktuellste XML-Datei von https://www.beckhoff.com/ herunter und installieren Sie sie gemäß der Installationsanweisungen.

Einführung

In der CoE-Übersicht sind Objekte mit verschiedenem Einsatzzweck enthalten:

- Objekte die zu <u>Parametrierung bei der Inbetriebnahme</u> [▶ 73] nötig sind
- Objekte die interne Settings [> 78] anzeigen und ggf. nicht veränderlich sind
- Weitere Profilspezifische Objekte [> 90], die Ein- und Ausgänge, sowie Statusinformationen anzeigen

Im Folgenden werden zuerst die im normalen Betrieb benötigten Objekte vorgestellt, dann die für eine vollständige Übersicht noch fehlenden Objekte.

6.1.1 Objekte für die Inbetriebnahme

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default parameters	Herstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01		Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt.	UINT32		0x0000000 (0 _{dez})

Index 8000 ENC Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:0	ENC Settings Ch.1	Maximaler Subindex	UINT8	RO	0x0F (15 _{dez})
8000:08	Disable filter	Deaktiviert die Eingangsfilter.	BOOLEAN	RW	0x00 (0 _{dez})
8000:0A	Enable micro increments	Die unteren 8 Bit des Zählerstandes werden extrapoliert.	BOOLEAN	RW	0x00 (0 _{dez})
8000:0E	Reversion of rotation	Aktiviert die Drehrichtungsumkehr des Enkoders.	BOOLEAN	RW	0x00 (0 _{dez})

Index 8010 STM Motor Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8010:0	STM Motor Settings Ch.1	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
8010:01	Maximal current	maximaler, dauerhafter Spulenstrom des Motors (Einheit: 1 mA)	UINT16	RW	0x1388 (5000 _{dez})
8010:02	Reduced current	reduzierter Spulenstrom (reduziertes Drehmoment, Einheit: 1 mA)	UINT16	RW	0x09C4 (2500 _{dez})
8010:03	Nominal voltage	Nennspannung (Versorgungsspannung) des Motors (Einheit: 1 mV)	UINT16	RW	0xC350 (50000 _{dez})
8010:04	Motor coil resistance	Innenwiderstand einer Spule (Einheit: 0,01 Ohm)	UINT16	RW	0x0064 (100 _{dez})
8010:05	Motor EMF	Motor-Gegenspannung (Einheit: 1 mV / 1000 Digit)	UINT16	RW	0x0000 (0 _{dez})
8010:06	Motor fullsteps	Motor-Vollschritte pro Umdrehung	UINT16	RW	0x00C8 (200 _{dez})
8010:07	Encoder increments (4-fold)	Enkoder Inkremente pro Umdrehung (Vierfachauswertung)	UINT16	RW	0x0000 (0 _{dez})
8010:09	Start velocity	maximal mögliche Startgeschwindigkeit des Motors	UINT16	RW	0x0064 (100 _{dez})
8010:10	Drive on delay time	Einschaltverzögerung der Treiberstufe (Einheit: ms)	UINT16	RW	0x0064 (100 _{dez})
8010:11	Drive off delay time	Ausschaltverzögerung der Treiberstufe (Einheit: ms)	UINT16	RW	0x0096 (150 _{dez})

Index 8011 STM Controller Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8011:0	STM Controller Settings Ch.1	Maximaler Subindex	maler Subindex UINT8 RO		0x06 (6 _{dez})
8011:01	Kp factor (curr.)	Kp-Regelfaktor (Proportional-Anteil) für den Stromregler (Einheit: 0,001)	UINT16	RW	0x00C8 (200 _{dez})
8011:02	Ki factor (curr.)	Ki-Regelfaktor (Integral-Anteil) für den Stromregler (Einheit: 0,001)	UINT16	RW	0x0002 (2 _{dez})
8011:03	Inner window (curr.)	inneres Fenster des I-Anteils des Stromreglers (Einheit: 1 %)	UINT8	RW	0x00 (0 _{dez})
8011:05	Outer window (curr.)	äußeres Fenster des I-Anteils des Stromreglers (Einheit: 1 %)	UINT8	RW	0x00 (0 _{dez})
8011:06	Filter cut off frequency (curr.)	Filter-Grenzfrequenz des Stromreglers (Tiefpass, Einheit: 1 Hz)	UINT16	RW	0x0000 (0 _{dez})
8011:07	Ka factor (curr.)	Ka-Regelfaktor (Beschleunigungs-Anteil) für den Stromregler (Einheit: 0,001)	UINT16	RW	0x0000 (0 _{dez})
8011:08	Kd factor (curr.)	Kd-Regelfaktor (Brems-Anteil) für den Stromregler (Einheit: 0,001)	UINT16	RW	0x0064 (100 _{dec})

Index 8012 STM Features Ch.1

Index (hex)	Name	Bedeu	itung	Datentyp	Flags	Default
8012:0	STM Features Ch.1	Maxim	aler Subindex	UINT8	RO	0x36 (54 _{dez})
8012:01	Operation mode	Betriek	osart	BIT4	RW	0x01 (1 _{dez})
		0	Automatik			
		1	direkte Geschwindigkeit			
		2	Geschwindigkeitsregler			
		3	Positionsregler			
8012:05	Speed range	Vorwa	hl des Geschwindigkeitsbereichs	BIT3	RW	0x01 (1 _{dez})
		0	1000 Vollschritte/Sekunde			
		1	2000 Vollschritte/Sekunde			
		2	4000 Vollschritte/Sekunde			
		3	8000 Vollschritte/Sekunde			
ı		4	16000 Vollschritte/Sekunde			
ı		5	32000 Vollschritte/Sekunde			
8012:08	Feedback type	Auswa	hl des Feedback-Systems	BIT1	RW	0x01 (1 _{dez})
		0	externer Enkoder			
		1	interner Zähler			
8012:09	Invert motor polarity	Aktivie	rt die Drehrichtungsumkehr des Motors.	BOOLEAN	RW	0x00 (0 _{dez})
8012:11	Select info data 1	Auswa	hl "Info data 1" (siehe <u>0x6010:11 [▶ 90]</u>)	UINT8	RW	0x03 (3 _{dez})
		0	Statuswort			
		1	Motorspannung Spule A (Einheit 1 mV)			
		2	Motorspannung Spule B (Einheit 1 mV)			
		3	Motorstrom Spule A (Einheit 1 mA)			
		4	Motorstrom Spule B (Einheit 1 mA)			
		5	Duty-Cycle Spule A (Einheit 1 %)			
		6	Duty-Cycle Spule B (Einheit 1 %)			
		7	aktuelle Geschwindigkeit (Wertebereich +/- 10000)			
			reserviert			
		101	Innentemperatur der Treiberkarte			
			reserviert			
		103	Steuerspannung			
		104	Versorgungsspannung des Motors			
			reserviert			
		150	Drive - Status Wort			
		151	Drive - State			
		152	Drive - Position lag (low word)			
		153	Drive - Position lag (highword)			
			reserviert	_		
		255	reserviert			

Index (hex)	Name	Bedeu	tung	Datentyp	Flags	Default
8012:19	Select info data 2	Auswa	hl "Info data 2"	UINT8	RW	0x04 (4 _{dez})
		0	Statuswort			
		1	Motorspannung Spule A (Einheit 1 mV)	7		
		2	Motorspannung Spule B (Einheit 1 mV)			
		3	Motorstrom Spule A (Einheit 1 mA)	7		
		4	Motorstrom Spule B (Einheit 1 mA)	7		
		5	Duty-Cycle Spule A (Einheit 1 %)	7		
		6	Duty-Cycle Spule B (Einheit 1 %)	7		
		7	aktuelle Geschwindigkeit (Wertebereich +/- 10000)			
			reserviert			
		101	Innentemperatur der Treiberkarte	7		
			reserviert			
		103	Steuerspannung	7		
		104	Versorgungsspannung des Motors	7		
			reserviert	7		
		150	Drive - Status Wort	7		
		151	Drive - State	7		
		152	Drive - Position lag (low word)	7		
		153	Drive - Position lag (highword)	7		
			reserviert			
		255	reserviert			
8012:30	Invert digital input 1	Invertie	erung des digitalen Eingangs 1	BOOLEAN	RW	0x00 (0 _{dez})
8012:31	Invert digital input 2	Invertie	erung des digitalen Eingangs 2	BOOLEAN	RW	0x00 (0 _{dez})
8012:32	Function for input 1	Auswa	hl der Funktion von Eingang 1	BIT4	RW	0x00 (0 _{dez})
		0	Normaler Eingang			352/
		1	Hardware Enable			
		2	Plc cam			
		3	Auto start			
8012:36	Function for input 2	Auswa	hl der Funktion von Eingang 2	BIT4	RW	0x00 (0 _{dez})
		0	Normaler Eingang			
		1	Hardware Enable			
		2	Plc cam			
		3	Auto start			
8012:3A	Function for output 1	Auswa	hl der Funktion von Ausgang 1	BIT4	RW	0x00 (0 _{dez})
		0	Normaler Ausgang			
		1	Bremse	7		
			bei gesetztem Bit in <u>0x7010:01 [▶ 91]</u> wird mit			
			der in 0x8010:10 [▶ 73] und 0x8010:11 [▶ 73] eingestellter Verzögerungszeit der Treiberstufe der Ausgang geschaltet			

Index 8013 STM Controller Settings 2 Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8013:0	STM Controller Settings 2 Ch.1	Maximaler Subindex	UINT8	RO	0x06 (6 _{dez})
8013:01	Kp factor (velo.)	Kp-Regelfaktor (Proportional-Anteil) für den Geschwindigkeitsregler (Einheit: 0,001)	UINT16	RW	0x03E8 (1000 _{dez})
8013:02	Ki factor (velo.)	Ki-Regelfaktor (Integral-Anteil) für den Geschwindigkeitsregler (Einheit: 0,001)	UINT16	RW	0x0000 (0 _{dez})
8013:03	Inner window (velo.)	inneres Fenster des I-Anteils des Geschwindigkeitsregler (Einheit: 1 %)	UINT8	RW	0x00 (0 _{dez})
8013:05	Outer window (velo.)	äußeres Fenster des I-Anteils des Geschwindigkeitsregler (Einheit: 1 %)	UINT8	RW	0x00 (0 _{dez})
8013:06	Filter cut off frequency (velo.)	Filter-Grenzfrequenz des Geschwindigkeitsregler (Tiefpass, Einheit: 1 Hz)	UINT16	RW	0x0000 (0 _{dez})

Index 8020 POS Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8020:0	POS Settings Ch.1	Maximaler Subindex	UINT8	RO	0x10 (16 _{dez})
8020:01	Velocity min.	minimale Sollgeschwindigkeit (Bereich: 0-10000)	INT16	RW	0x0064 (100 _{dez})
8020:02	Velocity max.	maximale Sollgeschwindigkeit (Bereich: 0-10000)	INT16	RW	0x2710 (10000 _{dez})
8020:03	Acceleration pos.	Beschleunigung in positiver Drehrichtung (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:04	Acceleration neg.	Beschleunigung in negativer Drehrichtung (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:05	Dezeleration pos.	Verzögerung in positiver Drehrichtung (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:06	Dezeleration neg.	Verzögerung in negativer Drehrichtung (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:07	Emergency dezeleration	Notfallverzögerung (beide Drehrichtungen, Einheit: 1 ms)	UINT16	RW	0x0064 (100 _{dez})
8020:08	Calibration position	Kalibrierposition	UINT32	RW	0x0000000 (0 _{dez})
8020:09	Calibration velocity (towards plc cam)	Kalibriergeschwindigkeit auf die Nocke (Bereich: 0-10000)	INT16	RW	0x0064 (100 _{dez})
8020:0A	Calibration Velocity (off plc cam)	Kalibriergeschwindigkeit von der Nocke herunter (Bereich: 0-10000)	INT16	RW	0x000A (10 _{dez})
8020:0B	Target window	Zielfenster	UINT16	RW	0x000A (10 _{dez})
8020:0C	In-Target timeout	Zielpositions-Timeout (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:0D	Dead time compensation	Totzeitkompensation (Einheit: 1 us)	INT16	RW	0x0032 (50 _{dez})
8020:0E	Modulo factor	Modulofaktor/-position	UINT32	RW	0x0000000 (0 _{dez})
8020:0F	Modulo tolerance window	Toleranzfenster für Modulopositionierung	UINT32	RW	0x0000000 (0 _{dez})
8020:10	Position lag max.	max. erlaubter Schrittfehler	UINT16	RW	0x0000 (0 _{dez})

Index 8021 POS Features Ch.1

Index	Name	Bedeutung	Datentyp	Flags	Default
8021:0	POS Features Ch.1	Maximaler Subindex	UINT8	RO	0x16 (22 _{dez})
8021:01	Start type	erlaubte Werte:	UINT16	RW	0x0001 (1 _{dez})
		0: Idle			
		1: Absolute			
		2: Relative			
		3: Endless plus			
		4: Endless minus			
		6: Additive			
		24832: Calibration (Hardware sync)			
		24576: Calibration (Plc cam)			
		28416: Calibration (Clear manual)			
		28160: Calibration (Set manual)	,		
		28161: Calibration (Set manual auto)			
		1029: Modulo current			
		773: Modulo minus			
		517: Modulo plus			
		261: Modulo short			
8021:11	Time information	erlaubte Werte:	BIT2	RW	0x00 (0 _{dez})
		0: Elapsed time			
		aktuell gefahrene Zeit seit Beginn des Fahrauftrages			
8021:13	Invert calibration cam search direction	Invertierung der Drehrichtung auf die Nocke	BOOLEAN	RW	0x01 (1 _{dez})
8021:14	Invert sync impulse search direction	Invertierung der Drehrichtung von der Nocke herunter	BOOLEAN	RW	0x00 (0 _{dez})
8021:15	Emergency stop on position lag error	löst einen Nothalt bei Überschreitung des max. Schleppfehlers aus	BOOLEAN	RW	0x00 (0 _{dez})
8021:16	Enhanced diag history	gibt detailliertere Meldungen zum Status des Positioning Interface in der Diag history aus	BOOLEAN	RW	0x00 (0 _{dez})

Index FB00 STM Command

Index (hex)	Name	Bedeutur	ıg	Datentyp	Flags	Default
FB00:0	STM Command	Maximale	r Subindex	UINT8	RO	0x03 (3 _{dez})
FB00:01	Request	Anforderu	ng eines Kommando	OCTET-	RW	{0}
		0x8000	Software-Reset	STRING[2]		
FB00:02	Status	Status de:	Kommandos	UINT8	RO	0x00 (0 _{dez})
		0	kein Fehler, ohne Rückgebewert			
		1	kein Fehler, mit Rückgebewert			
		2	mit Fehler, ohne Rückgebewert			
		3	mit Fehler, mit Rückgebewert			
			reserviert			
		255	Kommandoausführung aktiv			
FB00:03	Response	Rückgabe	wert des ausgeführten Kommandos	OCTET- STRING[4]	RO	{0}

6.1.2 Standardobjekte (0x1000 .. 0x1FFF)

Die Standardobjekte haben für alle EtherCAT-Slaves die gleiche Bedeutung.

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0		Geräte-Typ des EtherCAT-Slaves: Das Lo-Word enthält das verwendete CoE Profil (5001). Das Hi-Word enthält das Modul Profil entsprechend des Modular Device Profile.	UINT32	RO	0x00001389 (5001 _{dez})

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EP7041-0002

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	00

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	01

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x0000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x1B813052 (461451346 _{dez}
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low-Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x00100000 (1048576 _{dez})
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x00000000 (0 _{dez})

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F0:0		Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT- Slaves	UINT32	RO	0x00000000 (0 _{dez})

78 Version: 2.8 EP7041

Index 10F3 Diagnosis History

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F3:0	Diagnosis History	Maximaler Subindex	UINT8	RO	0x37 (55 _{dez})
10F3:01	Maximum Messages	Maximale Anzahl der gespeicherten Nachrichten Es können maximal 50 Nachrichten gespeichert werden	UINT8	RO	0x00 (0 _{dez})
10F3:02	Newest Message	Subindex der neusten Nachricht	UINT8	RO	0x00 (0 _{dez})
10F3:03	Newest Acknowledged Message	Subindex der letzten bestätigten Nachricht	UINT8	RW	0x00 (0 _{dez})
10F3:04	New Messages Available	Zeigt an, wenn eine neue Nachricht verfügbar ist	BOOLEAN	RO	0x00 (0 _{dez})
10F3:05	Flags	ungenutzt	UINT16	RW	0x0000 (0 _{dez})
10F3:06	Diagnosis Message 001	Nachricht 1	OCTET- STRING[28]	RO	{0}
10F3:37	Diagnosis Message 050	Nachricht 50	OCTET- STRING[28]	RO	{0}

Index 10F8 Actual Time Stamp

Index (hex)	Name	Bedeutung	Data type	Flags	Default
10F8:0	Actual Time Stamp	Zeitstempel	UINT64	RO	

Index 1400 ENC RxPDO-Par Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC RxPDO-Par Control compact	PDO Parameter RxPDO 1	UINT8	RO	0x06 (6 _{dez})
1400:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 1 übertragen werden dürfen	OCTET- STRING[6]		01 16 00 00 00 00

Index 1401 ENC RxPDO-Par Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1401:0	ENC RxPDO-Par Control	PDO Parameter RxPDO 2	UINT8	RO	0x06 (6 _{dez})
1401:06			OCTET- STRING[6]	_	00 16 00 00 00 00

Index 1403 STM RxPDO-Par Position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1403:0	STM RxPDO-Par Position	PDO Parameter RxPDO 4	UINT8	RO	0x06 (6 _{dez})
1403:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 4 übertragen werden dürfen	OCTET- STRING[6]	RO	04 16 05 16 06 16

Index 1404 STM RxPDO-Par Velocity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1404:0	STM RxPDO-Par Velocity	PDO Parameter RxPDO 5	UINT8	RO	0x06 (6 _{dez})
1404:06			OCTET- STRING[6]		03 16 05 16 06 16

Index 1405 POS RxPDO-Par Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	POS RxPDO-Par Control compact	PDO Parameter RxPDO 6	UINT8	RO	0x06 (6 _{dez})
1405:06			OCTET- STRING[6]	1	03 16 04 16 06 16

Index 1406 POS RxPDO-Par Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1406:0	POS RxPDO-Par Control	PDO Parameter RxPDO 7	UINT8	RO	0x06 (6 _{dez})
1406:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 7 übertragen werden dürfen	OCTET- STRING[6]		03 16 04 16 05 16

Index 1407 POS RxPDO-Par Control 2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1407:0	POS RxPDO-Par Control	PDO Parameter RxPDO 8	UINT8	RO	0x06 (6 _{dez})
1407:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 7 übertragen werden dürfen	OCTET- STRING[6]	RO	03 16 04 16 05 16

Index 1600 ENC RxPDO-Map Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	ENC RxPDO-Map Control compact	PDO Mapping RxPDO 1	UINT8	RO	0x07 (7 _{dez})
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01, 1
1600:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02, 1
1600:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set counter))	UINT32	RO	0x7000:03, 1
1600:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1600:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1600:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1600:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 16

Index 1601 ENC RxPDO-Map Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	ENC RxPDO-Map Control	PDO Mapping RxPDO 2	UINT8	RO	0x07 (7 _{dez})
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01, 1
1601:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02, 1
1601:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set counter))	UINT32	RO	0x7000:03, 1
1601:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1601:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1601:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1601:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 32

Index 1602 STM RxPDO-Map Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1602:0	STM RxPDO-Map Control	PDO Mapping RxPDO 3	UINT8	RO	0x07 (7 _{dez})
1602:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x01 (Enable))	UINT32	RO	0x7010:01, 1
1602:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x02 (Reset))	UINT32	RO	0x7010:02, 1
1602:03	SubIndex 003	3. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x03 (Reduce torque))	UINT32	RO	0x7010:03, 1
1602:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1602:05	SubIndex 005	5. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1602:06	SubIndex 006	6. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x0C (Digital output 1))	UINT32	RO	0x7010:0C, 1
1602:07	SubIndex 007	7. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4

Index 1603 STM RxPDO-Map Position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1603:0	STM RxPDO-Map Position	PDO Mapping RxPDO 4	UINT8	RO	0x01 (1 _{dez})
1603:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x11 (Position))	UINT32	RO	0x7010:11, 32

Index 1604 STM RxPDO-Map Velocity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1604:0	STM RxPDO-Map Velocity	PDO Mapping RxPDO 5	UINT8	RO	0x01 (1 _{dez})
1604:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x21 (Velocity))	UINT32	RO	0x7010:21, 16

Index 1605 POS RxPDO-Map Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1605:0	POS RxPDO-Map Control compact	PDO Mapping RxPDO 6	UINT8	RO	0x05 (5 _{dez})
1605:01	SubIndex 001	1. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x01 (Execute))	UINT32	RO	0x7020:01, 1
1605:02	SubIndex 002	2. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x02 (Emergency stop))	UINT32	RO	0x7020:02, 1
1605:03	SubIndex 003	3. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1605:04	SubIndex 004	4. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1605:05	SubIndex 005	5. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x11 (Target position))	UINT32	RO	0x7020:11, 32

Index 1606 POS RxPDO-Map Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1606:0	POS RxPDO-Map Control	PDO Mapping RxPDO 7	UINT8	RO	0x09 (9 _{dez})
1606:01	SubIndex 001	1. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x01 (Execute))	UINT32	RO	0x7020:01, 1
1606:02	SubIndex 002	2. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x02 (Emergency stop))	UINT32	RO	0x7020:02, 1
1606:03	SubIndex 003	3. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1606:04	SubIndex 004	4. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1606:05	SubIndex 005	5. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x11 (Target position))	UINT32	RO	0x7020:11, 32
1606:06	SubIndex 006	6. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x21 (Velocity))	UINT32	RO	0x7020:21, 16
1606:07	SubIndex 007	7. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x22 (Start type))	UINT32	RO	0x7020:22, 16
1606:08	SubIndex 008	8. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x23 (Acceleration))	UINT32	RO	0x7020:23, 16
1606:09	SubIndex 009	9. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x24 (Deceleration))	UINT32	RO	0x7020:24, 16

Index 1607 POS RxPDO-Map Control 2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1607:0	POS RxPDO-Map Control 2	PDO Mapping RxPDO 8	UINT8	RO	0x09 (9 _{dez})
1607:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x0000:00,2
1607:02	SubIndex 002	2. PDO Mapping entry (object 0x7020 (POS Outputs 2 Ch.1), entry 0x03 (Enable auto start))	UINT32	RO	0x7020:03, 1
1607:03	SubIndex 003	3. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00,5
1607:04	SubIndex 004	4. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1607:05	SubIndex 005	5. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x11 (Target position))	UINT32	RO	0x7021:11, 32
1607:06	SubIndex 006	6. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x21 (Velocity))	UINT32	RO	0x7021:21, 16
1607:07	SubIndex 007	7. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x22 (Start type))	UINT32	RO	0x7021:22, 16
1607:08	SubIndex 008	8. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x23 (Acceleration))	UINT32	RO	0x7021:23, 16
1607:09	SubIndex 009	9. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x24 (Deceleration))	UINT32	RO	0x7021:24, 16

Index 1800 ENC TxPDO-Par Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1800:0	ENC TxPDO-Par Status compact	PDO Parameter TxPDO 1	UINT8	RO	0x06 (6 _{dez})
1800:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 1 übertragen werden dürfen	OCTET- STRING[2]	RO	01 1A

Index 1801 ENC TxPDO-Par Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1801:0	ENC TxPDO-Par Status	PDO Parameter TxPDO 2	UINT8	RO	0x06 (6 _{dez})
1801:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 2 übertragen werden dürfen	OCTET- STRING[2]	RO	00 1A

Index 1805 POS TxPDO-Par Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1805:0	POS TxPDO-Par Status compact	PDO Parameter TxPDO 7	UINT8	RO	0x06 (6 _{dez})
1805:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 7 übertragen werden dürfen	OCTET- STRING[2]	RO	06 1A

Index 1806 POS TxPDO-Par Status

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1806:0	POS TxPDO-Par Status	PDO Parameter TxPDO 8	UINT8	RO	0x06 (6 _{dez})
1806:06			OCTET- STRING[2]	RO	05 1A

Index 1A00 ENC TxPDO-Map Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	ENC TxPDO-Map Status compact	PDO Mapping TxPDO 1	UINT8	RO	0x11 (17 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A00:0B	SubIndex 011	11. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A00:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0D (Status of extern latch))	UINT32	RO	0x6000:0D, 1
1A00:0D	SubIndex 013	13. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A00:0E	SubIndex 014	14. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A00:0F	SubIndex 015	15. PDO Mapping entry (object 0x1800 (ENC TxPDO- Par Status compact), entry 0x09)	UINT32	RO	0x1800:09, 1
1A00:10	SubIndex 016	16. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16
1A00:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 16

Index 1A01 ENC TxPDO-Map Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	ENC TxPDO-Map Status	PDO Mapping TxPDO 2	UINT8	RO	0x11 (17 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A01:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A01:0B	SubIndex 011	11. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A01:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0D (Status of extern latch))	UINT32	RO	0x6000:0D, 1
1A01:0D	SubIndex 013	13. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A01:0E	SubIndex 014	14. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A01:0F	SubIndex 015	15. PDO Mapping entry (object 0x1801 (ENC TxPDO- Par Status), entry 0x09)	UINT32	RO	0x1801:09, 1
1A01:10	SubIndex 016	16. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 32
1A01:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 32
	·	·			

Index 1A02 ENC TxPDO-Map Timest. compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	ENC TxPDO-Map Timest. compact	PDO Mapping TxPDO 3	UINT8	RO	0x01 (1 _{dez})
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 32

Index 1A03 STM TxPDO-Map Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	STM TxPDO-Map Status	PDO Mapping TxPDO 4	UINT8	RO	0x0E (14 _{dez})
1A03:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x01 (Ready to enable))	UINT32	RO	0x6010:01, 1
1A03:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x02 (Ready))	UINT32	RO	0x6010:02, 1
1A03:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x03 (Warning))	UINT32	RO	0x6010:03, 1
1A03:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x04 (Error))	UINT32	RO	0x6010:04, 1
1A03:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x05 (Moving positive))	UINT32	RO	0x6010:05, 1
1A03:06	SubIndex 006	6. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x06 (Moving negative))	UINT32	RO	0x6010:06, 1
1A03:07	SubIndex 007	7. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x07 (Torque reduced))	UINT32	RO	0x6010:07, 1
1A03:08	SubIndex 008	8. PDO Mapping entry (1 bits align)	UINT32	RO	0x6010:08, 1
1A03:09	SubIndex 009	9. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A03:0A	SubIndex 010	10. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x0C (Digital input 1))	UINT32	RO	0x6010:0C, 1
1A03:0B	SubIndex 011	11. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x0D (Digital input 2))	UINT32	RO	0x6010:0D, 1
1A03:0C	SubIndex 012	12. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x6010:0E, 1
1A03:0D	SubIndex 013	13. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A03:0E	SubIndex 014	14. PDO Mapping entry (object 0x1803, entry 0x09)	UINT32	RO	0x6010:10, 1

Index 1A04 STM TxPDO-Map Synchron info data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A04:0	STM TxPDO-Map Synchron info data	PDO Mapping TxPDO 5	UINT8	RO	0x02 (2 _{dez})
1A04:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x11 (Info data 1))	UINT32	RO	0x6010:11, 16
1A04:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x12 (Info data 2))	UINT32	RO	0x6010:12, 16

Index 1A05 POS TxPDO-Map Status compact

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1A05:0	POS TxPDO-Map Status compact	PDO Mapping TxPDO 7	UINT8	RO	0x09 (9 _{dez})
1A05:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x01 (Busy))	UINT32	RO	0x6020:01, 1
1A05:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x02 (In-Target))	UINT32	RO	0x6020:02, 1
1A05:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x03 (Warning))	UINT32	RO	0x6020:03, 1
1A05:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x04 (Error))	UINT32	RO	0x6020:04, 1
1A05:05	SubIndex 005	5. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x05 (Calibrated))	UINT32	RO	0x6020:05, 1
1A05:06	SubIndex 006	6. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x06 (Accelerate))	UINT32	RO	0x6020:06, 1
1A05:07	SubIndex 007	7. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x07 (Decelerate))	UINT32	RO	0x6020:07, 1
1A05:08	SubIndex 008	8. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A05:09	SubIndex 009	9. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8

Index 1A06 POS TxPDO-Map Status

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1A06:0	POS TxPDO-Map Status compact	PDO Mapping TxPDO 7	UINT8	RO	0x09 (9 _{dez})
1A06:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x01 (Busy))	UINT32	RO	0x6020:01, 1
1A06:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x02 (In-Target))	UINT32	RO	0x6020:02, 1
1A06:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x03 (Warning))	UINT32	RO	0x6020:03, 1
1A06:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x04 (Error))	UINT32	RO	0x6020:04, 1
1A06:05	SubIndex 005	5. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x05 (Calibrated))	UINT32	RO	0x6020:05, 1
1A06:06	SubIndex 006	6. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x06 (Accelerate))	UINT32	RO	0x6020:06, 1
1A06:07	SubIndex 007	7. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x07 (Decelerate))	UINT32	RO	0x6020:07, 1
1A06:08	SubIndex 008	8. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x08 (Ready to execute))	UINT32	RO	0x6020:08, 1
1A06:09	SubIndex 009	9. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A06:0A	SubIndex 010	10. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x11 (Actual position))	UINT32	RO	0x6020:11, 32
1A06:0B	SubIndex 011	11. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x21 (Actual velocity))	UINT32	RO	0x6020:21, 16
1A06:0C	SubIndex 012	12. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x22 (Actual drive time))	UINT32	RO	0x6020:22, 32

Index 1A07 STM TxPDO-Map Internal position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	POS TxPDO-Map Status	PDO Mapping TxPDO 8	UINT8	RO	0x01 (1 _{dez})
1A07:01		PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x14 (Internal position))	UINT32	RO	0x6010:14, 32

Index 1A08 STM TxPDO-Map External position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A08:0	POS TxPDO-Map Status	PDO Mapping TxPDO 8	UINT8	RO	0x01 (1 _{dez})
1A08:01	SubIndex 001	PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x115 (External position))	UINT32	RO	0x6010:15, 32

Index 1A09 POS TxPDO-Map Actual position lag

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A09:0	POS TxPDO-Map Status	PDO Mapping TxPDO 8	UINT8	RO	0x01 (1 _{dez})
1A09:01		1. PDO Mapping entry (object 0x6020 (STM Inputs Ch.1), entry 0x23 (Actual position lag))	UINT32	RO	0x6020:23, 32

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Data type	Flags	Default		
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x03 (3 _{dez})		
1C12:01	Subindex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	geordnete RxPDO (enthält den Index des UINT16 RW (
1C12:02	Subindex 002	2. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	zugeordnete RxPDO (enthält den Index des UINT16 RW				
1C12:03	Subindex 003	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1604 (5636 _{dez})		

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Data type	Flags	Default	
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x02 (2 _{dez})	
1C13:01	Subindex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})	
1C13:02	Subindex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	geordnete TxPDO (enthält den Index des UINT16 RW			
1C13:03	Subindex 003	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	ugeordnete TxPDO (enthält den Index des UINT16 RW		0x0000 (0 _{dez})	
1C13:04	Subindex 004	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)			0x0000 (0 _{dez})	
1C13:05	Subindex 005	5. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})	
1C13:06	Subindex 006	6. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})	
1C13:07	Subindex 007	7. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	Z. zugeordnete TxPDO (enthält den Index des UINT16 RW		0x0000 (0 _{dez})	
1C13:08	Subindex 008	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})	

Index 1C32 SM output parameter

Index (hex)	Name	Bedeutung	Datentyp Flags		Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez})
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0001 (1 _{dez})
		0: Free Run			
		1: Synchron with SM 2 Event			
		2: DC-Mode - Synchron with SYNC0 Event			
		3: DC-Mode - Synchron with SYNC1 Event			
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x000F4240
		Free Run: Zykluszeit des lokalen Timers			(1000000 _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
1C32:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	supported	Bit 0 = 1: Free Run wird unterstützt			(49159 _{dez})
		Bit 1 = 1: Synchron with SM 2 Event wird unterstützt			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC- Mode)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 88])			
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x000249F0 (150000 _{dez})
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:08	Command	0: Messung der lokalen Zykluszeit wird gestoppt	UINT16	RW	0x0000 (0 _{dez})
		• 1: Messung der lokalen Zykluszeit wird gestartet Die Entries 0x1C32:03 [88], 0x1C32:05 [88],			
		0x1C32:06 [88], 0x1C32:09 [88], 0x1C33:03 [89], 0x1C33:06 [88], 0x1C33:09 [89] werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt			
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez})

Index 1C33 SM input parameter

Sync mode	Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
. 0: Free Run . 1: Synchron with SM 3 Event (keine Outputs vorhanden) . 2: DC - Synchron with SYNC0 Event . 3: DC - Synchron with SYNC1 Event . 34: Synchron with SYNC1 Event . 34: Synchron with SM 2 Event (Outputs vorhanden) IC33:02 Cycle time wie 0x1C32:02 [▶ 88] UINT32 RW 0x000074240 (10000000 _{sct}) IC33:03 Shift time Zeit zwischen SYNC0-Event und Einlesen der Inputs (in Input Shift time Input Shift Shift Synchron shift SM 2 Event wird unterstützt . Bit 0: Free Run wird unterstützt . Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden) . Bit 1: Synchron with SM 2 Event wird unterstützt (keine Outputs vorhanden) . Bit 4-5 = 10: Input Shift durch lokales Ereignis (Outputs vorhanden) . Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden) . Bit 14-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden) . Bit 14-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden) IC33:05 Minimum cycle time wie 0x1C32:05 [▶ 88] IC33:06 Calc and copy time Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge Für den Master (in ns. nur DC-Mode) IC33:08 Command wie 0x1C32:08 [▶ 88] UINT16 RW 0x00000 (0 _{osc}) IC33:09 Delay time Zeit zwischen SYNC1-Event und Einlesen der Eingänge (In ns. nur DC-Mode) IC33:08 SM event missed counter wie 0x1C32:11 [▶ 88] UINT16 RO 0x00000 (0 _{osc}) UINT16 RO 0x00000 (0 _{osc})	1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1: Synchron with SM 3 Event (keine Outputs vorhanden)	1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0022 (34 _{dez})
Vorhanden 2. DC - Synchron with SYNC0 Event 3. DC - Synchron with SYNC1 Event 34. Synchron with SYNC1 Event (Outputs vorhanden)			0: Free Run			
3: DC - Synchron with SYNC1 Event						
C33:02 Cycle time			2: DC - Synchron with SYNC0 Event			
C33:02 Cycle time			3: DC - Synchron with SYNC1 Event			
C33:03 Shift time			• 34: Synchron with SM 2 Event (Outputs vorhanden)			
C33:04 Sync modes Unterstützte Synchronisierungsbetriebsarten: UINT16 RO 0xC007 (49159 _{dex})	1C33:02	Cycle time	wie <u>0x1C32:02 [▶ 88]</u>	UINT32	RW	
Supported • Bit 0: Free Run wird unterstützt • Bit 1: Synchron with SM 2 Event wird unterstützt • Bit 1: Synchron with SM 3 Event wird unterstützt • Bit 1: Synchron with SM 3 Event wird unterstützt • Bit 1: Synchron with SM 3 Event wird unterstützt • Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden) • Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden) • Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 ▶ 88] ○ 0x1C33:08 ▶ 89] ○ 0x000249F0 (150000 № 0x1C32:05 ▶ 88] ○ 0x1C33:08 № 0x1C33:08 ○ 0	1C33:03	Shift time		UINT32	RO	
Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)	1C33:04		Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	
(Outputs vorhanden) Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden) Bit 2-3 = 01: DC-Mode wird unterstützt Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden) Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden) Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden) Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 ↑ 88] oder 0x1C33:08 Ninimum cycle time wie 0x1C32:05 ↑ 88] Calc and copy time Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode) C33:08 Command wie 0x1C32:08 ↑ 88] UINT16 RW 0x0000 (0dez) C33:09 Delay time Zeit zwischen SYNC1-Event und Einlesen der Eingänge UINT32 Calc and copy time Zeit zwischen SYNC1-Event und Einlesen der Eingänge UINT32 Calc and Cal		supported	Bit 0: Free Run wird unterstützt			(49159 _{dez})
(keine Outputs vorhanden) • Bit 2-3 = 01: DC-Mode wird unterstützt • Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden) • Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden) • Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden) • Bit 4 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 88] oder 0x1C33:08 [▶ 89]) IC33:05 Minimum cycle time wie 0x1C32:05 [▶ 88] UINT32 RO 0x000249F0 (150000 _{dez}) IC33:06 Calc and copy time Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode) IC33:08 Command wie 0x1C32:08 [▶ 88] UINT16 RW 0x0000 (0 _{dez}) IC33:09 Delay time Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode) IC33:08 SM event missed (in ns, nur DC-Mode) IC33:08 SM event missed wie 0x1C32:11 [▶ 88] UINT16 RO 0x00000 (0 _{dez}) IC33:0C Cycle exceeded counter wie 0x1C32:12 [▶ 88] UINT16 RO 0x0000 (0 _{dez})						
Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)						
(Outputs vorhanden) • Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden) • Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 88] oder 0x1C33:08 [▶ 89]) IC33:05 Minimum cycle time wie 0x1C32:05 [▶ 88] IC33:06 Calc and copy time Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode) IC33:08 Command wie 0x1C32:08 [▶ 88] IC33:09 Delay time Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode) IC33:08 SM event missed counter wie 0x1C32:11 [▶ 88] IC33:00 Cycle exceeded counter wie 0x1C32:12 [▶ 88] IC33:00 Shift too short counter wie 0x1C32:13 [▶ 88] UINT16 RO 0x0000 (0 dez) IC33:00 Shift too short counter wie 0x1C32:13 [▶ 88] UINT16 RO 0x0000 (0 dez)			Bit 2-3 = 01: DC-Mode wird unterstützt			
Outputs vorhanden) Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 88] oder 0x1C33:08 [▶ 88] oder 0x1C33:08 [▶ 89]) Calc and copy time Wie 0x1C32:05 [▶ 88] UINT32 RO 0x000249F0 (150000 _{dez}) Calc and copy time Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode) UINT32 RO 0x00000000 (0 _{dez}) Calc and copy time Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode) UINT32 RO 0x00000000 (0 _{dez}) Calc and copy time Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode) UINT32 RO 0x000000000 (0 _{dez}) Calc and copy time Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode) UINT32 RO 0x000000000 (0 _{dez}) Calc and copy time Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode) UINT32 RO 0x000000000 (0 _{dez}) Calc and copy time Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode) UINT32 RO 0x0000000000000000000000000000000000						
Beschreiben von 0x1C32:08 [▶ 88] oder 0x1C33:08						
C33:06 Calc and copy time Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode) UINT32 RO 0x00000000 (0 _{dez})			Beschreiben von <u>0x1C32:08 [▶ 88]</u> oder <u>0x1C33:08</u>			
der Eingänge für den Master (in ns, nur DC-Mode)	1C33:05	Minimum cycle time	wie <u>0x1C32:05 [▶ 88]</u>	UINT32	RO	
IC33:09 Delay time Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode) UINT32 RO (0x00000000 (0 _{dez}) IC33:0B SM event missed counter wie 0x1C32:11 [▶ 88] UINT16 RO (0x0000 (0 _{dez}) IC33:0C Cycle exceeded counter wie 0x1C32:12 [▶ 88] UINT16 RO (0x0000 (0 _{dez}) IC33:0D Shift too short counter wie 0x1C32:13 [▶ 88] UINT16 RO (0x0000 (0 _{dez})	1C33:06	Calc and copy time		UINT32	RO	
(in ns, nur DC-Mode) (O _{dez}) 1C33:0B SM event missed counter wie 0x1C32:11 [▶ 88] UINT16 RO 0x0000 (O _{dez}) 1C33:0C Cycle exceeded counter wie 0x1C32:12 [▶ 88] UINT16 RO 0x0000 (O _{dez}) 1C33:0D Shift too short counter wie 0x1C32:13 [▶ 88] UINT16 RO 0x0000 (O _{dez})	1C33:08	Command	wie <u>0x1C32:08</u> [▶ <u>88]</u>	UINT16	RW	0x0000 (0 _{dez})
counter Counter 1C33:0C Cycle exceeded counter wie 0x1C32:12 [▶ 88] UINT16 RO 0x0000 (0dez) 1C33:0D Shift too short counter wie 0x1C32:13 [▶ 88] UINT16 RO 0x0000 (0dez)	1C33:09	Delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge UINT32 F		RO	
Counter C33:0D Shift too short counter Wie 0x1C32:13 [▶ 88] UINT16 RO 0x0000 (0 _{dez})	1C33:0B				RO	0x0000 (0 _{dez})
1000 00 D	1C33:0C	1 2	wie <u>0x1C32:12 [▶ 88]</u>	UINT16	RO	0x0000 (0 _{dez})
IC33:20 Sync error wie <u>0x1C32:32 [▶ 88]</u> BOOLEAN RO 0x00 (0 _{dez})	1C33:0D	Shift too short counter	wie <u>0x1C32:13</u> [▶ <u>88]</u>	UINT16	RO	0x0000 (0 _{dez})
	1C33:20	Sync error	wie <u>0x1C32:32</u> [▶ <u>88]</u>	BOOLEAN	RO	0x00 (0 _{dez})

6.1.3 Profilspezifische Objekte (0x6000 .. 0xFFFF)

Die profilspezifischen Objekte haben für alle EtherCAT Slaves, die das Profil 5001 unterstützen, die gleiche Bedeutung.

Index 6000 ENC Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6000:0	ENC Inputs Ch.1	Maximaler Subindex	UINT8	RO	0x16 (22 _{dez})
6000:01	Latch C valid	Der Zählerstand wurde mit der C-Spur gelatched.	BOOLEAN	RO	0x00 (0 _{dez})
6000:02	Latch extern valid	Der Zählerstand wurde über das externe Latch gespeichert.	BOOLEAN	RO	0x00 (0 _{dez})
6000:03	Set counter done	Der Zähler wurde gesetzt.	BOOLEAN	RO	0x00 (0 _{dez})
6000:04	Counter underflow	Der Zähler hat rückwärts den Nulldurchgang durchschritten.	BOOLEAN	RO	0x00 (0 _{dez})
6000:05	Counter overflow	Der Zähler ist übergelaufen.	BOOLEAN	RO	0x00 (0 _{dez})
6000:08	Extrapolation stall	Die Extrapolierte Teil des Zähler ist ungültig	BOOLEAN	RO	0x00 (0 _{dez})
6000:09	Status of input A	Der Zustand des A-Eingangs.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0A	Status of input B	Der Zustand des B-Eingangs.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0B	Status of input C	Der Zustand des C-Eingangs.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0D	Status of extern latch	Der Zustand des Ext. Latch-Eingangs.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0E	Sync error	Das Sync error Bit wird nur für den DC Mode benötigt und zeigt an, ob in dem abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist.	BOOLEAN	RO	0x00 (0 _{dez})
6000:10	TxPDO Toggle	Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO upgedatet wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:11	Counter value	Der Zählerstand.	UINT32	RO	0x0000000 (0 _{dez})
6000:12	Latch value	Der Latchwert. UINT32		RO	0x0000000 (0 _{dez})
6000:16	Timestamp	Zeitstempel der letzten Zähleränderung.	UINT32	RO	0x0000000 (0 _{dez})

Index 6010 STM Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6010:0	STM Inputs Ch.1	Maximaler Subindex	UINT8	RO	0x12 (18 _{dez})
6010:01	Ready to enable	Treiberstufe ist bereit zum Freischalten	BOOLEAN	RO	0x00 (0 _{dez})
6010:02	Ready	Treiberstufe ist betriebsbereit	BOOLEAN	RO	0x00 (0 _{dez})
6010:03	Warning	eine Warnung ist aufgetreten	BOOLEAN	RO	0x00 (0 _{dez})
6010:04	Error	ein Fehler ist aufgetreten (siehe Index <u>0xA010 [▶ 95]</u>)	BOOLEAN	RO	0x00 (0 _{dez})
6010:05	Moving positive	Motor dreht in positiver Richtung	BOOLEAN	RO	0x00 (0 _{dez})
6010:06	Moving negative	Motor dreht in negativer Richtung	BOOLEAN	RO	0x00 (0 _{dez})
6010:07	Torque reduced	reduziertes Drehmoment ist aktiv	BOOLEAN	RO	0x00 (0 _{dez})
6010:0C	Digital input 1	digitaler Eingang 1	BOOLEAN	RO	0x00 (0 _{dez})
6010:0D	Digital input 2	digitaler Eingang 2	BOOLEAN	RO	0x00 (0 _{dez})
6010:0E	Sync error	Das Sync error Bit wird nur für den DC Mode benötigt und zeigt an, ob in dem abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist.	BOOLEAN	RO	0x00 (0 _{dez})
6010:10	TxPDO Toggle	Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO upgedatet wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6010:11	Info data 1	synchrone Informationen (Auswahl über Subindex 0x8012:11 [▶ 74])	UINT16	RO	0x0000 (0 _{dez})
6010:12	Info data 2	synchrone Informationen (Auswahl über Subindex 0x8012:19 [▶ 74])	UINT16	RO	0x0000 (0 _{dez})
6010:14	Internal position	Interne Microstep Position UINT32 RO		0x0000000 (0 _{dez})	
1010:15	External position	position Encoder Position		RO	0x0000000 (0 _{dez})

Index 6020 POS Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6020:0	POS Inputs Ch.1	Maximaler Subindex	UINT8	RO	0x22 (34 _{dez})
6020:01	Busy	ein aktueller Fahrauftrag ist aktiv	BOOLEAN	RO	0x00 (0 _{dez})
6020:02	In-Target	Motor ist im Ziel angekommen	BOOLEAN	RO	0x00 (0 _{dez})
6020:03	Warning	eine Warnung ist aufgetreten	BOOLEAN	RO	0x00 (0 _{dez})
6020:04	Error	eine Fehler ist aufgetreten	BOOLEAN	RO	0x00 (0 _{dez})
6020:05	Calibrated	Motor ist kalibriert	BOOLEAN	RO	0x00 (0 _{dez})
6020:06	Accelerate	Motor ist in der Beschleunigungsphase	BOOLEAN	RO	0x00 (0 _{dez})
6020:07	Decelerate	Motor ist in der Verzögerungsphase	BOOLEAN	RO	0x00 (0 _{dez})
6020:08	Ready to execute		BOOLEAN	RO	0x00 (0 _{dez})
6020:11	Actual position	aktuelle Sollposition des Fahrauftraggenerators	UINT32	RO	0x00007FFF (32767 _{dez})
6020:21	Actual velocity	aktuelle Sollgeschwindigkeit des Fahrauftraggenerators	INT16	RO	0x0000 (0 _{dez})
6020:22	Actual drive time	Zeitinformation des Fahrauftrages (siehe Subindex 0x8021:11)	UINT32	RO	0x0000000 (0 _{dez})
6020:23	Actual position lag		UINT32	RO	0x0000000 (0 _{dez})

Index 7000 ENC Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7000:0	ENC Outputs Ch.1	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
7000:01	Enable latch C	Das Latchen über die C-Spur aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:02	Enable latch extern on positive edge	Das externe Latch mit positiver Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:03	Set counter	Den Zählerstand setzen.	BOOLEAN	RO	0x00 (0 _{dez})
7000:04	Enable latch extern on negative edge	Das externe Latch mit negativer Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:11	Set counter value	Dies ist der über "Set counter" zu setzende Zählerstand.	UINT32	RO	0x0000000 (0 _{dez})

Index 7010 STM Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7010:0	STM Outputs Ch.1	Maximaler Subindex	UINT8	RO	0x21 (33 _{dez})
7010:01	Enable	aktiviert die Ausgangsstufe (siehe Subindex <u>0x8012:3A</u> [<u>▶ 74]</u>)	0x00 (0 _{dez})		
7010:02	Reset	alle aufgetretenen Fehler werden durch das Setzen dieses Bits zurückgesetzt (steigende Flanke)	RO	0x00 (0 _{dez})	
7010:03	Reduce torque	Aktivierung des reduzierten Drehmoments (Spulenstrom) (siehe Subindex 0x8010:02 [> 73])	BOOLEAN	RO	0x00 (0 _{dez})
7010:0C	Digital output 1	Signal am Digitalen Ausgang 1	BOOLEAN	RO	0x00 (0 _{dez})
7010:11	Position	Soll-Position	UINT32	RO	0x0000000 (0 _{dez})
7010:21	Velocity	Soll-Geschwindigkeit	INT16	RO	0x0000 (0 _{dez})

Index 7020 POS Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7020:0	POS Outputs Ch.1	Maximaler Subindex	UINT8	RO	0x24 (36 _{dez})
7020:01	Execute	Fahrauftrag starten (steigende Flanke), bzw. Fahrauftrag vorzeitig abbrechen (fallende Flanke)	0x00 (0 _{dez})		
7020:02	Emergency stop	Fahrauftrag vorzeitig mit einer Notfallrampe abbrechen (steigende Flanke)	BOOLEAN	RO	0x00 (0 _{dez})
7020:11	Target position	Vorgabe der Zielposition	UINT32	RO	0x00007FFF (32767 _{dez})
7020:21	Velocity	Vorgabe der maximalen Sollgeschwindigkeit	INT16	RO	0x0000 (0 _{dez})

Index (hex)	Name	Bedeutung	9			Datentyp	Flags	Default
7020:22	Start type	Vorgabe des Starttypen	0x0000	Idle	es wird kein Fahrauftrag ausgeführt	UINT16	RO	0x0000 (0 _{dez})
			0x0001	Absolute	Zielposition absolut			
			0x0002	Relative	Zielposition relativ von Startposition aus			
		positive	Endlosfahrt in positiver Drehrichtung					
			0x0004	Endless minus	Endlosfahrt in negativer Drehrichtung			
			0x0105	Modulo short	kürzeste Entfernung zur nächsten Moduloposition			
			0x0115	Modulo short extended	kürzeste Entfernung zur nächsten Moduloposition (ohne Modulofenster)			
			0x0205	Modulo plus	Fahrt in positiver Drehrichtung zur nächsten Moduloposition			
			0x0215	Modulo plus extended	Fahrt in positiver Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)			
			0x0305	Modulo minus	Fahrt in negativer Drehrichtung zur nächsten Moduloposition			
			0x0315	Modulo minus extended	Fahrt in negativer Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)			
			0x0405	Modulo current	Fahrt in die letzte ausgeführte Drehrichtung zur nächsten Moduloposition			
			0x0415	Modulo current extended	Fahrt in die letzte ausgeführte Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)			
		0x0006 Additive neue Zielposition relativ / additiv zur letzten Zielposition						
			0x6000	Calibration, Plc cam	Kalibrierung mit Nocke			
				0x6100	Calibration, Hw sync	Kalibrierung mit Nocke und C- Spur		
			0x6E00	Calibration, set manual	Kalibrierung manuell setzen	1		
			0x6E01	Calibration, set manual auto	Kalibrierung automatisch setzen			

Index (hex)	Name	Bedeutung	Bedeutung				Flags	Default
			0x6F00	Calibration, clear manual	Kalibrierung manuell löschen			
7020:23	Acceleration	Vorgabe de	gabe der Beschleunigung				RO	0x0000 (0 _{dez})
7020:24	Deceleration	Vorgabe de	er Verzög	erung		UINT16	RO	0x0000 (0 _{dez})

Index 7021 POS Outputs 2 Ch.1 (Teil 1)

Index	Name	Bedeutung	Datentyp	Flags	Default
7021:0	POS Outputs 2 Ch.1	Maximaler Subindex	UINT8	RO	0x24 (36 _{dec})
7021:03	Enable auto start	Auto-Start Funktion aktivieren	BOOL	RO	0x0000000 (0 _{dez})
7021:11	Target position	Vorgabe der Zielposition	UINT32	RO	0x0000000 (0 _{dez})
7021:21	Velocity	Vorgabe der maximalen Sollgeschwindigkeit	INT16	RO	0x0000 (0 _{dez})

Index 7021 POS Outputs 2 Ch.1 (Teil 2)

Index	Name	Bedeutung	Datentyp	Flags	Default
7021:22	Start type	·			
	0x0000 Idle: es wir	d kein Fahrauftrag ausgeführt	UINT16	RO	0x0000 (0 _{dez})
	0x0001 Absolute: 2	Zielposition absolut	UINT16	RO	0x0000 (0 _{dez})
	0x1001 Absolute (Change): Änderung während eines aktiven Fahrauftrages	UINT16	RO	0x0000 (0 _{dez})
	0x0002 Relative: Z	ielposition relativ von der aktuellen Position aus	UINT16	RO	0x0000 (0 _{dez})
	0x1002 Relative (C	Change): Änderung während eines aktiven Fahrauftrages	UINT16	RO	0x0000 (0 _{dez})
	0x0003 Endless pl	us: Endlosfahrt in positiver Drehrichtung	UINT16	RO	0x0000 (0 _{dez})
	0x0004 Endless m	inus: Endlosfahrt in negativer Drehrichtung	UINT16	RO	0x0000 (0 _{dez})
	0x0105 Modulo sh	ort: kürzeste Entfernung zur nächsten Moduloposition	UINT16	RO	0x0000 (0 _{dez})
	0x0115 Modulo sh Moduloposition (of	ort extended: kürzeste Entfernung zur nächsten ne Modulofenster)	UINT16	RO	0x0000 (0 _{dez})
	0x0205 Modulo plus: Fahrt in positiver Drehrichtung zur nächsten Moduloposition			RO	0x0000 (0 _{dez})
	0x0215 Modulo plus extended: Fahrt in positiver Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)			RO	0x0000 (0 _{dez})
	0x0305 Modulo minus: Fahrt in negativer Drehrichtung zur nächsten Moduloposition		UINT16	RO	0x0000 (0 _{dez})
	0x0315 Modulo minus extended: Fahrt in negativer Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)		UINT16	RO	0x0000 (0 _{dez})
		0x0405 Modulo current: Fahrt in die letzte ausgeführte Drehrichtung zur nächsten Moduloposition		RO	0x0000 (0 _{dez})
		0x0415 Modulo current extended: Fahrt in die letzte ausgeführte Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)		RO	0x0000 (0 _{dez})
	0x0006 Additive: n	eue Zielposition relativ / additiv zur letzten Zielposition	UINT16	RO	0x0000 (0 _{dez})
	0x1006 Additive (C	Change): Änderung während eines aktiven Fahrauftrages	UINT16	RO	0x0000 (0 _{dez})
	0x6000 Calibration	, PLC cam: Kalibrierung mit Nocke	UINT16	RO	0x0000 (0 _{dez})
	0x6100 Calibration	, HW sync: Kalibrierung mit Nocke und C-Spur	UINT16	RO	0x0000 (0 _{dez})
	0x6E00 Calibration	ı, set manual: Kalibrierung manuell setzen	UINT16	RO	0x0000 (0 _{dez})
	0x6E01 Calibration	0x6E01 Calibration, set manual auto: Kalibrierung autom. setzen, bei "Enable =		RO	0x0000 (0 _{dez})
	0x6F00 Calibration	0x6F00 Calibration, clear manual: Kalibrierung manuell löschen			0x0000 (0 _{dez})
7021:23	Acceleration	Vorgabe der Beschleunigung	UINT16	RO	0x0000 (0 _{dez})
7021:24	Deceleration	Vorgabe der Verzögerung	UINT16	RO	0x0000 (0 _{dez})

Index F081 Download revision

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F081:0	Download revision	Reserviert	UINT8	RO	0x01 (1 _{dez})
F081:01	Revision number	Reserviert	UINT32	1	0x00000000 (0 _{dez})

Index 9010 STM Info data Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9010:0	STM Info data Ch.1	Maximaler Subindex	UINT8	RO	0x08 (8 _{dez})
9010:01	Status word	Staturwort (siehe Index <u>0xA010 [▶ 95]</u>)	UINT16	RO	0x0000 (0 _{dez})
9010:02	Motor coil voltage A	Motorspannung Spule A (Einheit 1 mV)	UINT16	RO	0x0000 (0 _{dez})
9010:03	Motor coil voltage B	Motorspannung Spule B (Einheit 1 mV)	UINT16	RO	0x0000 (0 _{dez})
9010:04	Motor coil current A	Motorstrom Spule A (Einheit 1 mA)	INT16	RO	0x0000 (0 _{dez})
9010:05	Motor coil current B	Motorstrom Spule B (Einheit 1 mA)	INT16	RO	0x0000 (0 _{dez})
9010:06	Duty cycle A	Duty-Cycle Spule A (Einheit 1 %)	INT8	RO	0x00 (0 _{dez})
9010:07	Duty cycle B	Duty-Cycle Spule B (Einheit 1 %)	INT8	RO	0x00 (0 _{dez})
9010:08	Motor velocity	aktuelle Geschwindigkeit (Wertebereich +/- 10000)	INT16	RO	0x0000 (0 _{dez})

Index 9020 POS Info data Ch.1

Index	Name	Bedeutung	Datentyp	Flags	Default
9020:0	POS Info data Ch.1	Maximaler Subindex	UINT8	RO	0x04 (4 _{dez})
9020:01	Status word	Statuswort	UINT16	RO	0x0000 (0 _{dez})
9020:03	State (drive controller)	erlaubte Werte:	UINT16	RO	0x0000 (0 _{dez})
		0: Init			
		1: Idle			
		272: Go cam			
		273: On cam			
		16: Start			
		17: Acceleration			
		18: Constant			
		19: Decelleration			
		288: Go sync impulse			
		289: Leave cam			
		4096: Pre target			
		4097: In target			
		32: Emergency stop			
		33: Normal stop			
		304: Calibration stop			
		8192: Drive end			
		8193: Wait for init			
		320: Is calibrated			
		321: Not calibrated			
		16384: Drive warning			
		32768: Error			
		65535: Undefined			
		256: Calibration start			
9020:04	Actual position lag	aktueller Schrittfehler	INT32	RO	0x0000000 (0 _{dez})

Index A010 STM Diag data Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
A010:0	STM Diag data Ch.1	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
A010:01	Saturated	Treiberstufe arbeitet mit maximalem Duty-Cycle	BOOLEAN	RO	0x00 (0 _{dez})
A010:02	Over temperature	Innentemperatur der Klemme ist größer als 80 °C (siehe Subindex 0xF80F:04 [▶ 96])	BOOLEAN	RO	0x00 (0 _{dez})
A010:03	Torque overload	aktueller Motorstrom ist größer als der Nennstrom	BOOLEAN	RO	0x00 (0 _{dez})
A010:04	Under voltage	Versorgungsspannung des Motors ist 20% kleiner, als die konfigurierte Nennspannung (Warning) oder Versorgungsspannung des Motors ist kleiner 8 V (Fehler, siehe 0xA010:09 [• 95])	BOOLEAN	RO	0x00 (0 _{dez})
A010:05	Over voltage	Versorgungsspannung des Motors ist 10% größer, als die konfigurierte Nennspannung	BOOLEAN	RO	0x00 (0 _{dez})
A010:06	Short circuit A	Kurzschluss der Motorspule A	BOOLEAN	RO	0x00 (0 _{dez})
A010:07	Short circuit B	Kurzschluss der Motorspule B	BOOLEAN	RO	0x00 (0 _{dez})
A010:08	No control power	Steuerspannung an den Powerkontakten kleiner als 12 V	BOOLEAN	RO	0x00 (0 _{dez})
A010:09	Misc error	Initialisierung der Klemme fehlgeschlagen oder Versorgungsspannung ist kleiner 8 V oder Innentemperatur der Klemme ist größer als 100 °C (siehe Subindex 0xF80F:05 [> 96])	BOOLEAN	RO	0x00 (0 _{dez})
A010:11	Actual operation mode	aktuelle Betriebsart (relevant bei aktivierter Automatik, siehe 0x8012:01 [• 74])	BIT4	RO	0x00 (0 _{dez})

Index A020 POS Diag data Ch.1

Index	Name	Bedeutung	Datentyp	Flags	Default
A020:0	POS Diag data Ch.1	Maximaler Subindex	UINT8	RO	0x06 (6 _{dez})
A020:01	Command rejected	Fahrauftrag wurde abgewiesen	BOOLEAN	RO	0x00 (0 _{dez})
A020:02	Command aborted	Fahrauftrag wurde abgebrochen	BOOLEAN	RO	0x00 (0 _{dez})
A020:03	Target overrun	Zielposition wurde in entgegengesetzter Richtung überfahren	BOOLEAN	RO	0x00 (0 _{dez})
A020:04	Target timeout	das Zielfenster wurde innerhalb des In-Target timeouts nicht erreicht	BOOLEAN	RO	0x00 (0 _{dez})
A020:05	Position lag	der max. Schleppfehler wurde überschritten	BOOLEAN	RO	0x00 (0 _{dez})
A020:06	Emergency stop	ein Nothalt wurde ausgelöst (automatisch oder manuell)	BOOLEAN	RO	0x00 (0 _{dez})

Index F000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
1	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0002 (2 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word	reserviert	UINT32	RW	0x00000000
					(0 _{dez})

Index F010 Module list

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module list	Maximaler Subindex	UINT8	RW	0x02 (2 _{dez})
F010:01	SubIndex 001	Profilnummer der Enkoder-Schnittstelle	UINT32		0x000001FF (511 _{dez})
F010:02	SubIndex 002	Profilnummer der Schrittmotor-Schnittstelle	UINT32	RW	0x000002BF (703 _{dez})

Index F80F STM Vendor data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F80F:0	STM Vendor data	Maximaler Subindex	UINT8	RO	0x08 (8 _{dez})
F80F:01	PWM Frequency	Zwischenkreisfrequenz (Einheit: 1 Hz)	UINT16	RW	0x7530 (30000 _{dez})
F80F:02	Deadtime	Totzeit der Pulsweitenmodulation	UINT16	RW	0x0102 (258 _{dez})
F80F:03	Deadtime space	Duty Cycle Begrenzung	UINT16	RW	0x0009 (9 _{dez})
F80F:04	Warning temperature	Schwelle der Temperaturwarnung (Einheit: 1 °C, siehe Subindex 0xA010:02 [> 95])	INT8	RW	0x50 (80 _{dez})
F80F:05	Switch off temperature	Abschalttemperatur (Einheit: 1 °C)	INT8	RW	0x64 (100 _{dez})
F80F:06	Analog trigger point	Triggerpunkt der AD-Wandlung	UINT16	RW	0x000A (10 _{dez})
F80F:07	Calibration offset A	Offsetabgleich der Strommessung für Spule A (wird vom Hersteller gesetzt)	INT16	RW	0x0000 (0 _{dez})
F80F:08	Calibration offset B	Offsetabgleich der Strommessung für Spule B (wird vom Hersteller gesetzt)	INT16	RW	0x0000 (0 _{dez})

Index F900 STM Info data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F900:0	STM Info data	Maximaler Subindex	UINT8	RO	0x06 (6 _{dez})
F900:01	Software version (driver)	Softwareversion der Treiberkarte	STRING	RO	{0}
F900:02	Internal temperature	interne Klemmentemperatur (Einheit: 1 °C)	INT8	RO	0x00 (0 _{dez})
F900:04	Control voltage	Steuerspannung (Einheit: 1 mV)	UINT16	RO	0x0000 (0 _{dez})
F900:05	Motor supply voltage	Versorgungsspannung des Motors (Einheit: 1 mV)	UINT16	RO	0x0000 (0 _{dez})
F900:06	Cycle time	gemessene Zykluszeit (Einheit: 1 μs)	UINT16	RO	0x0000 (0 _{dez})

7 CoE-Objekte EP7041-3002, EP7041-3102

7.1 Objektbeschreibung und Parametrierung

Gültig für <u>EP7041-3002</u> [▶ 14] und <u>EP7041-3102</u> [▶ 14]

Parametrierung

Sie können die Box über die Registerkarte "CoE - Online" in TwinCAT parametrieren.

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description.

Empfehlung: laden Sie die jeweils aktuellste XML-Datei von https://www.beckhoff.com/ herunter und installieren Sie sie gemäß der Installationsanweisungen.

Einführung

In der CoE-Übersicht sind Objekte mit verschiedenem Einsatzzweck enthalten:

- Objekte die zu <u>Parametrierung bei der Inbetriebnahme</u> [▶ 98] nötig sind
- Objekte die interne Settings [103] anzeigen und ggf. nicht veränderlich sind
- Weitere Profilspezifische Objekte [115], die Ein- und Ausgänge, sowie Statusinformationen anzeigen

Im Folgenden werden zuerst die im normalen Betrieb benötigten Objekte vorgestellt, dann die für eine vollständige Übersicht noch fehlenden Objekte.

7.1.1 Objekte für die Inbetriebnahme

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	Restore default parameters	Herstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01		Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt.	UINT32	1	0x0000000 (0 _{dez})

Index 8000 ENC Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:0	ENC Settings Ch.1	Maximaler Subindex	UINT8	RO	0x0F (15 _{dez})
80:008	Disable filter	Deaktiviert die Eingangsfilter.	BOOLEAN	RW	0x00 (0 _{dez})
A0:008	Enable micro increments	Die unteren 8 Bit des Zählerstandes werden extrapoliert.	BOOLEAN	RW	0x00 (0 _{dez})
8000:0E	Reversion of rotation	Aktiviert die Drehrichtungsumkehr des Enkoders.	BOOLEAN	RW	0x00 (0 _{dez})

Index 8010 STM Motor Settings Ch.1

Index (hex)	Name	Bedeutung	Data type	Flags	Default
8010:0	STM Motor Settings Ch.1	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
8010:01	Maximal current	maximaler, dauerhafter Spulenstrom des Motors (Einheit: 1 mA)	UINT16	RW	0x1388 (5000 _{dez})
8010:02	Reduced current	reduzierter Spulenstrom (reduziertes Drehmoment, Einheit: 1 mA)	UINT16	RW	0x09C4 (2500 _{dez})
8010:03	Nominal voltage	Nennspannung (Versorgungsspannung) des Motors (Einheit: 1 mV)	UINT16	RW	0xC350 (50000 _{dez})
8010:06	Motor fullsteps	Motor-Vollschritte pro Umdrehung	UINT16	RW	0x00C8 (200 _{dez})
8010:07	Encoder increments (4-fold)	Enkoder Inkremente pro Umdrehung (Vierfachauswertung)	UINT16	RW	0x0000 (0 _{dez})
8010:09	Start velocity	maximal mögliche Startgeschwindigkeit des Motors	UINT16	RW	0x0000 (0 _{dez})
8010:10	Drive on delay time	Einschaltverzögerung der Treiberstufe (Einheit: ms)	UINT16	RW	0x0064 (100 _{dez})
8010:11	Drive off delay time	Ausschaltverzögerung der Treiberstufe (Einheit: ms)	UINT16	RW	0x0096 (150 _{dez})

Index 8012 STM Features Ch.1

Mary Status Sta	Index (hex)	Name	Bedeu	itung	Data type	Flags	Default	
0 Automatik	8012:0	STM Features Ch.1	Maxim	aler Subindex	UINT8	RO	0x45 (69 _{dez})	
1 direkte Geschwindigkeit 2 Geschwindigkeit regier 3 Positionsregier 3 Positionsregier 1 2000 Vollschritter/Sekunde 1 2000 Vollschritter/Sekunde 2 4000 Vollschritter/Sekunde 3 8000 Vollschritter/Sekunde 4 16000 Vollschritter/Sekunde 5 32000 Vollschritter/Sekunde 3 320000 Vollschritter/Sekunde 3 32	8012:01	Operation mode	Betrieb	osart	BIT4	RW		
2 Geschwindigkeitsregler			0	Automatik				
Speed range			1	direkte Geschwindigkeit				
Speed range			2	Geschwindigkeitsregler				
0			3	Positionsregler				
1	8012:05	Speed range	Vorwa	hl des Geschwindigkeitsbereichs	BIT3	RW	0x01 (1 _{dez})	
2			0	1000 Vollschritte/Sekunde				
Second 16000 Vollschritte/Sekunde 16000 Vollschritte/Sekunde 5 30000 Vollschritte/Sekunde 5			1	2000 Vollschritte/Sekunde				
# # # # # # # # # #			2	4000 Vollschritte/Sekunde				
S 32000 Vollschritte/Sekunde			3	8000 Vollschritte/Sekunde				
Redback type			4	16000 Vollschritte/Sekunde				
0			5	32000 Vollschritte/Sekunde				
0	8012:08	Feedback type	Auswa	hl des Feedback-Systems	BIT1	RW	0x01 (1 _{dez})	
10 10 10 10 10 10 10 10							,,	
Select info data 1			1	interner Zähler				
Select info data 1	8012:09	Invert motor polarity	Aktivie	rt die Drehrichtungsumkehr des Motors.	BOOLEAN	RW	0x00 (0 _{dez})	
0 Statuswort 1 reserviert 6 reserviert 7 aktuelle Geschwindigkeit (Wertebereich +/- 10000) 8 reserviert 9 Statuswort 2 10 Motor: Belastung 11 Motor: "Smart Current" 12 reserviert 100 reserviert 111 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 116 Motorversorgung: Strom 107 reserviert 118 Positions-Interface - Statuswort 150 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert	8012:11				UINT8	RW	_	
aktuelle Geschwindigkeit (Wertebereich +/- 10000) a reserviert Statuswort 2 Motor: Belastung Motor: "Smart Current" reserviert Innentemperatur der Treiberkarte reserviert Steuerspannung Motorversorgung: Spannung reserviert Motorversorgung: Strom reserviert Descrivert Descrivered De							(- uez)	
6 reserviert 7 aktuelle Geschwindigkeit (Wertebereich +/- 10000) 8 reserviert 9 Statuswort 2 10 Motor: Belastung 11 Motor: "Smart Current" 12 reserviert 100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			1	reserviert				
6 reserviert 7 aktuelle Geschwindigkeit (Wertebereich +/- 10000) 8 reserviert 9 Statuswort 2 10 Motor: Belastung 11 Motor: "Smart Current" 12 reserviert 100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert								
7 aktuelle Geschwindigkeit (Wertebereich +/- 10000) 8 reserviert 9 Statuswort 2 10 Motor: Belastung 11 Motor: "Smart Current" 12 reserviert 100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert				reserviert				
10000) 8 reserviert 9 Statuswort 2 10 Motor: Belastung 11 Motor: "Smart Current" 12 reserviert 100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert				aktuelle Geschwindigkeit (Wertebereich +/-				
9 Statuswort 2 10 Motor: Belastung 11 Motor: "Smart Current" 12 reserviert 100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert								
10 Motor: Belastung 11 Motor: "Smart Current" 12 reserviert 100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 119 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			8	reserviert				
11 Motor: "Smart Current" 12 reserviert 100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			9	Statuswort 2				
12 reserviert 100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			10	Motor: Belastung				
100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			11	Motor: "Smart Current"				
100 reserviert 101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			12	reserviert				
101 Innentemperatur der Treiberkarte reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert								
reserviert 103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			100	reserviert				
103 Steuerspannung 104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			101	Innentemperatur der Treiberkarte				
104 Motorversorgung: Spannung reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert				reserviert				
reserviert 106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			103	Steuerspannung				
106 Motorversorgung: Strom 107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			104	Motorversorgung: Spannung				
107 reserviert 149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert				reserviert				
149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			106	Motorversorgung: Strom				
149 reserviert 150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			107	reserviert				
150 Positions-Interface - Statuswort 151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert								
151 Positions-Interface - Status der internen State Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			149	reserviert				
Maschine 152 Positions-Interface - Schleppfehler (Low-Word) 153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			150	Positions-Interface - Statuswort				
153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			151					
153 Positions-Interface - Schleppfehler (High-Word) 154 reserviert			152	Positions-Interface - Schleppfehler (Low-Word)				
154 reserviert			153					
 255 reserviert					7			
255 reserviert					7			
			255	reserviert				

Index 8012 STM Features Ch.1

Index (hex)	Name	Bede	utung	Data type	Flags	Default
8012:19	Select info data 2	Ausw	ahl "Info data 2" (siehe <u>0x8012:11 [▶ 99])</u>	UINT8	RW	0x09 (9 _{dez})
8012:30	Invert digital input 1	Invert	ierung des digitalen Eingangs 1	BOOLEAN	RW	0x00 (0 _{dez})
8012:31	Invert digital input 2	Invert	ierung des digitalen Eingangs 2	BOOLEAN	RW	0x00 (0 _{dez})
8012:32	Function for input 1	Ausw	ahl der Funktion von Eingang 1	BIT4	RW	0x00 (0 _{dez})
		0	Normaler Eingang			
		1	Hardware Enable			
8012:36	Function for input 2	Ausw	ahl der Funktion von Eingang 2	BIT4	RW	0x00 (0 _{dez})
		0	Normaler Eingang			
		1	Hardware Enable			
8012:3A	Function for output 1	Ausw	ahl der Funktion von Ausgang 1	BIT4	RW	0x00 (0 _{dez})
		0	Normaler Ausgang			
		1	Bremse bei gesetztem Bit in 0x7010:01 wird mit der in 0x8010:10 [▶ 98] und 0x8010:11 [▶ 98] eingestellter Verzögerungszeit der Treiberstufe der Ausgang geschaltet			
8012:45	Microstepping	0	Vollschritt	BIT4	RW	0x08 (8 _{dez})
		1	Halbschritt			
		2	1/4 Mikroschritt			
		3	1/8 Mikroschritt			
		4	1/16 Mikroschritt			
		5	1/32 Mikroschritt			
		6	1/64 Mikroschritt	_		
		7	1/128 Mikroschritt			
		8	1/256 Mikroschritt			

Index 8013 STM Controller Settings 2 Ch.1

Index (hex)	Name	Bedeutung	Data type	Flags	Default
8013:0	STM Controller Settings 2 Ch.1	Maximaler Subindex	UINT8	RO	0x07 (7 _{dez})
8013:01	Kp factor (velo./pos.)	Kp-Regelfaktor (Proportional-Anteil) für den Geschwindigkeitsregler (Einheit: 0,001)	UINT16	RW	0x03E8 (1000 _{dez})
8013:02	Ki factor (velo./pos.)	Ki-Regelfaktor (Integral-Anteil) für den Geschwindigkeitsregler (Einheit: 0,001)	UINT16	RW	0x0000 (0 _{dez})
8013:03	Inner window (velo./ pos.)	inneres Fenster des I-Anteils des Geschwindigkeitsregler (Einheit: 1%)	UINT8	RW	0x00 (0 _{dez})
8013:05	Outer window (velo./ pos.)	äußeres Fenster des I-Anteils des Geschwindigkeitsregler (Einheit: 1%)	UINT8	RW	0x00 (0 _{dez})
8013:06	Filter cut off frequency (velo./pos.)	Filter-Grenzfrequenz des Geschwindigkeitsregler (Tiefpass, Einheit: 1 Hz)	UINT16	RW	0x0000 (0 _{dez})
8013:07	Ka factor (velo./pos.)	Ka-Regelfaktor des Geschwindigkeits-/Positionsreglers	UINT16	RW	0x0000 (0 _{dez})

Index 8014 STM Motor Features Ch.1

Index (hex)	Name	Bedeutung	Data type	Flags	Default
8014:0	STM Motor Features Ch.1	Maximaler Subindex	UINT8	RO	0x31 (49 _{dez})
8014:01	Chopper: Mode		BIT2	RW	0x00 (0 _{dez})
8014:03	Chopper: Off time		BIT4	RW	0x05 (5 _{dez})
8014:07	Chopper: Comparator disabled		BOOLEAN	RW	0x00 (0 _{dez})
8014:08	Chopper: Fast decay time		BIT4	RW	0x03 (3 _{dez})
8014:0C	Chopper: Sine wave offset		BIT4	RW	0x03 (3 _{dez})
8014:11	Chopper: Hysteresis start value		BIT3	RW	0x02 (2 _{dez})
8014:14	Chopper: Hysteresis end value		BIT4	RW	0x06 (6 _{dez})
8014:18	Chopper: Hysteresis decrement time		BIT2	RW	0x00 (0 _{dez})
8014:1A	Stall guard: Filter enable		BOOLEAN	RW	0x01 (1 _{dez})
8014:1B	Stall guard: Current up step width		BIT2	RW	0x00 (0 _{dez})
8014:1D	Stall guard: Current down step speed		BIT2	RW	0x00 (0 _{dez})
8014:1F	Stall guard: Minimum current		BIT1	RW	0x00 (0 _{dez})
8014:21	Stall guard: Minimum value		BIT4	RW	0x00 (0 _{dez})
8014:25	Stall guard: Hysteresis value		BIT4	RW	0x00 (0 _{dez})
8014:31	Stall guard: Threshold value		INT8	RW	0x01 (1 _{dez})

Index 8020 POS Settings Ch.1

Index (hex)	Name	Bedeutung	Data type	Flags	Default
8020:0	POS Settings Ch.1	Maximaler Subindex	UINT8	RO	0x0F (15 _{dez})
8020:01	Velocity min.	minimale Sollgeschwindigkeit (Bereich: 0 10000)	INT16	RW	0x0064 (100 _{dez})
8020:02	Velocity max.	maximale Sollgeschwindigkeit (Bereich: 0 10000)	INT16	RW	0x2710 (10000 _{dez})
8020:03	Acceleration pos.	Beschleunigung in positiver Drehrichtung (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:04	Acceleration neg.	Beschleunigung in negativer Drehrichtung (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:05	Deceleration pos.	Verzögerung in positiver Drehrichtung (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:06	Deceleration neg.	Verzögerung in negativer Drehrichtung (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:07	Emergency deceleration	Notfallverzögerung (beide Drehrichtungen, Einheit: 1 ms)	UINT16	RW	0x0064 (100 _{dez})
8020:08	Calibration position	Kalibrierposition	UINT32	RW	0x0000000 (0 _{dez})
8020:09	Calibration velocity (towards plc cam)	Kalibriergeschwindigkeit auf die Nocke (Bereich: 0 10000)	INT16	RW	0x0064 (100 _{dez})
8020:0A	Calibration Velocity (off plc cam)	Kalibriergeschwindigkeit von der Nocke herunter (Bereich: 0 10000)	INT16	RW	0x000A (10 _{dez})
8020:0B	Target window	Zielfenster	UINT16	RW	0x000A (10 _{dez})
8020:0C	In-Target timeout	Zielpositions-Timeout (Einheit: 1 ms)	UINT16	RW	0x03E8 (1000 _{dez})
8020:0D	Dead time compensation	Totzeitkompensation (Einheit: 1 μs)	INT16	RW	0x0032 (50 _{dez})
8020:0E	Modulo factor	Modulofaktor / -position	UINT32	RW	0x0000000 (0 _{dez})
8020:0F	Modulo tolerance window	Toleranzfenster für Modulo-Positionierung	UINT32	RW	0x00000000 (0 _{dez})

Index 8021 POS Features Ch.1

Index (hex)	Name	Bedeutun	g	Data type	Flags	Default
8021:0	POS Features Ch.1	Maximaler	Subindex	UINT8	RO	0x14 (20 _{dez})
8021:01	Start type	Standard-S	Starttyp	UINT16	RW	0x0001 (1 _{dez})
8021:11	Time information	Zeitinformatime")	ation in Subindex 0x6pp0:22 ("Actual drive	BIT2	BIT2 RW 0x00 (0	
		0	Elapsed time: aktuell gefahrene Zeit seit Beginn des Fahrauftrages			
			reserviert			
8021:13	Invert calibration cam search direction	Invertierun	rtierung der Drehrichtung auf die Nocke		RW	0x01 (1 _{dez})
8021:14	Invert sync impulse search direction	Invertierun	g der Drehrichtung von der Nocke herunter	BOOLEAN	RW	0x00 (0 _{dez})

Index FB00 STM Command

Index (hex)	Name	Bedeutun	ıg	Data type	Flags	Default
FB00:0	STM Command	Maximale	Subindex	UINT8	RO	0x03 (3 _{dez})
FB00:01	Request	Anforderu	ng eines Kommando	OCTET-	RW	{0}
		0x8000	Software-Reset	STRING[2]		
FB00:02	Status	Status des	s Kommandos	UINT8	RO	0x00 (0 _{dez})
		0	kein Fehler, ohne Rückgebewert			
		1	kein Fehler, mit Rückgebewert	1		
		2	mit Fehler, ohne Rückgebewert	1		
		3	mit Fehler, mit Rückgebewert			
			reserviert	1		
		255	Kommandoausführung aktiv	1		
FB00:03	Response	Rückgabe vom Komr	wert des ausgeführten Kommandos (abhängig nando)	OCTET- STRING[4]	RO	{0}

7.1.2 Standardobjekte (0x1000 .. 0x1FFF)

Die Standardobjekte haben für alle EtherCAT-Slaves die gleiche Bedeutung.

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0		Geräte-Typ des EtherCAT-Slaves: Das Lo-Word enthält das verwendete CoE Profil (5001). Das Hi-Word enthält das Modul Profil entsprechend des Modular Device Profile.	UINT32	RO	0x00001389 (5001 _{dez})

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EP7041-3002

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	00

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	02

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x1B814052 (461455442 _{dez})
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low-Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x00100BBA (1051578 _{dez})
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x00000000 (0 _{dez})

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F0:0		Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT- Slaves	UINT32	RO	0x00000000 (0 _{dez})

Index 10F3 Diagnosis History

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F3:0	Diagnosis History	Maximaler Subindex	UINT8	RO	0x37 (55 _{dez})
10F3:01	Maximum Messages	Maximale Anzahl der gespeicherten Nachrichten Es können maximal 50 Nachrichten gespeichert werden	UINT8	RO	0x00 (0 _{dez})
10F3:02	Newest Message	Subindex der neusten Nachricht	UINT8	RO	0x00 (0 _{dez})
10F3:03	Newest Acknowledged Message	Subindex der letzten bestätigten Nachricht	UINT8	RW	0x00 (0 _{dez})
10F3:04	New Messages Available	Zeigt an, wenn eine neue Nachricht verfügbar ist	BOOLEAN	RO	0x00 (0 _{dez})
10F3:05	Flags	ungenutzt	UINT16	RW	0x0000 (0 _{dez})
10F3:06	Diagnosis Message 001	Nachricht 1	OCTET- STRING[28]	RO	{0}
10F3:37	Diagnosis Message 050	Nachricht 50	OCTET- STRING[28]	RO	{0}

Index 10F8 Actual Time Stamp

Index (hex)	Name	Bedeutung	Data type	Flags	Default
10F8:0	Actual Time Stamp	Zeitstempel	UINT64	RO	

Index 1400 ENC RxPDO-Par Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC RxPDO-Par Control compact	PDO Parameter RxPDO 1	UINT8	RO	0x06 (6 _{dez})
1400:06	I .		OCTET- STRING[6]		01 16 00 00 00 00

Index 1401 ENC RxPDO-Par Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1401:0	ENC RxPDO-Par Control	PDO Parameter RxPDO 2	UINT8	RO	0x06 (6 _{dez})
1401:06			OCTET- STRING[6]	_	00 16 00 00 00 00

Index 1403 STM RxPDO-Par Position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	STM RxPDO-Par Position	PDO Parameter RxPDO 4	UINT8	RO	0x06 (6 _{dez})
1403:06			OCTET- STRING[6]	1	04 16 05 16 06 16

Index 1404 STM RxPDO-Par Velocity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1404:0	STM RxPDO-Par Velocity	PDO Parameter RxPDO 5	UINT8	RO	0x06 (6 _{dez})
1404:06			OCTET- STRING[6]		03 16 05 16 06 16

Index 1405 POS RxPDO-Par Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	POS RxPDO-Par Control compact	PDO Parameter RxPDO 6	UINT8	RO	0x06 (6 _{dez})
1405:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 6 übertragen werden dürfen	OCTET- STRING[6]	1	03 16 04 16 06 16

Index 1406 POS RxPDO-Par Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1406:0	POS RxPDO-Par Control	PDO Parameter RxPDO 7	UINT8	RO	0x06 (6 _{dez})
1406:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 7 übertragen werden dürfen	OCTET- STRING[6]	RO	03 16 04 16 05 16

Index 1407 POS RxPDO-Par Control 2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1407:0	POS RxPDO-Par Control	PDO Parameter RxPDO 8	UINT8	RO	0x06 (6 _{dez})
1407:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 7 übertragen werden dürfen	OCTET- STRING[6]	RO	03 16 04 16 05 16

Index 1600 ENC RxPDO-Map Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	ENC RxPDO-Map Control compact	PDO Mapping RxPDO 1	UINT8	RO	0x07 (7 _{dez})
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01, 1
1600:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02, 1
1600:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set counter))	UINT32	RO	0x7000:03, 1
1600:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1600:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1600:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1600:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 16

Index 1601 ENC RxPDO-Map Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	ENC RxPDO-Map Control	PDO Mapping RxPDO 2	UINT8	RO	0x07 (7 _{dez})
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01, 1
1601:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02, 1
1601:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set counter))	UINT32	RO	0x7000:03, 1
1601:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1601:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1601:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1601:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 32

Index 1602 STM RxPDO-Map Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1602:0	STM RxPDO-Map Control	PDO Mapping RxPDO 3	UINT8	RO	0x07 (7 _{dez})
1602:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x01 (Enable))	UINT32	RO	0x7010:01, 1
1602:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x02 (Reset))	UINT32	RO	0x7010:02, 1
1602:03	SubIndex 003	3. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x03 (Reduce torque))	UINT32	RO	0x7010:03, 1
1602:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1602:05	SubIndex 005	5. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1602:06	SubIndex 006	6. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x0C (Digital output 1))	UINT32	RO	0x7010:0C, 1
1602:07	SubIndex 007	7. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4

Index 1603 STM RxPDO-Map Position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	STM RxPDO-Map Position	PDO Mapping RxPDO 4	UINT8	RO	0x01 (1 _{dez})
1603:01		1. PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x11 (Position))	UINT32	RO	0x7010:11, 32

Index 1604 STM RxPDO-Map Velocity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1604:0	STM RxPDO-Map Velocity	PDO Mapping RxPDO 5	UINT8	RO	0x01 (1 _{dez})
1604:01		PDO Mapping entry (object 0x7010 (STM Outputs Ch.1), entry 0x21 (Velocity))	UINT32	RO	0x7010:21, 16

Index 1605 POS RxPDO-Map Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1605:0	POS RxPDO-Map Control compact	PDO Mapping RxPDO 6	UINT8	RO	0x05 (5 _{dez})
1605:01	SubIndex 001	1. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x01 (Execute))	UINT32	RO	0x7020:01, 1
1605:02	SubIndex 002	2. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x02 (Emergency stop))	UINT32	RO	0x7020:02, 1
1605:03	SubIndex 003	3. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1605:04	SubIndex 004	4. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1605:05	SubIndex 005	5. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x11 (Target position))	UINT32	RO	0x7020:11, 32

Index 1606 POS RxPDO-Map Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1606:0	POS RxPDO-Map Control	PDO Mapping RxPDO 7	UINT8	RO	0x09 (9 _{dez})
1606:01	SubIndex 001	1. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x01 (Execute))	UINT32	RO	0x7020:01, 1
1606:02	SubIndex 002	2. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x02 (Emergency stop))	UINT32	RO	0x7020:02, 1
1606:03	SubIndex 003	3. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1606:04	SubIndex 004	4. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1606:05	SubIndex 005	5. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x11 (Target position))	UINT32	RO	0x7020:11, 32
1606:06	SubIndex 006	6. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x21 (Velocity))	UINT32	RO	0x7020:21, 16
1606:07	SubIndex 007	7. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x22 (Start type))	UINT32	RO	0x7020:22, 16
1606:08	SubIndex 008	8. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x23 (Acceleration))	UINT32	RO	0x7020:23, 16
1606:09	SubIndex 009	9. PDO Mapping entry (object 0x7020 (POS Outputs Ch.1), entry 0x24 (Deceleration))	UINT32	RO	0x7020:24, 16

Index 1607 POS RxPDO-Map Control 2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1607:0	POS RxPDO-Map Control 2	PDO Mapping RxPDO 8	UINT8	RO	0x09 (9 _{dez})
1607:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x0000:00,2
1607:02	SubIndex 002	2. PDO Mapping entry (object 0x7020 (POS Outputs 2 Ch.1), entry 0x03 (Enable auto start))	UINT32	RO	0x7020:03, 1
1607:03	SubIndex 003	3. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00,5
1607:04	SubIndex 004	4. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1607:05	SubIndex 005	5. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x11 (Target position))	UINT32	RO	0x7021:11, 32
1607:06	SubIndex 006	6. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x21 (Velocity))	UINT32	RO	0x7021:21, 16
1607:07	SubIndex 007	7. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x22 (Start type))	UINT32	RO	0x7021:22, 16
1607:08	SubIndex 008	8. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x23 (Acceleration))	UINT32	RO	0x7021:23, 16
1607:09	SubIndex 009	9. PDO Mapping entry (object 0x7021 (POS Outputs 2 Ch.1), entry 0x24 (Deceleration))	UINT32	RO	0x7021:24, 16

Index 1800 ENC TxPDO-Par Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1800:0	ENC TxPDO-Par Status compact	PDO Parameter TxPDO 1	UINT8	RO	0x06 (6 _{dez})
1800:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 1 übertragen werden dürfen	OCTET- STRING[2]	RO	01 1A

Index 1801 ENC TxPDO-Par Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1801:0	ENC TxPDO-Par Status	PDO Parameter TxPDO 2	UINT8	RO	0x06 (6 _{dez})
1801:06			OCTET- STRING[2]	RO	00 1A

Index 1806 POS TxPDO-Par Status compact

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1806:0	POS TxPDO-Par Status compact	PDO Parameter TxPDO 7	UINT8	RO	0x06 (6 _{dez})
1806:06			OCTET- STRING[2]	RO	07 1A

Index 1807 POS TxPDO-Par Status

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1807:0	POS TxPDO-Par Status	PDO Parameter TxPDO 8	UINT8	RO	0x06 (6 _{dez})
1807:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 8 übertragen werden dürfen	OCTET- STRING[2]	RO	06 1A

Index 1A00 ENC TxPDO-Map Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	ENC TxPDO-Map Status compact	PDO Mapping TxPDO 1	UINT8	RO	0x11 (17 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A00:0B	SubIndex 011	11. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A00:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0D (Status of extern latch))	UINT32	RO	0x6000:0D, 1
1A00:0D	SubIndex 013	13. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A00:0E	SubIndex 014	14. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A00:0F	SubIndex 015	15. PDO Mapping entry (object 0x1800 (ENC TxPDO- Par Status compact), entry 0x09)	UINT32	RO	0x1800:09, 1
1A00:10	SubIndex 016	16. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16
1A00:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 16

Index 1A01 ENC TxPDO-Map Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	ENC TxPDO-Map Status	PDO Mapping TxPDO 2	UINT8	RO	0x11 (17 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A01:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A01:0B	SubIndex 011	11. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A01:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0D (Status of extern latch))	UINT32	RO	0x6000:0D, 1
1A01:0D	SubIndex 013	13. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A01:0E	SubIndex 014	14. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A01:0F	SubIndex 015	15. PDO Mapping entry (object 0x1801 (ENC TxPDO- Par Status), entry 0x09)	UINT32	RO	0x1801:09, 1
1A01:10	SubIndex 016	16. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 32
1A01:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 32

Index 1A02 ENC TxPDO-Map Timest. compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	ENC TxPDO-Map Timest. compact	PDO Mapping TxPDO 3	UINT8	RO	0x01 (1 _{dez})
1A02:01		1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 32

Index 1A03 STM TxPDO-Map Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	STM TxPDO-Map Status	PDO Mapping TxPDO 4	UINT8	RO	0x0E (14 _{dez})
1A03:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x01 (Ready to enable))	UINT32	RO	0x6010:01, 1
1A03:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x02 (Ready))	UINT32	RO	0x6010:02, 1
1A03:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x03 (Warning))	UINT32	RO	0x6010:03, 1
1A03:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x04 (Error))	UINT32	RO	0x6010:04, 1
1A03:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x05 (Moving positive))	UINT32	RO	0x6010:05, 1
1A03:06	SubIndex 006	6. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x06 (Moving negative))	UINT32	RO	0x6010:06, 1
1A03:07	SubIndex 007	7. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x07 (Torque reduced))	UINT32	RO	0x6010:07, 1
1A03:08	SubIndex 008	8. PDO Mapping entry (1 bits align)	UINT32	RO	0x6010:08, 1
1A03:09	SubIndex 009	9. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A03:0A	SubIndex 010	10. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x0C (Digital input 1))	UINT32	RO	0x6010:0C, 1
1A03:0B	SubIndex 011	11. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x0D (Digital input 2))	UINT32	RO	0x6010:0D, 1
1A03:0C	SubIndex 012	12. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x6010:0E, 1
1A03:0D	SubIndex 013	13. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A03:0E	SubIndex 014	14. PDO Mapping entry (object 0x1803, entry 0x09)	UINT32	RO	0x6010:10, 1

Index 1A04 STM TxPDO-Map Synchron info data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A04:0	STM TxPDO-Map Synchron info data	PDO Mapping TxPDO 5	UINT8	RO	0x02 (2 _{dez})
1A04:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x11 (Info data 1))	UINT32	RO	0x6010:11, 16
1A04:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (STM Inputs Ch.1), entry 0x12 (Info data 2))	UINT32	RO	0x6010:12, 16

Index 1A05 STM TxPDO-Map Motor load

Index (hex)	Name	Bedeutung	Data type	Flags	Default
	STM TxPDO-Map Motor load	PDO Mapping TxPDO 6	UINT8	RO	0x01 (1 _{dez})
1A05:01		1. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x01 (Busy))	UINT32	RO	0x6010:13, 16

Index 1A06 POS TxPDO-Map Status compact

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1A06:0	POS TxPDO-Map Status compact	PDO Mapping TxPDO 7	UINT8	RO	0x09 (9 _{dez})
1A06:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x01 (Busy))	UINT32	RO	0x6020:01, 1
1A06:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x02 (In-Target))	UINT32	RO	0x6020:02, 1
1A06:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x03 (Warning))	UINT32	RO	0x6020:03, 1
1A06:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x04 (Error))	UINT32	RO	0x6020:04, 1
1A06:05	SubIndex 005	5. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x05 (Calibrated))	UINT32	RO	0x6020:05, 1
1A06:06	SubIndex 006	6. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x06 (Accelerate))	UINT32	RO	0x6020:06, 1
1A06:07	SubIndex 007	7. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x07 (Decelerate))	UINT32	RO	0x6020:07, 1
1A06:08	SubIndex 008	8. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x08 (Ready to execute))	UINT32	RO	0x6020:08, 1
1A06:09	SubIndex 009	9. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8

Index 1A07 POS TxPDO-Map Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A07:0	POS TxPDO-Map Status	PDO Mapping TxPDO 8	UINT8	RO	0x0C (12 _{dez})
1A07:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x01 (Busy))	UINT32	RO	0x6020:01, 1
1A07:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x02 (In-Target))	UINT32	RO	0x6020:02, 1
1A07:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x03 (Warning))	UINT32	RO	0x6020:03, 1
1A07:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x04 (Error))	UINT32	RO	0x6020:04, 1
1A07:05	SubIndex 005	5. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x05 (Calibrated))	UINT32	RO	0x6020:05, 1
1A07:06	SubIndex 006	6. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x06 (Accelerate))	UINT32	RO	0x6020:06, 1
1A07:07	SubIndex 007	7. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x07 (Decelerate))	UINT32	RO	0x6020:07, 1
1A07:08	SubIndex 008	8. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A07:09	SubIndex 009	9. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A07:0A	SubIndex 010	10. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x11 (Actual position))	UINT32	RO	0x6020:11, 32
1A07:0B	SubIndex 011	11. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x21 (Actual velocity))	UINT32	RO	0x6020:21, 16
1A07:0C	SubIndex 012	12. PDO Mapping entry (object 0x6020 (POS Inputs Ch.1), entry 0x22 (Actual drive time))	UINT32	RO	0x6020:22, 32

Index 1A08 STM TxPDO-Map Internal Position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	STM TxPDO-Map Internal Position	PDO Mapping TxPDO 9	UINT8	RO	0x01 (1 _{dez})
1A08:01	SubIndex 001	PDO Mapping entry (object 0x6010 (STM Inputs Ch. 1), entry 0x14 (Internal Position))	UINT32	RO	0x6010:14, 32

Index 1A09 STM TxPDO-Map External Position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A09:0	STM TxPDO-Map External Position	PDO Mapping TxPDO 10	UINT8	RO	0x01 (1 _{dez})
1A09:01	SubIndex 001	PDO Mapping entry (object 0x6010 (STM Inputs Ch. 1), entry 0x15 (External Position))	UINT32	RO	0x6010:15, 32

Index 1A0A POS TxPDO-Map Actual Position lag

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	POS TxPDO-Map Actual Position lag	PDO Mapping TxPDO 11	UINT8	RO	0x01 (1 _{dez})
1A0A:01	SubIndex 001	PDO Mapping entry (object 0x6010 (POS Inputs Ch. entry 0x23 (Actual position lag))	UINT32	RO	0x6020:23, 32

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x03 (3 _{dez})
1C12:01	Subindex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1600 (5632 _{dez})
1C12:02	Subindex 002	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1602 (5634 _{dez})
1C12:03	Subindex 003	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1604 (5636 _{dez})

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x02 (2 _{dez})
1C13:01	Subindex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})
1C13:02	Subindex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	nörigen TxPDO Mapping Objekts)		0x1A03 (6659 _{dez})
1C13:03	Subindex 003	3. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	geordnete TxPDO (enthält den Index des UINT16 RW		0x0000 (0 _{dez})
1C13:04	Subindex 004	4. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	zugeordnete TxPDO (enthält den Index des UINT16 R		0x0000 (0 _{dez})
1C13:05	Subindex 005	5. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:06	Subindex 006	6. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:07	Subindex 007	7. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:08	Subindex 008	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:09	Subindex 009	9. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})

Index 1C32 SM output parameter

Index (hex)	lex (hex) Name Bedeutung		Datentyp	Flags	Default	
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez})	
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0001 (1 _{dez})	
		0: Free Run				
		1: Synchron with SM 2 Event				
		2: DC-Mode - Synchron with SYNC0 Event				
		3: DC-Mode - Synchron with SYNC1 Event				
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x000F4240	
		Free Run: Zykluszeit des lokalen Timers			(1000000 _{dez})	
		Synchron with SM 2 Event: Zykluszeit des Masters				
		DC-Mode: SYNC0/SYNC1 Cycle Time				
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})	
1C32:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007	
	supported	Bit 0 = 1: Free Run wird unterstützt			(49159 _{dez})	
		Bit 1 = 1: Synchron with SM 2 Event wird unterstützt				
		Bit 2-3 = 01: DC-Mode wird unterstützt				
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC- Mode)				
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶_113])				
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x0003D090 (250000 _{dez})	
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})	
1C32:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})	
1C32:08	Command	0: Messung der lokalen Zykluszeit wird gestoppt	UINT16	RW	0x0000 (0 _{dez})	
		1: Messung der lokalen Zykluszeit wird gestartet				
		Die Entries <u>0x1C32:03 [▶ 113]</u> , <u>0x1C32:05 [▶ 113]</u> ,				
		0x1C32:06 [▶ 113], 0x1C32:09 [▶ 113], 0x1C33:03 [▶ 114],				
		0x1C33:06 [▶ 113], 0x1C33:09 [▶ 114] werden mit den				
		maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte				
		zurückgesetzt				
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})	
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})	
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)			0x0000 (0 _{dez})	
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})	
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez})	

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0022 (34 _{dez})
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		• 34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	wie <u>0x1C32:02</u> [▶ <u>113]</u>	UINT32	RW	0x000F4240 (1000000 _{dez})
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	supported	Bit 0: Free Run wird unterstützt			(49159 _{dez})
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 113] oder 0x1C33:08 [▶ 114])			
1C33:05	Minimum cycle time	wie <u>0x1C32:05 [▶ 113]</u>	UINT32	RO	0x0003D090 (250000 _{dez})
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})
1C33:08	Command	wie <u>0x1C32:08</u> [> <u>113</u>]	UINT16	RW	0x0000 (0 _{dez})
1C33:09	Maximum delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:0B	SM event missed counter	wie <u>0x1C32:11 [▶ 113]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0C	Cycle exceeded counter	wie <u>0x1C32:12 [▶ 113]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0D	Shift too short counter	wie <u>0x1C32:13</u> [▶ <u>113</u>]	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	wie <u>0x1C32:32 [▶ 113]</u>	BOOLEAN	BOOLEAN RO	

7.1.3 Profilspezifische Objekte (0x6000 .. 0xFFFF)

Die profilspezifischen Objekte haben für alle EtherCAT Slaves, die das Profil 5001 unterstützen, die gleiche Bedeutung.

Index 6000 ENC Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6000:0	ENC Inputs Ch.1	Maximaler Subindex	UINT8	RO	0x16 (22 _{dez})
6000:01	Latch C valid	Der Zählerstand wurde mit der C-Spur gelatched.	BOOLEAN	RO	0x00 (0 _{dez})
6000:02	Latch extern valid	Der Zählerstand wurde über das externe Latch gespeichert.	BOOLEAN	RO	0x00 (0 _{dez})
6000:03	Set counter done	Der Zähler wurde gesetzt.	BOOLEAN	RO	0x00 (0 _{dez})
6000:04	Counter underflow	Der Zähler hat rückwärts den Nulldurchgang durchschritten.	BOOLEAN	RO	0x00 (0 _{dez})
6000:05	Counter overflow	Der Zähler ist übergelaufen.	BOOLEAN	RO	0x00 (0 _{dez})
6000:08	Extrapolation stall	Die Extrapolierte Teil des Zähler ist ungültig	BOOLEAN	RO	0x00 (0 _{dez})
6000:09	Status of input A	Der Zustand des A-Eingangs.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0A	Status of input B	Der Zustand des B-Eingangs.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0B	Status of input C	Der Zustand des C-Eingangs.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0D	Status of extern latch	Der Zustand des Ext. Latch-Eingangs.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0E	Sync error	Das Sync error Bit wird nur für den DC Mode benötigt und zeigt an, ob in dem abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist.	BOOLEAN	RO	0x00 (0 _{dez})
6000:10	TxPDO Toggle	Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO upgedatet wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:11	Counter value	Der Zählerstand.	UINT32	RO	0x0000000 (0 _{dez})
6000:12	Latch value	Der Latchwert.	UINT32	RO	0x0000000 (0 _{dez})
6000:16	Timestamp	Zeitstempel der letzten Zähleränderung.	UINT32	RO	0x0000000 (0 _{dez})

Index 6010 STM Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6010:0	STM Inputs Ch.1	Maximaler Subindex	UINT8	RO	0x12 (18 _{dez})
6010:01	Ready to enable	Treiberstufe ist bereit zum Freischalten	BOOLEAN	RO	0x00 (0 _{dez})
6010:02	Ready	Treiberstufe ist betriebsbereit	BOOLEAN	RO	0x00 (0 _{dez})
6010:03	Warning	eine Warnung ist aufgetreten	BOOLEAN	RO	0x00 (0 _{dez})
6010:04	Error	ein Fehler ist aufgetreten (siehe Index <u>0xA010 [▶ 119]</u>)	BOOLEAN	RO	0x00 (0 _{dez})
6010:05	Moving positive	Motor dreht in positiver Richtung	BOOLEAN	RO	0x00 (0 _{dez})
6010:06	Moving negative	Motor dreht in negativer Richtung	BOOLEAN	RO	0x00 (0 _{dez})
6010:07	Torque reduced	reduziertes Drehmoment ist aktiv	BOOLEAN	RO	0x00 (0 _{dez})
6010:0C	Digital input 1	digitaler Eingang 1	BOOLEAN	RO	0x00 (0 _{dez})
6010:0D	Digital input 2	digitaler Eingang 2	BOOLEAN	RO	0x00 (0 _{dez})
6010:0E	Sync error	Das Sync error Bit wird nur für den DC Mode benötigt und zeigt an, ob in dem abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist.	BOOLEAN	RO	0x00 (0 _{dez})
6010:10	TxPDO Toggle	Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO upgedatet wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6010:11	Info data 1	synchrone Informationen (Auswahl über Subindex 0x8012:11 [▶ 99])	UINT16	RO	0x0000 (0 _{dez})
6010:12	Info data 2	synchrone Informationen (Auswahl über Subindex 0x8012:19 [▶ 99])	ynchrone Informationen (Auswahl über Subindex UINT16		0x0000 (0 _{dez})
6010:14	Internal position	Interne Microstep Position	UINT32	RO	0x0000000 (0 _{dez})
1010:15	External position Encoder Position		UINT32	RO	0x00000000 (0 _{dez})

Index 6020 POS Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6020:0	POS Inputs Ch.1	Maximaler Subindex	UINT8	RO	0x22 (34 _{dez})
6020:01	Busy	ein aktueller Fahrauftrag ist aktiv	BOOLEAN	RO	0x00 (0 _{dez})
6020:02	In-Target	Motor ist im Ziel angekommen	BOOLEAN	RO	0x00 (0 _{dez})
6020:03	Warning	eine Warnung ist aufgetreten	BOOLEAN	RO	0x00 (0 _{dez})
6020:04	Error	eine Fehler ist aufgetreten	BOOLEAN	RO	0x00 (0 _{dez})
6020:05	Calibrated	Motor ist kalibriert	BOOLEAN	RO	0x00 (0 _{dez})
6020:06	Accelerate	Motor ist in der Beschleunigungsphase	BOOLEAN	RO	0x00 (0 _{dez})
6020:07	Decelerate	Motor ist in der Verzögerungsphase	BOOLEAN	RO	0x00 (0 _{dez})
6020:08	Ready to execute		BOOLEAN	RO	0x00 (0 _{dez})
6020:11	Actual position	aktuelle Sollposition des Fahrauftraggenerators	UINT32	RO	0x00007FFF (32767 _{dez})
6020:21	Actual velocity	aktuelle Sollgeschwindigkeit des Fahrauftraggenerators	INT16	RO	0x0000 (0 _{dez})
6020:22	Actual drive time	Zeitinformation des Fahrauftrages (siehe Subindex 0x8021:11)	UINT32	RO	0x00000000 (0 _{dez})
6020:23	Actual position lag		UINT32	RO	0x00000000 (0 _{dez})

Index 7000 ENC Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7000:0	ENC Outputs Ch.1	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
7000:01	Enable latch C	Das Latchen über die C-Spur aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:02	Enable latch extern on positive edge	Das externe Latch mit positiver Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:03	Set counter	Den Zählerstand setzen.	BOOLEAN	RO	0x00 (0 _{dez})
7000:04	Enable latch extern on negative edge	Das externe Latch mit negativer Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:11	Set counter value	Dies ist der über "Set counter" zu setzende Zählerstand.	UINT32	RO	0x0000000 (0 _{dez})

Index 7010 STM Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7010:0	STM Outputs Ch.1	Maximaler Subindex	UINT8	RO	0x21 (33 _{dez})
7010:01	Enable	aktiviert die Ausgangsstufe (siehe Subindex <u>0x8012:3A</u> [<u>▶ 99]</u>)	BOOLEAN	RO	0x00 (0 _{dez})
7010:02	Reset	alle aufgetretenen Fehler werden durch das Setzen dieses Bits zurückgesetzt (steigende Flanke)	BOOLEAN	RO	0x00 (0 _{dez})
7010:03	Reduce torque	Aktivierung des reduzierten Drehmoments (Spulenstrom) (siehe Subindex 0x8010:02 [> 98])	BOOLEAN	RO	0x00 (0 _{dez})
7010:0C	Digital output 1	Signal am Digitalen Ausgang 1	BOOLEAN	RO	0x00 (0 _{dez})
7010:11	Position	Soll-Position	UINT32	RO	0x0000000 (0 _{dez})
7010:21	Velocity	Soll-Geschwindigkeit	INT16	RO	0x0000 (0 _{dez})

Index 7020 POS Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7020:0	POS Outputs Ch.1	Maximaler Subindex	UINT8	RO	0x24 (36 _{dez})
7020:01	Execute	Fahrauftrag starten (steigende Flanke), bzw. Fahrauftrag vorzeitig abbrechen (fallende Flanke)	BOOLEAN	RO	0x00 (0 _{dez})
7020:02	Emergency stop	Fahrauftrag vorzeitig mit einer Notfallrampe abbrechen (steigende Flanke)	BOOLEAN	RO	0x00 (0 _{dez})
7020:11	Target position	Vorgabe der Zielposition	UINT32	RO	0x00007FFF (32767 _{dez})
7020:21	Velocity	Vorgabe der maximalen Sollgeschwindigkeit	INT16	RO	0x0000 (0 _{dez})

Index (hex)	Name	Bedeutung	9			Datentyp	Flags	Default
7020:22	Start type	Vorgabe des Starttypen	0x0000	Idle	es wird kein Fahrauftrag ausgeführt	UINT16	RO	0x0000 (0 _{dez})
			0x0001	Absolute	Zielposition absolut			
			0x0002	Relative	Zielposition relativ von Startposition aus			
			0x0003	Endless plus	Endlosfahrt in positiver Drehrichtung			
			0x0004	Endless minus	Endlosfahrt in negativer Drehrichtung			
			0x0105	Modulo short	kürzeste Entfernung zur nächsten Moduloposition			
			0x0115	Modulo short extended	kürzeste Entfernung zur nächsten Moduloposition (ohne Modulofenster)			
			0x0205	Modulo plus	Fahrt in positiver Drehrichtung zur nächsten Moduloposition			
			0x0215	Modulo plus extended	Fahrt in positiver Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)			
			0x0305	Modulo minus	Fahrt in negativer Drehrichtung zur nächsten Moduloposition			
			0x0315	Modulo minus extended	Fahrt in negativer Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)			
			0x0405	Modulo current	Fahrt in die letzte ausgeführte Drehrichtung zur nächsten Moduloposition			
			0x0415	Modulo current extended	Fahrt in die letzte ausgeführte Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)			
			0x0006	Additive	neue Zielposition relativ / additiv zur letzten Zielposition			
			0x6000	Calibration, Plc cam	Kalibrierung mit Nocke			
			0x6100	Calibration, Hw sync	Kalibrierung mit Nocke und C- Spur			
			0x6E00	Calibration, set manual	Kalibrierung manuell setzen			
			0x6E01	Calibration, set manual auto	Kalibrierung automatisch setzen			

Index (hex)	Name	Bedeutung	9		Datentyp	Flags	Default	
			0x6F00 Calibration, Kalibrierung clear manual manuell löschen et der Beschleunigung					
7020:23	Acceleration	Vorgabe de	rgabe der Beschleunigung				RO	0x0000 (0 _{dez})
7020:24	Deceleration	Vorgabe de	er Verzöge	erung		UINT16	RO	0x0000 (0 _{dez})

Index 7021 POS Outputs 2 Ch.1 (Teil 1)

Index	Name	Bedeutung	Datentyp	Flags	Default
7021:0	POS Outputs 2 Ch.1	Maximaler Subindex	UINT8	RO	0x24 (36 _{dec})
7021:03	Enable auto start	Auto-Start Funktion aktivieren	BOOL	RO	0x0000000 (0 _{dez})
7021:11	Target position	Vorgabe der Zielposition	UINT32	RO	0x00000000 (0 _{dez})
7021:21	Velocity	Vorgabe der maximalen Sollgeschwindigkeit	INT16	RO	0x0000 (0 _{dez})

Index 7021 POS Outputs 2 Ch.1 (Teil 2)

Index	Name	Bedeutung	Datentyp	Flags	Default
7021:22	Start type	·			
	0x0000 Idle: es wir	d kein Fahrauftrag ausgeführt	UINT16	RO	0x0000 (0 _{dez})
	0x0001 Absolute: 2	Zielposition absolut	UINT16	RO	0x0000 (0 _{dez})
	0x1001 Absolute (Change): Änderung während eines aktiven Fahrauftrages	UINT16	RO	0x0000 (0 _{dez})
	0x0002 Relative: Z	ielposition relativ von der aktuellen Position aus	UINT16	RO	0x0000 (0 _{dez})
	0x1002 Relative (C	Change): Änderung während eines aktiven Fahrauftrages	UINT16	RO	0x0000 (0 _{dez})
	0x0003 Endless pl	us: Endlosfahrt in positiver Drehrichtung	UINT16	RO	0x0000 (0 _{dez})
	0x0004 Endless m	inus: Endlosfahrt in negativer Drehrichtung	UINT16	RO	0x0000 (0 _{dez})
	0x0105 Modulo sh	ort: kürzeste Entfernung zur nächsten Moduloposition	UINT16	RO	0x0000 (0 _{dez})
	0x0115 Modulo sh Moduloposition (of	ort extended: kürzeste Entfernung zur nächsten ne Modulofenster)	UINT16	RO	0x0000 (0 _{dez})
	0x0205 Modulo plus: Fahrt in positiver Drehrichtung zur nächsten Moduloposition			RO	0x0000 (0 _{dez})
	0x0215 Modulo plus extended: Fahrt in positiver Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)			RO	0x0000 (0 _{dez})
	0x0305 Modulo minus: Fahrt in negativer Drehrichtung zur nächsten Moduloposition			RO	0x0000 (0 _{dez})
	0x0315 Modulo minus extended: Fahrt in negativer Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)		UINT16	RO	0x0000 (0 _{dez})
		0x0405 Modulo current: Fahrt in die letzte ausgeführte Drehrichtung zur nächsten Moduloposition			0x0000 (0 _{dez})
		0x0415 Modulo current extended: Fahrt in die letzte ausgeführte Drehrichtung zur nächsten Moduloposition (ohne Modulofenster)		RO	0x0000 (0 _{dez})
	0x0006 Additive: n	eue Zielposition relativ / additiv zur letzten Zielposition	UINT16	RO	0x0000 (0 _{dez})
	0x1006 Additive (C	Change): Änderung während eines aktiven Fahrauftrages	UINT16	RO	0x0000 (0 _{dez})
	0x6000 Calibration	, PLC cam: Kalibrierung mit Nocke	UINT16	RO	0x0000 (0 _{dez})
	0x6100 Calibration	, HW sync: Kalibrierung mit Nocke und C-Spur	UINT16	RO	0x0000 (0 _{dez})
	0x6E00 Calibration	ı, set manual: Kalibrierung manuell setzen	UINT16	RO	0x0000 (0 _{dez})
	0x6E01 Calibration, set manual auto: Kalibrierung autom. setzen, bei "Enable = 1"		UINT16	RO	0x0000 (0 _{dez})
	0x6F00 Calibration	UINT16	RO	0x0000 (0 _{dez})	
7021:23	Acceleration	Vorgabe der Beschleunigung	UINT16	RO	0x0000 (0 _{dez})
7021:24	Deceleration	Vorgabe der Verzögerung	UINT16	RO	0x0000 (0 _{dez})

Index 9010 STM Info data Ch.1

Index (hex)	Name	Bedeutung	Data type	Flags	Default
9010:0	STM Info data Ch.1	Maximaler Subindex	UINT8	RO	0x0C (12 _{dez})
9010:01	Status word		UINT16	RO	0x0000 (0 _{dez})
9010:08	Motor velocity		INT16	RO	0x0000 (0 _{dez})
9010:09	Internal position		UINT32	RO	0x00000000
					(0 _{dez})
9010:0A	Status word 2		UINT16	RO	0x0000 (0 _{dez})
9010:0B	Motor load		UINT16	RO	0x0000 (0 _{dez})
9010:0C	Motor smart current		UINT8	RO	0x00 (0 _{dez})

Index 9020 POS Info data Ch.1

Index (hex)	Motor smart cur-	Bedeutung	UINT8>Data	RO>Fla	0x00
	rent>Name		type	gs	(0 _{dez})>Default
9020:0	POS Info data Ch.1	Maximaler Subindex	UINT8	RO	0x03 (3 _{dez})
9020:01	Status word		UINT16	RO	0x0000 (0 _{dez})
9020:03	State (drive controller)		UINT16	RO	0xFFFF (65535 _{dez})

Index 9020 POS Info data Ch.1

, ,	State (drive control- ler)>Name	J	UINT16>Data type	gs	0xFFFF (65535 _{dez})>De fault
9020:0	POS Info data Ch.1	Maximaler Subindex	UINT8	RO	0x03 (3 _{dez})
9020:01	Status word		UINT16	RO	0x0000 (0 _{dez})
9020:03	State (drive controller)		UINT16	RO	0xFFFF (65535 _{dez})

Index A010 STM Diag data Ch.1

Index (hex)	Name	Bedeutung	Data type	Flags	Default
A010:0	STM Diag data Ch.1	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
A010:01	Saturated		BOOLEAN	RO	0x00 (0 _{dez})
A010:02	Over temperature		BOOLEAN	RO	0x00 (0 _{dez})
A010:03	Torque overload		BOOLEAN	RO	0x00 (0 _{dez})
A010:04	Under voltage		BOOLEAN	RO	0x00 (0 _{dez})
A010:05	Over voltage		BOOLEAN	RO	0x00 (0 _{dez})
A010:06	Short circuit		BOOLEAN	RO	0x00 (0 _{dez})
A010:08	No control power		BOOLEAN	RO	0x00 (0 _{dez})
A010:09	Misc error		BOOLEAN	RO	0x00 (0 _{dez})
A010:0A	Configuration		BOOLEAN	RO	0x00 (0 _{dez})
A010:0B	Motor stall		BOOLEAN	RO	0x00 (0 _{dez})
A010:11	Actual operation mode		BIT4	RO	0x00 (0 _{dez})

Index A020 POS Diag data Ch.1

Index (hex)	Name	Bedeutung	Data type	Flags	Default
A020:0	POS Diag data Ch.1	Maximaler Subindex	UINT8	RO	0x03 (3 _{dez})
A020:01	Command rejected		BOOLEAN	RO	0x00 (0 _{dez})
A020:02	Command aborted		BOOLEAN	RO	0x00 (0 _{dez})
A020:03	Target overrun		BOOLEAN	RO	0x00 (0 _{dez})

Index F000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Maximum sub-index	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0003 (3 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Data type	Flags	Default
F008:0	Code word		UINT32	RW	0x00000000
					(O _{dez})

Index F010 Module list

Index (hex)	Name	Bedeutung	Data type	Flags	Default
F010:0	Module list	Maximaler Subindex	UINT8	RW	0x03 (3 _{dez})
F010:01	SubIndex 001		UINT32	RW	0x000001FF (511 _{dez})
F010:02	SubIndex 002		UINT32	RW	0x000002BF (703 _{dez})
F010:03	SubIndex 003		UINT32	RW	0x000002C0 (704 _{dez})

Index F081 Download revision

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F081:0	Download revision	Reserviert	UINT8	RO	0x01 (1 _{dez})
F081:01	Revision number	Reserviert	UINT32	1	0x00000000 (0 _{dez})

Index F80F STM Vendor data

Index (hex)	Name	Bedeutung	Data type	Flags	Default
F80F:0	STM Vendor data	Maximaler Subindex	UINT8	RO	0x09 (9 _{dez})
F80F:04	Warning temperature		INT8	RW	0x50 (80 _{dez})
F80F:05	Switch off temperature		INT8	RW	0x64 (100 _{dez})
F80F:09	Maximum current		UINT16	RW	0x1DC9 (7625 _{dez})

Index F81F STM Vendor data 2

Index (hex)	Name	Bedeutung	Data type	Flags	Default
F81F:0	STM Vendor data 2	Maximaler Subindex	UINT8	RO	0x0A (10 _{dez})
F81F:01	Slope control low side		BIT2	RW	0x00 (0 _{dez})
F81F:03	Slope control high side		BIT2	RW	0x00 (0 _{dez})
F81F:05	Sense voltage		BIT1	RW	0x00 (0 _{dez})
F81F:08	Blank time		BIT2	RW	0x03 (3 _{dez})

Index F900 STM Info data

Index (hex)	Name	Bedeutung	Data type	Flags	Default
F900:0	STM Info data	Maximaler Subindex	UINT8	RO	0x07 (7 _{dez})
F900:01	Software version (driver)		STRING	RO	
F900:02	Internal temperature		INT8	RO	0x00 (0 _{dez})
F900:04	Control voltage		UINT16	RO	0x0000 (0 _{dez})
F900:05	Motor supply voltage		UINT16	RO	0x0000 (0 _{dez})
F900:06	Cycle time		UINT16	RO	0x0000 (0 _{dez})
F900:07	Motor supply current		UINT16	RO	0x0000 (0 _{dez})

8 Anhang

8.1 Allgemeine Betriebsbedingungen

Schutzarten nach IP-Code

In der Norm IEC 60529 (DIN EN 60529) sind die Schutzgrade festgelegt und nach verschiedenen Klassen eingeteilt. Schutzarten werden mit den Buchstaben "IP" und zwei Kennziffern bezeichnet: **IPxy**

- Kennziffer x: Staubschutz und Berührungsschutz
- · Kennziffer y: Wasserschutz

X	Bedeutung
0	Nicht geschützt
1	Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Geschützt gegen feste Fremdkörper Ø 50 mm
2	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Geschützt gegen feste Fremdkörper Ø 12,5 mm
3	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Geschützt gegen feste Fremdkörper Ø 2,5 mm
4	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Geschützt gegen feste Fremdkörper Ø 1 mm
5	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubgeschützt. Eindringen von Staub ist nicht vollständig verhindert, aber der Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird
6	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubdicht. Kein Eindringen von Staub

у	Bedeutung
0	Nicht geschützt
1	Geschützt gegen Tropfwasser
2	Geschützt gegen Tropfwasser, wenn das Gehäuse bis zu 15° geneigt ist
3	Geschützt gegen Sprühwasser. Wasser, das in einem Winkel bis zu 60° beiderseits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben
4	Geschützt gegen Spritzwasser. Wasser, das aus jeder Richtung gegen das Gehäuse spritzt, darf keine schädlichen Wirkungen haben
5	Geschützt gegen Strahlwasser.
6	Geschützt gegen starkes Strahlwasser.
7	Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser. Wasser darf nicht in einer Menge eintreten, die schädliche Wirkungen verursacht, wenn das Gehäuse für 30 Minuten in 1 m Tiefe in Wasser untergetaucht ist

Chemische Beständigkeit

Die Beständigkeit bezieht sich auf das Gehäuse der IP67-Module und die verwendeten Metallteile. In der nachfolgenden Tabelle finden Sie einige typische Beständigkeiten.

Art	Beständigkeit
Wasserdampf	bei Temperaturen >100°C nicht beständig
Natriumlauge (ph-Wert > 12)	bei Raumtemperatur beständig > 40°C unbeständig
Essigsäure	unbeständig
Argon (technisch rein)	beständig

Legende

- · beständig: Lebensdauer mehrere Monate
- bedingt beständig: Lebensdauer mehrere Wochen
- · unbeständig: Lebensdauer mehrere Stunden bzw. baldige Zersetzung

8.2 Zubehör

Befestigung

Bestellangabe	Beschreibung	Link
ZS5300-0011	Montageschiene	<u>Website</u>

Leitungen

Eine vollständige Übersicht von vorkonfektionierten Leitungen für IO-Komponenten finden sie hier.

Bestellangabe	Beschreibung	Link
ZK1090-3xxx-xxxx	EtherCAT-Leitung M8, grün	<u>Website</u>
ZK1093-3xxx-xxxx	EtherCAT-Leitung M8, gelb	<u>Website</u>
ZK2000-5xxx-xxxx	Sensorleitung M12, 5-polig	<u>Website</u>
ZK2020-3xxx-xxxx	Powerleitung M8, 4-polig	<u>Website</u>
ZK4000-51xx-xxxx	Encoderleitung, geschirmt	<u>Website</u>
ZK4000-6xxx-xxxx	Motorleitung	<u>Website</u>

Beschriftungsmaterial, Schutzkappen

Bestellangabe	Beschreibung
ZS5000-0010	Schutzkappe für M8-Buchsen, IP67 (50 Stück)
ZS5000-0020	Schutzkappe für M12-Buchsen, IP67 (50 Stück)
ZS5100-0000	Beschriftungsschilder nicht bedruckt, 4 Streifen à 10 Stück
ZS5000-xxxx	Beschriftungsschilder bedruckt, auf Anfrage

Werkzeug

Bestellangabe	Beschreibung
ZB8801-0000	Drehmoment-Schraubwerkzeug für Stecker, 0,41,0 Nm
ZB8801-0001	Wechselklinge für M8 / SW9 für ZB8801-0000
ZB8801-0002	Wechselklinge für M12 / SW13 für ZB8801-0000
ZB8801-0003	Wechselklinge für M12 feldkonfektionierbar / SW18 für ZB8801-0000

Weiteres Zubehör

Weiteres Zubehör finden Sie in der Preisliste für Feldbuskomponenten von Beckhoff und im Internet auf https://www.beckhoff.com.

8.3 Versionsidentifikation von EtherCAT-Geräten

8.3.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14-stellige technische Bezeichnung, die sich zusammen setzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016		3314	0000	0016
	12 mm, nicht steckbare Anschlussebene	4-kanalige Thermoelementklemme	Grundtyp	
ES3602-0010-0017	ES-Klemme	3602	0010	0017
	12 mm, steckbare Anschlussebene	2-kanalige Spannungsmessung	hochpräzise Version	
CU2008-0000-0000	CU-Gerät	2008	0000	0000
		8 Port FastEthernet Switch	Grundtyp	

Hinweise

- die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die Revision -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.
 Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.
 Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht.
 Die Revision wird seit 2014/01 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "EL5021 EL-
- Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

Klemme, Standard IP20-IO-Gerät mit Chargennummer und Revisionskennzeichnung (seit 2014/01)".

8.3.2 Versionsidentifikation von IP67-Modulen

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder auf einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr FF - Firmware-Stand HH - Hardware-Stand Beispiel mit Seriennummer 12 06 3A 02:

12 - Produktionswoche 12 06 - Produktionsjahr 2006 3A - Firmware-Stand 3A 02 - Hardware-Stand 02

Ausnahmen können im **IP67-Bereich** auftreten, dort kann folgende Syntax verwendet werden (siehe jeweilige Gerätedokumentation):

Syntax: D ww yy x y z u

D - Vorsatzbezeichnung ww - Kalenderwoche

yy - Jahr

x - Firmware-Stand der Busplatine

y - Hardware-Stand der Busplatine

z - Firmware-Stand der E/A-Platine

u - Hardware-Stand der E/A-Platine

Beispiel: D.22081501 Kalenderwoche 22 des Jahres 2008 Firmware-Stand Busplatine: 1 Hardware Stand Busplatine: 5 Firmware-Stand E/A-Platine: 0 (keine Firmware für diese Platine notwendig) Hardware-Stand E/A-Platine: 1

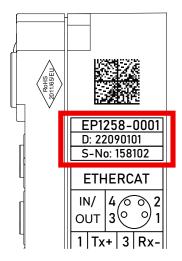


Abb. 51: EP1258-0001 IP67 EtherCAT Box mit Chargennummer/ DateCode 22090101 und eindeutiger Seriennummer 158102

8.3.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 52: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z. B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	32	30PF971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 53: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

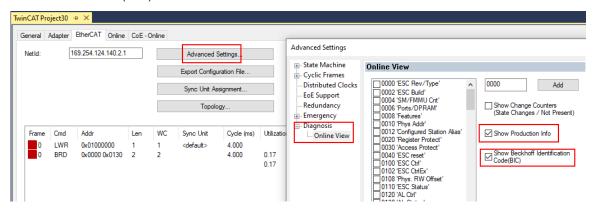
Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Information können keine Ansprüche auf Änderung geltend gemacht werden.

8.3.4 Elektronischer Zugriff auf den BIC (eBIC)

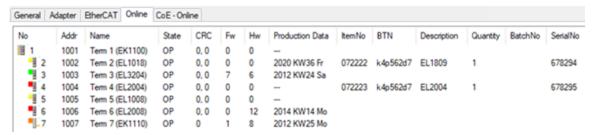
Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff Produkten außen sichtbar aufgebracht. Er soll, wo möglich, auch elektronisch auslesbar sein.

Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt elektronisch angesprochen werden kann.


EtherCAT-Geräte (IP20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, dass die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).


In das ESI-EEPROM wird durch Beckhoff auch die eBIC gespeichert. Die Einführung des eBIC in die Beckhoff IO Produktion (Klemmen, Box-Module) erfolgt ab 2020; Stand 2023 ist die Umsetzung weitgehend abgeschlossen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen
 - Ab TwinCAT 3.1 build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter
 EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

Die BTN und Inhalte daraus werden dann angezeigt:

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Zugriff aus der PLC: Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcReadBIC und FB_EcReadBTN zum Einlesen in die PLC.
- Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC vorhanden sein, auch hierauf kann die PLC einfach zugreifen:

• Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein:

Inc	dex	Name	Rags	Value		
1000		Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
•	1011:0	Restore default parameters	RO	>1<		
	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
•	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcCoEReadBIC und FB_EcCoEReadBTN zum Einlesen in die PLC zur Verfügung
- Zur Verarbeitung der BIC/BTN Daten in der PLC stehen noch als Hilfsfunktionen ab TwinCAT 3.1 build 4024.24 in der *Tc2 Utilities* zur Verfügung
 - F_SplitBIC: Die Funktion zerlegt den Beckhoff Identification Code (BIC) sBICValue anhand von bekannten Kennungen in seine Bestandteile und liefert die erkannten Teil-Strings in einer Struktur ST_SplittedBIC als Rückgabewert
 - BIC_TO_BTN: Die Funktion extrahiert vom BIC die BTN und liefert diese als Rückgabewert
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Technischer Hintergrund Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben, demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010 abgelegt. Durch die ID 03 ist für alle EtherCAT Master vorgegeben, dass sie im Updatefall diese Daten nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen. Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca. 50..200 Byte im EEPROM.
- · Sonderfälle
 - Sind mehrere ESC in einem Gerät verbaut die hierarchisch angeordnet sind, trägt nur der TopLevel ESC die eBIC Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC des TopLevel-Geräts, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

8.4 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- · Ersatzteilservice
- Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com

Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com

Internet: www.beckhoff.com

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com