BECKHOFF New Automation Technology

Dokumentation | DE

EPP3314-0002

4-Kanal-Analog-Eingang Thermoelement

Inhaltsverzeichnis

1	Vorw	ort		5	
	1.1	Hinweis	se zur Dokumentation	5	
	1.2	Sicherh	neitshinweise	6	
	1.3	Ausgabestände der Dokumentation			
2	Prod	duktgruppe: EtherCAT P-Box-Module8			
3	Prod	uktüber	sicht	9	
	3.1	Einführ	ung	9	
	3.2	Technis	sche Daten	. 10	
		3.2.1	Allgemeine technische Daten	. 10	
		3.2.2	Messung ±30 mV±75 mV	. 12	
		3.2.3	Messung Thermoelemente	. 13	
	3.3	Prozess	sabbild	. 25	
	3.4	Lieferur	mfang	. 26	
	3.5	Grundla	agen der Thermoelement-Technologie	. 27	
4	Mont	tage und	I Anschlüsse	. 36	
	4.1	Montag	je	. 36	
		4.1.1	Abmessungen	. 36	
		4.1.2	Befestigung	. 37	
		4.1.3	Funktionserdung (FE)	. 37	
		4.1.4	Anzugsdrehmomente für Steckverbinder	. 37	
	4.2	Anschlü	üsse	. 38	
		4.2.1	EtherCAT P	. 38	
		4.2.2	Thermoelemente	. 42	
	4.3	UL-Anfo	orderungen	. 46	
	4.4	Entsorg	gung	. 47	
5	Inbet	triebnah	me/Konfiguration	. 48	
	5.1	Einbind	len in ein TwinCAT-Projekt	. 48	
	5.2	Einstell	ungen	. 49	
		5.2.1	Vergleichsstellen-Kompensation	. 49	
		5.2.2	Darstellung (Presentation), Index 0x80n0:02	. 51	
		5.2.3	Siemens Bits, Index 0x80n0:05	. 53	
		5.2.4	Underrange, Overrange	. 53	
		5.2.5	Filter	. 53	
		5.2.6	Limit 1 und Limit 2	. 53	
		5.2.7	Kalibrierung	. 54	
	5.3	Objektübersicht		. 56	
	5.4	Objektb	peschreibung und Parametrierung	. 62	
		5.4.1	Objekte zur Parametrierung bei der Inbetriebnahme	. 62	
		5.4.2	Objekte für den regulären Betrieb	. 68	
		5.4.3	Standardobjekte (0x1000-0x1FFF)	. 68	
		5.4.4	Profilspezifische Objekte (0x6000-0xFFFF)		
	5.5		herstellen des Auslieferungszustandes		
	5.6	Außerb	etriebnahme	. 81	

6	Anha	າng		82
	6.1	Allgeme	ine Betriebsbedingungen	82
	6.2	Zubehöi	-	83
	6.3	Versions	sidentifikation von EtherCAT-Geräten	84
		6.3.1	Allgemeine Hinweise zur Kennzeichnung	84
		6.3.2	Versionsidentifikation von EP/EPI/EPP/ER/ERI Boxen	85
		6.3.3	Beckhoff Identification Code (BIC)	86
		6.3.4	Elektronischer Zugriff auf den BIC (eBIC)	88
	6.4	Support	und Service	90

4

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, für jede Installation und Inbetriebnahme die zu dem betreffenden Zeitpunkt veröffentlichte Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiter entwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH. Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Erklärung der Hinweise

In der vorliegenden Dokumentation werden die folgenden Hinweise verwendet. Diese Hinweise sind aufmerksam zu lesen und unbedingt zu befolgen!

GEFAHR

Akute Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht unmittelbare Gefahr für Leben und Gesundheit von Personen!

⚠ WARNUNG

Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht Gefahr für Leben und Gesundheit von Personen!

↑ VORSICHT

Schädigung von Personen!

Wenn dieser Sicherheitshinweis nicht beachtet wird, können Personen geschädigt werden!

HINWEIS

Schädigung von Umwelt/Geräten oder Datenverlust

Wenn dieser Hinweis nicht beachtet wird, können Umweltschäden, Gerätebeschädigungen oder Datenverlust entstehen.

Tipp oder Fingerzeig

Dieses Symbol kennzeichnet Informationen, die zum besseren Verständnis beitragen.

1.3 Ausgabestände der Dokumentation

Version	Kommentar
1.4	EtherCAT P Status-LEDs aktualisiert
1.3	Technische Daten aktualisiert
	Thermoelement-Anschluss aktualisiert
	Inbetriebnahme der Vergleichsstellen-Kompensation hinzugefügt
	Abmessungen aktualisiert
	UL-Anforderungen aktualisiert
1.2	Terminologie-Update
	Struktur-Update
1.1	CoE-Parameter aktualisiert
1.0	Erste Veröffentlichung

Firm- und Hardware-Stände

Diese Dokumentation bezieht sich auf den zum Zeitpunkt ihrer Erstellung gültigen Firm- und Hardware-Stand.

Die Eigenschaften der Module werden stetig weiterentwickelt und verbessert. Module älteren Fertigungsstandes können nicht die gleichen Eigenschaften haben, wie Module neuen Standes. Bestehende Eigenschaften bleiben jedoch erhalten und werden nicht geändert, so dass ältere Module immer durch neue ersetzt werden können.

Dokumentation	Firmware	Hardware
1.3	06	04
1.2	06	04
1.1	06	04
1.0	06	04

Den Firm- und Hardware-Stand (Auslieferungszustand) können Sie der auf der Seite der EtherCAT Box aufgedruckten Batch-Nummer (D-Nummer) entnehmen.

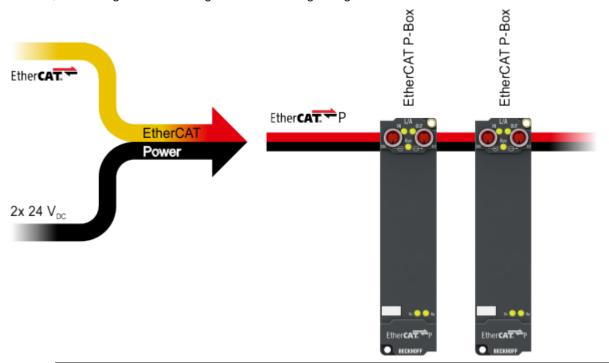
Syntax der Batch-Nummer (D-Nummer)

D: WW YY FF HH	Beispiel mit D-Nr. 29 10 02 01:
WW - Produktionswoche (Kalenderwoche)	29 - Produktionswoche 29
YY - Produktionsjahr	10 - Produktionsjahr 2010
FF - Firmware-Stand	02 - Firmware-Stand 02
HH - Hardware-Stand	01 - Hardware-Stand 01

Weitere Informationen zu diesem Thema: Versionsidentifikation von EtherCAT-Geräten [> 84].

2 Produktgruppe: EtherCAT P-Box-Module

EtherCAT P


EtherCAT P ergänzt die EtherCAT-Technologie um ein Verfahren, bei dem Kommunikation und Versorgungsspannungen auf einer gemeinsamen Leitung übertragen werden. Alle Eigenschaften von EtherCAT bleiben bei diesem Verfahren erhalten.

Es werden zwei Versorgungsspannungen pro EtherCAT P-Leitung übertragen. Die Versorgungsspannungen sind galvanisch voneinander getrennt und sind somit einzeln schaltbar. Die Nennspannung der Versorgungsspannungen ist $24~V_{DC}$.

EtherCAT P verwendet den gleichen Leitungs-Aufbau wie EtherCAT: eine 4-adrige Ethernet-Leitung mit M8-Steckverbindern. Die Steckverbinder sind mechanisch codiert, so dass ein Vertauschen von EtherCAT-Steckverbindern und EtherCAT P-Steckverbindern nicht möglich ist.

EtherCAT P-Box-Module

EtherCAT P-Box-Module sind EtherCAT P-Slaves in Schutzart IP67. Sie sind vorgesehen für den Betrieb in nassen, schmutzigen oder staubigen Industrie-Umgebungen.

EtherCAT Grundlagen

Eine detaillierte Beschreibung des EtherCAT-Systems finden Sie in der <u>EtherCAT System-Dokumentation</u>.

8 Version: 1.4 EPP3314-0002

TX+/GNDs

Rx+/GNDs

Compensation A Input +

| Ground | Input -| Shield

Steckerbelegung

Rx-/UP

3 Produktübersicht

3.1 Einführung

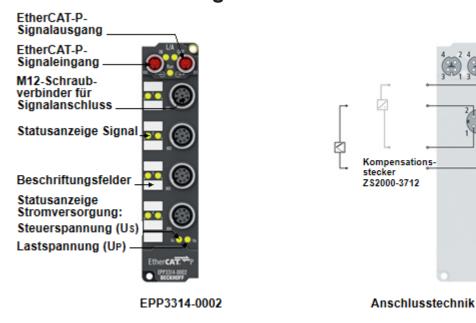


Abb. 1: EPP3314-0002

4-Kanal-Analog-Eingang Thermoelement

Die EtherCAT-P-Box EPP3314 mit analogen Eingängen erlaubt den direkten Anschluss von vier Thermoelementen. Die Schaltung der Baugruppe kann Thermoelementsensoren in 2-Leitertechnik betreiben. Die Linearisierung über den gesamten Temperaturbereich wird durch einen Mikroprozessor realisiert. Der Temperaturbereich ist frei wählbar. Die Error-LEDs zeigen Drahtbruch an. Die Kaltstellenkompensation erfolgt durch Temperaturmessung in den Anschlusssteckern. Somit können Standardverlängerungsleitungen angeschlossen werden. Mit der EPP3314 ist auch mV-Messung möglich.

Die Baugruppe verfügt über vielfältige Features, wobei die Defaultwerte so gewählt wurden, dass eine Konfiguration meist nicht erforderlich ist. Die Eingangsfilter und damit verbunden die Wandlungszeiten sind in weiten Bereichen einstellbar, mehrere Datenausgabeformate stehen zur Wahl. Die Skalierung der Eingänge kann bei Bedarf verändert werden, eine automatische Grenzwertüberwachung steht ebenfalls zur Verfügung. Parametriert wird über EtherCAT. Die Parameter werden auf der Baugruppe gespeichert. Für die Temperaturkompensation wird ein Pt1000-Element benötigt. Beckhoff bietet einen Stecker mit Temperaturkompensation an (ZS2000-3712).

Quick Links

<u>Technische Daten</u> [▶ 10] <u>Prozessabbild</u> [▶ 25] Signalanschluss [▶ 42]

3.2 Technische Daten

3.2.1 Allgemeine technische Daten

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT P	
Anschluss	2 x M8-Buchse, 4-polig, P-kodiert, rot

Versorgungsspannungen	
Anschluss	Siehe EtherCAT P-Anschluss
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)
U _s Summenstrom: I _{s,sum}	max. 3 A
Stromaufnahme aus U _s	100 mA
U _P Nennspannung	24 V _{DC} (-15 % / +20 %)
U _P Summenstrom: I _{P,sum}	max. 3 A
Stromaufnahme aus U _P	Keine. U _P wird nur weitergeleitet.

Thermoelement-Eingänge		
Anzahl	4	
Steckverbinder	4 x M12-Buchse	
Leitungslänge zum Thermoelement	max. 30 m	
Sensor-Typen	Thermoelemente	
	Sensoren mit Spannungs-Ausgang bis ±75 mV	
Potentialtrennung	Die Messkanäle haben ein gemeinsames, isoliertes Massepotential.	
Messbereiche	Thermoelemente: je nach <u>Thermoelement-Typ [▶ 11]</u> .	
	Spannungsmessung: ±30 mV, ±60 mV, ±75 mV	
Messunsicherheit	siehe Kapitel Messung Thermoelemente [▶ 13].	
Digitale Auflösung	16 Bit	
Wert eines LSB	Bei Thermoelementmessung einstellbar:	
	0,1 °C (Werkseinstellung)	
	• 0,01 °C	
	Bei Spannungsmessung:	
	• Messbereich 30 mV: 1 μV	
	• Messbereich 60 mV: 2 μV	
	• Messbereich 75 mV: 4 μV	
Filter	Digitales Filter. Filter-Frequenz einstellbar 5 Hz 30 kHz	
Wandlungszeit	ca. 2,5 s bis 20 ms, je nach Konfiguration und Filtereinstellung.	
	Default: ca. 250 ms	
Diagnose	Drahtbruch-Erkennung	
	Grenzwert-Überwachung	

Gehäusedaten	
Abmessungen B x H x T	30 mm x 126 mm x 26,5 mm (ohne Steckverbinder)
Gewicht	ca. 165 g
Einbaulage	beliebig
Material	PA6 (Polyamid)

Umgebungsbedingungen		
Umgebungstemperatur im Betrieb	-25 +60 °C	
	-25 +55 °C gemäß cULus	
Umgebungstemperatur bei Lagerung	-40 +85 °C	
Schwingungsfestigkeit, Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27	
	Zusätzliche Prüfungen [▶ 11]	
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4	
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)	

Zulassungen / Kennzeichnungen	
Zulassungen / Kennzeichnungen *)	CE, <u>cULus</u> [> 46]

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

Zusätzliche Prüfungen

Die Geräte sind folgenden zusätzlichen Prüfungen unterzogen worden:

Prüfung	Erläuterung
Vibration	10 Frequenzdurchläufe, in 3 Achsen
	5 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude
	60,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude
Schocken	1000 Schocks je Richtung, in 3 Achsen
	35 g, 11 ms

Übersicht geeigneter Thermoelemente

Die folgenden Thermoelement-Typen sind für die Temperaturmessung geeignet:

Typ (nach EN60584-1)	Element	Implementierter Temperatur- bereich	Farbcodierung (Mantel - Pluspol - Minuspol)
В	Pt30%Rh-Pt6Rh	200°C bis 1820°C	grau - grau -weiß
C *	W5%Re-W25%Re	0°C bis 2320°C	n.d.
E	NiCr-CuNi	-100°C bis 1000°C	violett - violett - weiß
J	Fe-CuNi	-100°C bis 1200°C	schwarz - schwarz - weiß
K	NiCr-Ni	-200°C bis 1372°C	grün - grün - weiß
L **	Fe-CuNi	0°C bis 900°C	blau - rot - blau
N	NiCrSi-NiSi	-100°C bis 1300°C	rosa - rosa - weiß
R	Pt13%Rh-Pt	-50°C bis 1767°C	orange - orange - weiß
S	Pt10%Rh-Pt	-50°C bis 1760°C	orange - orange - weiß
Т	Cu-CuNi	-200°C bis 400°C	braun - braun - weiß
U **	Cu-CuNi	0°C bis 600°C	braun - rot - braun

^{*}nicht genormt nach EN60584-1 **nach DIN 43710

Version: 1.4 EPP3314-0002 11

3.2.2 Messung ±30 mV...±75 mV

Spezifikation ±30 mV

Hinweis: dieser Messbereich ist kein eigener elektrischer Messbereich, sondern ein digitaler Ausschnitt des 75mV-Messbereichs

Messung Modus		±30 mV
Messbereich, nominell		-30+30 mV
Messbereich, Endwert (MBE)		30 mV
PDO Auflösung		1 μV / digit
Grundgenauigkeit: Messabweichung, mit Mittelwertbildung	@ 23 °C Umgebungstem- peratur	$< \pm 0.09 \%_{MBE}$ typ. $\approx < \pm 0.027$ mV
	@ 55 °C Umgebungstem- peratur	$< \pm 0.12 \%_{MBE}$ typ. $\approx < \pm 0.036$ mV
Offset/Nullpunkt-Abweichung (bei 23 °C)	F _{Offset}	< ±20 μV
Gain/Scale/Verstärkungs-Abweichung (bei 23 °C)	F _{Gain}	< 600 ppm
Temperaturkoeffizient	Tk _{Gain}	< 0,75 µV/K
	Tk _{Offset}	< 25 ppm/K

Spezifikation ±60 mV

Hinweis: dieser Messbereich ist kein eigener elektrischer Messbereich sondern ein digitaler Ausschnitt des 75mV-Messbereichs

Messung Modus		±60 mV
Messbereich, nominell		-60+60 mV
Messbereich, Endwert (MBE)		60 mV
PDO Auflösung		2 μV / digit
Grundgenauigkeit: Messabweichung, mit Mittelwertbildung	@ 23 °C Umgebungstem- peratur	< ±0,07 % _{MBE} typ. ≈ < ± 0,041 mV
	@ 55 °C Umgebungstem- peratur	< ±0,08 % _{MBE} typ. ≈ < ± 0,048 mV
Offset/Nullpunkt-Abweichung (bei 23 °C)	F _{Offset}	< ±20 μV
Gain/Scale/Verstärkungs-Abweichung (bei 23 °C)	F _{Gain}	< 600 ppm
Temperaturkoeffizient	Tk _{Gain}	< 0,75 μV/K
	Tk _{Offset}	< 25 ppm/K

Spezifikation ±75 mV

Messung Modus		±75 mV
Messbereich, nominell		-75+75 mV
Messbereich, Endwert (MBE)		75 mV
PDO Auflösung		4 μV / digit
Grundgenauigkeit: Messabweichung, mit Mittelwertbildung	@ 23 °C Umgebungstem- peratur	< ±0,07 % _{MBE} typ. ≈ < ± 0,049 mV
	@ 55 °C Umgebungstem- peratur	$< \pm 0.07 \%_{MBE}$ typ. $\approx < \pm 0.055$ mV
Offset/Nullpunkt-Abweichung (bei 23 °C)	F _{Offset}	< ±20 μV
Gain/Scale/Verstärkungs-Abweichung (bei 23 °C)	F _{Gain}	< 600 ppm
Temperaturkoeffizient	Tk _{Gain}	< 0,75 µV/K
	Tk _{Offset}	< 25 ppm/K

3.2.3 Messung Thermoelemente

Im Messbereich eines vorgegebenen Thermoelementtyps wird eine gemessene Spannung intern nach eingestellter Transformation in eine Temperatur umgerechnet. Da der Kanal intern eine Spannung misst, ist der entsprechende Messfehler im Spannungsmessbereich zugrunde zu legen.

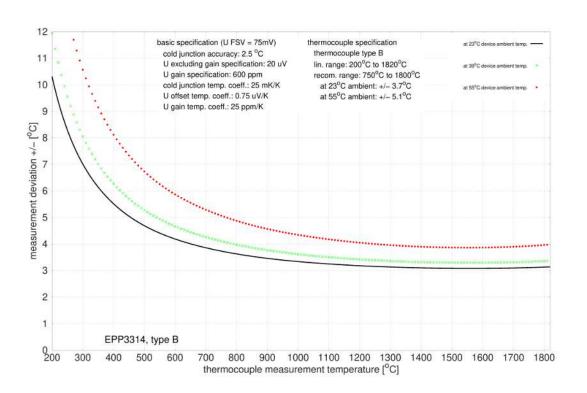
Die nachfolgenden Tabellen mit der Spezifikation der Thermoelementmessung gelten nur, wenn Sie zur Vergleichsstellenkompensation die Steckverbinder ZS2000-3712 verwenden. Siehe Kapitel Zubehör [> 83].

Die EPP3314-0002 kann auch bei Bedarf mit externer Kaltstelle verwendet werden. Die Unsicherheiten müssen dann für die externe Kaltstelle anwendungsseitig ermittelt werden. Der Temperaturwert der externen Kaltstelle muss der EPP3314-0002 dann über die Prozessdaten zur eigenen Verrechnung mitgeteilt werden. Die Auswirkung auf die Messung der Thermoelemente ist dann anlagenseitig zu berechnen.

Die hier angegebenen Spezifikationen der internen Kaltstelle und der Messbereiche gelten nur bei Einhaltung folgender Zeiten zur thermischen Stabilisierung bei konstanter Umgebungstemperatur:

- · nach dem Einschalten: 60 min
- nach Änderung von Verdrahtung/Steckern: 15 min

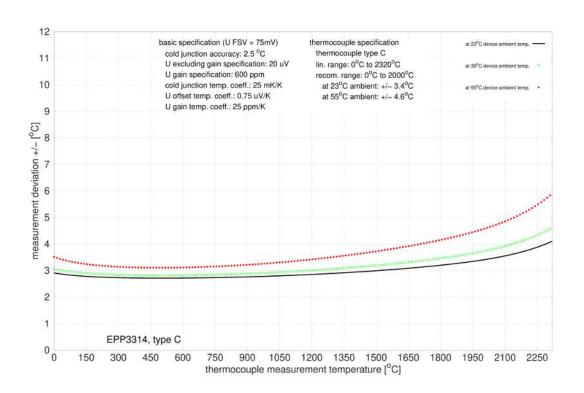
Spezifikation der internen Kaltstellenmessung


Messung Modus		Kaltstelle
Grundgenauigkeit: Messabweichung bei	23°C, mit Mittelwertbildung	< ±2,5 °C
Temperaturkoeffizient TK		< 25 mK/K

Spezifikation Thermoelement Typ B

Temperaturmessung Thermoelement		Тур В
Verwendeter elektr. Messbereich		± 75 mV
Messbereich, technisch nu	ıtzbar	+200 °C ≈ 0,178 mV +1820 °C ≈ 13,820 mV
Messbereich, Endwert (ME	BE)	+1820 °C
Messbereich, empfohlen		+750 °C +1800 °C
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ B: ca. 0,05 °C
Unsicherheit im empfoh- lenen Messbereich, mit	@ 23 °C Umgebungstem- peratur	$\pm 3.7 \text{ K} \approx \pm 0.20 \%_{\text{MBE}}$
Mittelwertbildung	@ 55 °C Umgebungstem- peratur	\pm 5,1 K \approx \pm 0,28 % _{MBE}
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klemmenumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von der Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleiten. Zur besseren Näherung ist auch informativ die Messunsicherheit bei T _{amb} = 39 °C als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauf zu verdeutlichen.

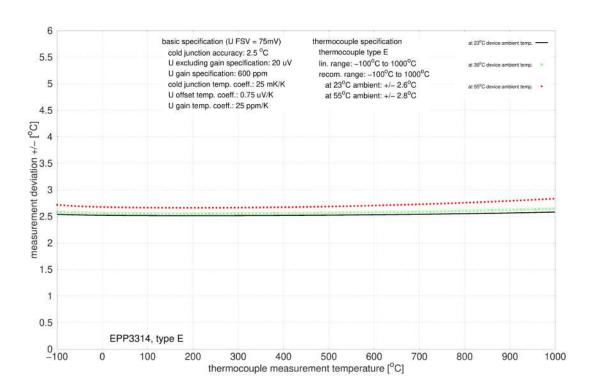
Messunsicherheit für Thermoelement Typ B:



Spezifikation Thermoelement Typ C

Temperaturmessung Thermoelement		Тур С
Verwendeter elektr. Messbereich		± 75 mV
Messbereich, technisch nu	ıtzbar	0 °C ≈ 0 mV +2320 °C ≈ 37,107 mV
Messbereich, Endwert (ME	BE)	+2320 °C
Messbereich, empfohlen		0 °C +2000 °C
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ C: ca. 0,07 °C
Unsicherheit im empfoh- lenen Messbereich, mit Mittelwertbildung	@ 23 °C Umgebungstem- peratur	$\pm 3.4 \text{ K} \approx \pm 0.15 \%_{\text{MBE}}$
	@ 55 °C Umgebungstem- peratur	$\pm 4.6 \text{ K} \approx \pm 0.20 \%_{\text{MBE}}$
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klemmenumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von der Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleiten. Zur besseren Näherung ist auch informativ die Messunsicherheit bei T _{amb} = 39 °C als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauf zu verdeutlichen.

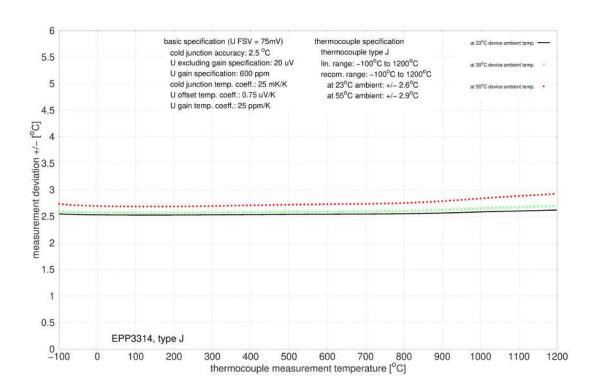
Messunsicherheit für Thermoelement Typ C:



Spezifikation Thermoelement Typ E

Temperaturmessung Thermoelement		Тур Е
Verwendeter elektr. Messbereich		± 75 mV
Messbereich, technisch nu	ıtzbar	-100 °C ≈ -5,237 mV +1000 °C ≈ 76,372 mV
Messbereich, Endwert (ME	BE)	+1000 °C
Messbereich, empfohlen		-100 °C +1000 °C
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ E: ca. 0,03 °C
Unsicherheit im empfoh- lenen Messbereich, mit	@ 23 °C Umgebungstem- peratur	± 2,6 K ≈ ± 0,26 % _{MBE}
Mittelwertbildung	@ 55 °C Umgebungstem- peratur	$\pm 2.8 \text{ K} \approx \pm 0.28 \%_{\text{MBE}}$
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klemmenumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von der Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleiten. Zur besseren Näherung ist auch informativ die Messunsicherheit bei T _{amb} = 39 °C als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauf zu verdeutlichen.

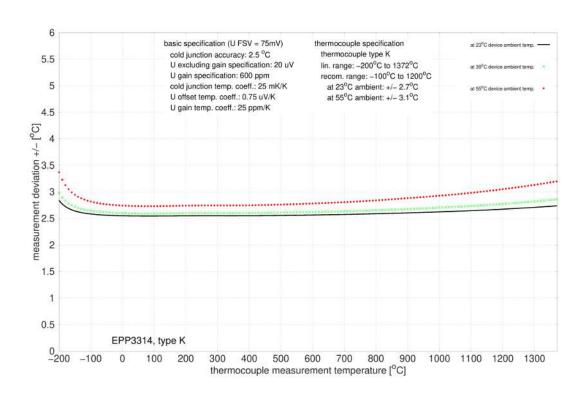
Messunsicherheit für Thermoelement Typ E:



Spezifikation Thermoelement Typ J

Temperaturmessung Thermoelement		Тур Ј
Verwendeter elektr. Messbereich		± 75 mV
Messbereich, technisch nu	ıtzbar	-100 °C ≈ -4,632 mV +1200 °C ≈ 69,553 mV
Messbereich, Endwert (ME	BE)	+1200 °C
Messbereich, empfohlen		-100 °C +1200 °C
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ J: ca. 0,04 °C
Unsicherheit im empfoh- lenen Messbereich, mit Mittelwertbildung	@ 23 °C Umgebungstem- peratur	$\pm 2.6 \text{ K} \approx \pm 0.22 \%_{\text{MBE}}$
	@ 55 °C Umgebungstem- peratur	$\pm 2.9 \text{ K} \approx \pm 0.24 \%_{\text{MBE}}$
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klem- menumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von der Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleiten. Zur besseren Näherung ist auch informativ die Messunsicherheit bei Tamb= 39 °C als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauf zu verdeutlichen.

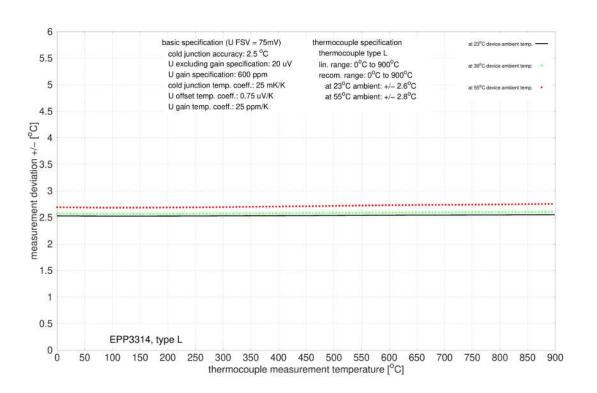
Messunsicherheit für Thermoelement Typ J:



Spezifikation Thermoelement Typ K

Temperaturmessung Thermoelement		Тур К
Verwendeter elektr. Messbereich		± 75 mV
Messbereich, technisch nu	ıtzbar	-200 °C ≈ -5,891 mV +1372 °C ≈ 54,886 mV
Messbereich, Endwert (ME	BE)	+1372 °C
Messbereich, empfohlen		-100 °C +1200 °C
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ K: ca. 0,04 °C
Unsicherheit im empfoh- lenen Messbereich, mit	@ 23 °C Umgebungstem- peratur	± 2,7 K ≈ ± 0,20 % _{MBE}
Mittelwertbildung	@ 55 °C Umgebungstem- peratur	± 3,1 K ≈ ± 0,23 % _{MBE}
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klem- menumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von der Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleiten. Zur besseren Näherung ist auch informativ die Messunsicherheit bei T _{amb} = 39 °C als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauf zu verdeutlichen.

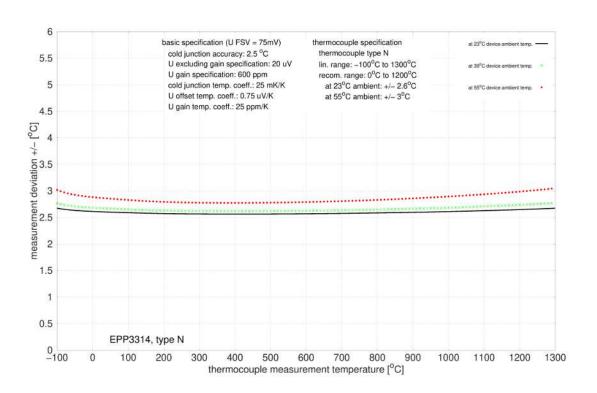
Messunsicherheit für Thermoelement Typ K:



Spezifikation Thermoelement Typ L

Temperaturmessung Thermoelement		Typ L
Verwendeter elektr. Messbereich		± 75 mV
Messbereich, technisch nu	ıtzbar	0 °C ≈ 0 mV +900 °C ≈ 52,430 mV
Messbereich, Endwert (ME	BE)	+900 °C
Messbereich, empfohlen		0 °C +900 °C
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ L: ca. 0,03 °C
Unsicherheit im empfoh- lenen Messbereich, mit	@ 23 °C Umgebungstem- peratur	$\pm 2.6 \text{ K} \approx \pm 0.29 \%_{\text{MBE}}$
Mittelwertbildung	@ 55 °C Umgebungstem- peratur	$\pm 2.8 \text{ K} \approx \pm 0.31 \%_{\text{MBE}}$
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klem- menumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von der Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleiten. Zur besseren Näherung ist auch informativ die Messunsicherheit bei Tamb= 39 °C als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauf zu verdeutlichen.

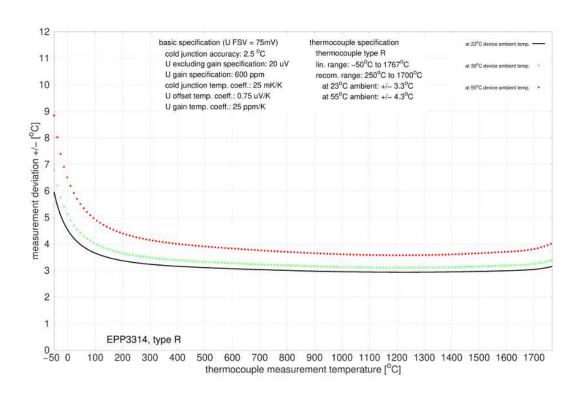
Messunsicherheit für Thermoelement Typ L:



Spezifikation Thermoelement Typ N

Temperaturmessung Thermoelement		Typ N		
Verwendeter elektr. Messbereich		± 75 mV		
Messbereich, technisch nu	ıtzbar	-100 °C ≈ -2,406 mV +1300 °C ≈ 47,513 mV		
Messbereich, Endwert (ME	BE)	+1300 °C		
Messbereich, empfohlen		0 °C +1200 °C		
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung		
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ N: ca. 0,04 °C		
Unsicherheit im empfoh- lenen Messbereich, mit	@ 23 °C Umgebungstem- peratur	$\pm 2.6 \text{ K} \approx \pm 0.20 \%_{\text{MBE}}$		
Mittelwertbildung	@ 55 °C Umgebungstem- peratur	$\pm 3.0 \text{ K} \approx \pm 0.23 \%_{\text{MBE}}$		
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klemmenumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleit Zur besseren Näherung ist auch informativ die Messunsicherheit bei Tamb= 3 als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauverdeutlichen.		

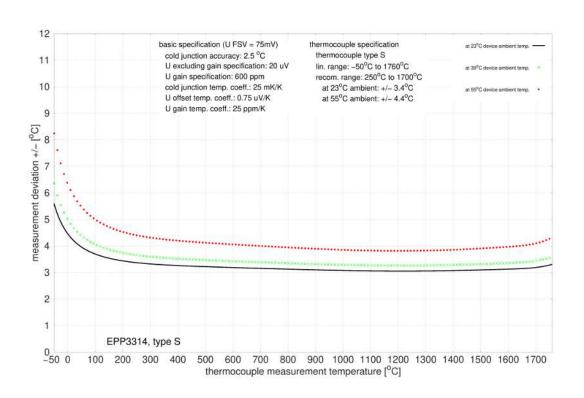
Messunsicherheit für Thermoelement Typ N:



Spezifikation Thermoelement Typ R

Temperaturmessung Thermoelement		Typ R		
Verwendeter elektr. Messbereich		± 75 mV		
Messbereich, technisch nu	utzbar	-50 °C ≈ -0,226 mV +1767 °C ≈ 21,089 mV		
Messbereich, Endwert (MI	BE)	+1767 °C		
Messbereich, empfohlen		250 °C +1700 °C		
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung		
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ R: ca. 0,05 °C		
Unsicherheit im empfoh- lenen Messbereich, mit	@ 23 °C Umgebungstem- peratur	$\pm 3.3 \text{ K} \approx \pm 0.19 \%_{\text{MBE}}$		
Mittelwertbildung	@ 55 °C Umgebungstem- peratur	$\pm 4.3 \text{ K} \approx \pm 0.24 \%_{\text{MBE}}$		
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klemmenumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von d Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleiter Zur besseren Näherung ist auch informativ die Messunsicherheit bei T _{amb} = 39 als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauf verdeutlichen.		

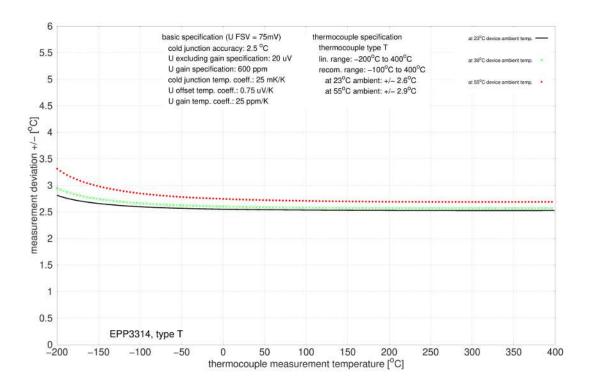
Messunsicherheit für Thermoelement Typ R:



Spezifikation Thermoelement Typ S

Temperaturmessung Thermoelement		Typ S		
Verwendeter elektr. Messbereich		± 75 mV		
Messbereich, technisch nu	ıtzbar	-50 °C ≈ -0,236 mV +1760 °C ≈ 17,947 mV		
Messbereich, Endwert (ME	BE)	+1760 °C		
Messbereich, empfohlen		250 °C +1700 °C		
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung		
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ S: ca. 0,05 °C		
Unsicherheit im empfoh- lenen Messbereich, mit	@ 23 °C Umgebungstem- peratur	$\pm 3.4 \text{ K} \approx \pm 0.19 \%_{\text{MBE}}$		
Mittelwertbildung	@ 55 °C Umgebungstem- peratur	± 4,4 K ≈ ± 0,25 % _{MBE}		
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klemmenumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von de Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleite Zur besseren Näherung ist auch informativ die Messunsicherheit bei Tamb = 3 als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauf verdeutlichen.		

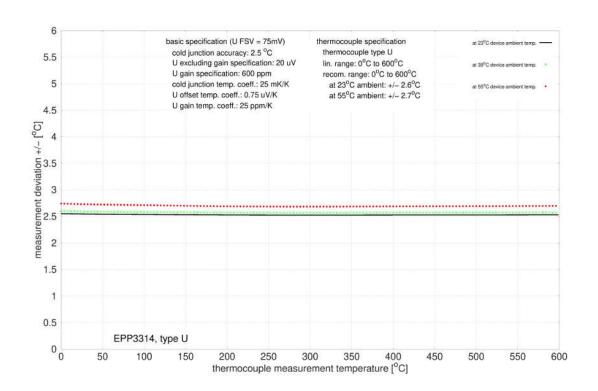
Messunsicherheit für Thermoelement Typ S:



Spezifikation Thermoelement Typ T

Temperaturmessung Thermoelement		Тур Т		
Verwendeter elektr. Messbereich		± 75 mV		
Messbereich, technisch nutzbar		-200 °C ≈ -5,603 mV +400 °C ≈ 20,872 mV		
Messbereich, Endwert (MBE)		+400 °C		
Messbereich, empfohlen		-100 °C +400 °C		
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung		
Unsicherheit im empfoh- lenen Messbereich, mit Mittelwertbildung	@ 23 °C Umgebungstem- peratur	$\pm 2,6 \text{ K} \approx \pm 0,65 \%_{\text{MBE}}$		
	@ 55 °C Umgebungstem- peratur	$\pm 2.9 \text{ K} \approx \pm 0.73 \%_{\text{MBE}}$		
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klemmenumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von der Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleiten. Zur besseren Näherung ist auch informativ die Messunsicherheit bei T _{amb} = 39 °C als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlauf zu verdeutlichen.		

Messunsicherheit für Thermoelement Typ T:



Spezifikation Thermoelement Typ U

Temperaturmessung Thermoelement		Typ U		
Verwendeter elektr. Messbereich		± 75 mV		
Messbereich, technisch nu	ıtzbar	0 °C ≈ 0 mV +600 °C ≈ 33,600 mV		
Messbereich, Endwert (ME	BE)	+600 °C		
Messbereich, empfohlen		0 °C +600 °C		
PDO LSB		0,1 / 0,01 °C/digit, je nach PDO Einstellung		
		Hinweis: intern wird mit 16 Bit auf den Messbereichsendwert gerechnet, je nach eingestelltem Thermoelement kommt es also bei "Auflösung 0,01 °C" zu Wertesprünge >0,01 °C; Typ U: ca. 0,02 °C		
Unsicherheit im empfoh- lenen Messbereich, mit	@ 23 °C Umgebungstem- peratur	$\pm 2.6 \text{ K} \approx \pm 0.43 \%_{\text{MBE}}$		
Mittelwertbildung	@ 55 °C Umgebungstem- peratur	$\pm 2.7 \text{ K} \approx \pm 0.45 \%_{\text{MBE}}$		
Temperaturkoeffizient (Änderung des Messwerts bei Änderung der Klemmenumgebungstemperatur)		Da der Wert wie im u.a. Spezifikations-Plot zu sehen stark abhängig ist von Sensortemperatur, ist er grundsätzlich aus dem Spezifikations-Plot abzuleite Zur besseren Näherung ist auch informativ die Messunsicherheit bei T _{amb} = 3 als Mitte zwischen 23 °C und 55 °C dargestellt, um den nichtlinearen Verlau verdeutlichen.		

Messunsicherheit für Thermoelement Typ U:

3.3 Prozessabbild

- Box 1 (EPP3314-0002)
 - TC Inputs Channel 1
 - TC Inputs Channel 2
 - TC Inputs Channel 3
 - TC Inputs Channel 4
 - WcState
 - 🕨 📮 InfoData

Abb. 2: Prozessabbild

TC Inputs Channel 1

- TC Inputs Channel 1
 - 🔺 🏂 Status
 - Underrange
 - Overrange
 - Limit 1
 - Limit 2
 - Error
 - TxPDO State
 - TxPDO Toggle
 - Value
- 🕨 📒 TC Inputs Channel 2
- TC Inputs Channel 3
- TC Inputs Channel 4
- WcState
- 🕨 📮 InfoData

- Underrange Messbereich unterschritten
- Verrange

Messbereich überschritten

- 🔁 Limit 1
 - Status-Variable der Grenzwert-Überwachung
 - 0: Die Grenzwert-Überwachung ist deaktiviert
 - 1: Der Messwert ist kleiner als der Grenzwert
 - 2: Der Messwert ist größer als der Grenzwert
 - 3: Der Messwert ist genauso groß wie der Grenzwert
- Limit 2

Status-Variable der Grenzwert-Überwachung

- Frror
 - Der aktuelle Messwert "Value" ist ungültig. Mögliche Gründe: Leitungsbruch, Underrange, Overrange
- TxPDO State

Wenn dieses Bit TRUE ist, ist der aktuelle Messwert "Value" ungültig.

• TxPDO Toggle

Die Box invertiert dieses Bit jedes Mal, wenn sie den Messwert "Value" in den Prozessdaten aktualisiert.

Dies lässt einen Rückschluss auf die aktuell benötigte Wandlungszeit zu.

Value

Der aktuelle Messwert. Einheit: 1/10 °C.

TC Inputs Channel 2 bis 4

Die Prozessdatenobjekte von Kanal 2...4 sind genauso aufgebaut wie die von Kanal 1.

3.4 Lieferumfang

Vergewissern Sie sich, dass folgende Komponenten im Lieferumfang enthalten sind:

- 1x EtherCAT-P-Box EPP3314-0002
- 2x Schutzkappe für EtherCAT P-Buchse, M8, rot (vormontiert)
- 10x Beschriftungsschild unbedruckt (1 Streifen à 10 Stück)

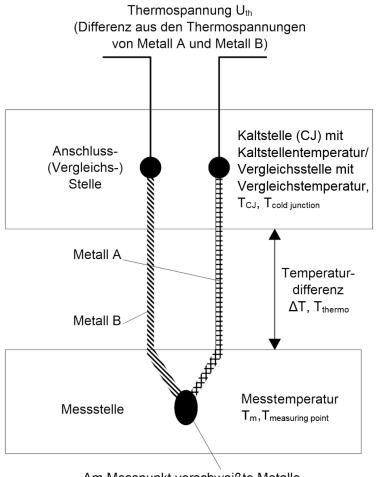
Vormontierte Schutzkappen gewährleisten keinen IP67-Schutz

Stellen Sie den korrekten Sitz der Schutzkappen sicher, um die Schutzart IP67 zu gewährleisten.

3.5 Grundlagen der Thermoelement-Technologie

Allgemeine Ersatzbezeichnung "Gerät"

Dieses Kapitel findet in Dokumentationen verschiedener Beckhoff-Produkte Verwendung. Deshalb ist es allgemeingültig geschrieben und verwendet allgemein den Begriff "Gerät" für die verschiedenen Familienbezeichnungen wie Klemme (Serien EL/ELM/KL/ES…), Box (Serien IP/EP/EPP…), Modul (Serien EJ/FM…).


Thermoelemente sind Temperatursensoren. Die Anwendungsbereiche von Thermoelementen sind aufgrund der geringen Kosten, der schnellen Erfassung von Temperaturunterschieden, weiten Temperaturbereichen, hohen Temperaturgrenzen und ihrer Verfügbarkeit in vielen unterschiedlichen Typen und Größen weit verbreitet.

Messprinzip und Aufbau

Die Temperaturmessung mit einem Thermoelement basiert auf dem Seebeck-Effekt, der in den 1820er Jahren von dem deutschen Physiker Thomas Johann Seebeck entdeckt wurde. Dieser Seebeck-Effekt, auch bezeichnet als thermoelektrischer Effekt, beschreibt eine Ladungsverschiebung in einem leitenden Material durch ein Temperaturgefälle entlang des Leiters. Die Größe der Ladungsverschiebung ist dabei abhängig von der Größe des Temperaturunterschieds und dem betrachteten Leitermaterial.

Bei Thermoelementen wird diese Ladungsverschiebung zur Erzeugung einer Spannung genutzt. Zwei unterschiedliche Leitermaterialien werden an einem Ende miteinander verbunden. Das ist die Messstelle, an der die Temperatur T_m ermittelt werden soll. An dem anderen Ende sind die Leiter nicht verbunden. Dieses offene Ende, an dem sich der Übergang auf die Messelektronik befindet, ist die Vergleichsstelle mit Vergleichstemperatur oder auch Kaltstelle mit Kaltstellentemperatur T_{CJ} . Zwischen der Vergleichsstelle und der Messstelle liegt eine Temperaturdifferenz ΔT (T_{thermo}) vor, die über die Spannung zwischen den Leitern am offenen Ende gemessen werden kann (Thermospannung U_{th}). Die Spannung ist abhängig von den verwendeten Leitermaterialien und der Temperaturdifferenz, sie liegt im Bereich einiger mV.

Am Messpunkt verschweißte Metalle

Abb. 3: Aufbau und Prinzip eines Thermoelements

Würde für ein Thermoelement nur ein Material genutzt werden, wäre die Ladungsverschiebung in beiden Leitern identisch, sodass keine Potentialdifferenz zwischen den beiden Leitern am offenen Ende messbar wäre.

Bei der Temperaturmessung mit Thermoelementen handelt es sich also eigentlich um eine Spannungsmessung, mit der dann aus der bekannten Kennlinie eine Temperatur ermittelt werden kann. Außerdem ist das Messverfahren nicht absolut, sondern differentiell, da keine absolute Temperatur mit dem Bezugspunkt 0 °C ermittelt wird, sondern die Temperaturdifferenz zwischen der Mess- und der Vergleichsstelle.

Zur Auswertung von Thermoelementen wird eine Messelektronik benötigt, die kleine Spannungen im mV-Bereich mit einer ausreichend hohen Auflösung und Genauigkeit auswerten kann. Thermoelemente sind aktive Sensoren, was bedeutet, dass zur Messung der Temperatur keine Versorgung der Sensorik nötig ist, da die Spannung vom Thermoelement selber erzeugt wird.

Arten von Thermoelementen

Es gibt verschiedene Arten von Thermoelementen, die aus unterschiedlichen Kombinationen von Leitermaterialien bestehen. Jede Material-Kombination hat spezielle Eigenschaften und eignet sich für bestimmte Anwendungsbereiche. Die verschiedenen Arten bzw. Thermoelement-Typen werden mit Buchstaben benannt.

Aufgrund der unterschiedlichen Materialpaarung haben die verschiedenen Thermoelement-Typen unterschiedliche Kennwerte. Sie unterscheiden sich in der Temperaturgrenzen und der Spannungs-Temperatur-Kennlinie. Um die Thermoelement-Typen unterscheiden zu können, sind die Farbcodierungen für den Mantel, den Pluspol und den Minuspol in verschiedenen Normen festgelegt.

Die folgende Tabelle zeigt gängige Thermoelement-Typen mit Angaben zu den verwendeten Materialien, den definierten Temperaturbereichen und der Farbcodierung.

Typ (nach EN60584-1)	Element	nutzbarer Messbereich		Mittlerer Temperaturkoeffizient (Messbereich, empfohlen)	Spannung bei Min	Spannung bei Max	Farbcodierung (Mantel - Pluspol - Minuspol) nach IEC
		Min	Max				60584-3
A-1	W5%Re - W20%Re	0 °C	2500 °C	14.7 μV/K	0 mV	33.64 mV	rot - weiß - rot
A-2	W5%Re - W20%Re	0 °C	1800 °C	15.7 μV/K	0 mV	27.232 mV	rot - weiß - rot
A-3	W5%Re - W20%Re	0 °C	1800 °C	15.4 μV/K	0 mV	26.773 mV	rot - weiß - rot
Au/Pt	Au-Pt	0 °C	1000 °C	39.0 μV/K	0 mV	17.085 mV	nicht genormt
В	Pt30%Rh- Pt6Rh	200 °C	1820 °C	10.3 μV/K	0.178 mV	13.82 mV	grau - grau -weiß
C 2)	W5%Re- W26%Re	0 °C	2320 °C	16.8 µV/K	0 mV	37.107 mV	nicht genormt
D	W3%Re- W25%Re	0 °C	2490 °C	174.0 µV/K	0 mV	40.792 mV	nicht genormt
E	NiCr-CuNi	-270 °C	1000 °C	74.2 µV/K	-9.835 mV	76.373 mV	violett - violett - weiß
G	W-W26%Re	1000 °C	2300 °C	186.9 µV/K	14.5 mV	38.8 mV	nicht genormt
J	Fe-CuNi	-210 °C	1200 °C	57.1 μV/K	-8.095 mV	69.553 mV	schwarz - schwarz - weiß
K	NiCr-Ni	-270 °C	1372 °C	40.3 μV/K	-6.458 mV	54.886 mV	grün - grün - weiß
L 3)	Fe-CuNi	-50 °C	900 °C	59.0 μV/K	-2.51 mV	53.14 mV	blau - rot - blau
N	NiCrSi-NiSi	-270 °C	1300 °C	36.5 µV/K	-4.345 mV	47.513 mV	rosa - rosa - weiß
Р	Pd31%Pt14 %Au- Au35%Pd	0°C	1395 °C	40.2 μV/K	0 mV	55.257 mV	nicht genormt
Pt/Pd	Pt-Pd	0 °C	1500 °C	38.3 μV/K	0 mV	22.932 mV	nicht genormt
R	Pt13%Rh-Pt	-50 °C	1768 °C	12.6 µV/K	-0.226 mV	21.101 mV	orange - orange - weiß
S	Pt10%Rh-Pt	-50 °C	1768 °C	11.1 µV/K	-0.236 mV	18.693 mV	orange - orange - weiß
Т	Cu-CuNi	-270 °C	400 °C	48.5 μV/K	-6.258 mV	20.872 mV	braun - braun - weiß
U 3)	Cu-CuNi	-50 °C	600 °C	57.2 μV/K	-1.85 mV	34.31 mV	braun - rot - braun

¹) Der angegebene Messbereich bezieht sich auf den maximal möglichen Messbereich des angegebenen Thermoelement-Typs. Der technisch sinnvoll nutzbare Messbereich mit den Thermoelement-Messgeräten kann eingeschränkt sein. Die Angabe zum möglichen Messbereich der Thermoelement-Messgeräte sind den technischen Daten in der Dokumentation zu entnehmen.

Ausgewählt werden muss das Thermoelement nach den Einsatzbedingungen. Dabei muss also nicht nur auf die Unsicherheit geachtet werden, sondern auch auf die anderen Eigenschaften der verschiedenen Thermoelement-Typen. Bei einer Anwendung mit geringen Temperaturschwankungen ist es von Vorteil, einen Thermoelement-Typ mit einer hohen Thermospannung pro Temperaturänderung zu wählen. In einem Anwendungsfall, wo die zu messende Temperatur sehr hoch ist, ist es wichtig, die maximale Einsatztemperatur zu beachten.

²⁾ nicht genormt nach EN60584-1

³⁾ nach DIN 43710

Kennlinien von Thermoelementen

Zur Ermittlung der Temperaturdifferenz ΔT zu einer gemessenen Thermospannung gibt es typenspezifische Referenztabellen. Eine einfache Umrechnung der Spannung in eine Temperatur mit einem Temperaturkoeffizienten, wie bei Widerstandsthermometern oft näherungsweise üblich, ist nicht möglich, da das Verhältnis von Spannung und Temperatur deutlich nichtlinear über den gesamten Messbereich ist. Durch den sich ändernden Temperaturkoeffizienten ergibt sich eine nichtlineare Spannungs-Temperatur-Kennlinie. Diese Kennlinie ist wiederum abhängig vom Thermoelement-Typ, sodass sich für jeden Typ eine eigene, nichtlineare Spannungs-Temperatur-Kennlinie ergibt. Beispielhaft sind die Kennlinien für typische Thermoelement-Typen in der folgenden Abbildung "Spannungs-Temperatur-Kennlinien…" dargestellt. Die beschriebene Nichtlinearität ist vor allem im Temperaturbereich unter 0 °C deutlich zu erkennen.

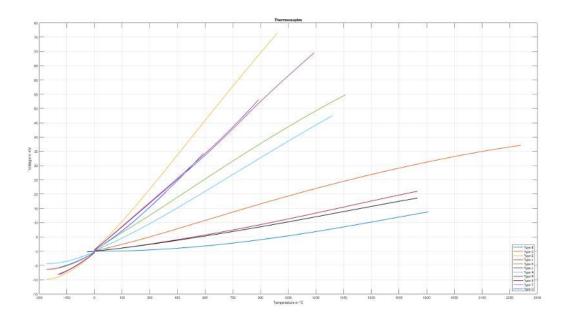


Abb. 4: Spannungs-Temperatur-Kennlinien verschiedener Thermoelement-Typen

Thermoelemente unterliegen im Anwendungsbetrieb unumgänglichen und irreversiblen Veränderungen, wodurch es mit der Zeit zu immer größer werdenden Messunsicherheiten kommt. Oder ganz deutlich: Die Messung wird mit der Zeit immer falscher. Diese Änderungen werden auch als Alterung bezeichnet und sind abhängig von verschiedenen Einflussfaktoren. Beispiele für diese Einflüsse sind mechanische und chemische Beanspruchungen der Thermoelemente. Bei mechanischen Beanspruchungen handelt es sich um Verformungen der Leiter, wodurch die Kristallstruktur der Metalle verändert wird. Dies führt zu fehlerhaften Thermospannungen. Bei chemischen Beanspruchungen handelt es sich ebenfalls um Veränderungen in der Kristallstruktur der Metalle oder Oxidation, wodurch sich die thermischen Eigenschaften der Leiter verändern, sodass es zu einer Kennlinienveränderung kommt. Dieser Einfluss kann durch den Einbau in gasdichten Schutzrohren gemindert werden.

Steckbare Verbindungen

Zum Anschluss von Thermoelementen an Messgeräte und Auswertelektronik oder zur Verbindung eines Thermoelements mit Thermo- oder Ausgleichsleitungen kann mit offenen Drahtenden oder geeigneten Thermoelement-Steckverbindern gearbeitet werden.

Idealerweise sind die Kontakte eines solchen Thermoelement-Steckverbinders aus dem Material des jeweiligen Thermoelements ausgeführt. Dadurch ergibt sich ein nahezu thermospannungsfreier Übergang an den Verbindungsstellen. Die Stecker haben i.d.R. festgelegte (und nach IEC oder ANSI genormte) Gehäusefarben je nach Typ, z.B. Typ K grün. Durch eine Kennzeichnung auf dem Gehäuse und die unterschiedliche Form der Kontakte ist eine Verwechselung der Polarität schwer möglich.

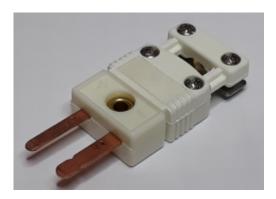


Abb. 5: Beispiel eines Thermoelement-Steckverbinders; es gibt mehrere übliche Größen: Standard, Mini oder Micro.

Eine Besonderheit ist der weiße Steckverbinder, der mit normalen Kupferkontakten ausgeführt ist, quasi wie ein einfacher Nicht-Thermoelement-Stecker. Dadurch ist er für alle Thermoelement-Typen universell einsetzbar, wenn auch mit dem Nachteil, dass er dann genau keinen thermospannungsfreien Übergang schafft. Weitaus häufiger als der weiße Stecker ist die weiße Buchse "universal" am Messgerät. Dadurch können alle Thermoelement-Stecker in das Gerät gesteckt werden. Im Messgerät muss dann die Kaltstellentemperatur (siehe Abschnitt "Messprinzip und Aufbau" [> 27]) an diesem Steckerübergang ermittelt werden.

Verlängerungen und Anschluss von Thermoelementen

In einigen Fällen ist es sinnvoll, das Thermoelement zu verlängern und die Vergleichsstelle so an einen ausgewählten Ort zu verlegen, da dort beispielsweise die Temperatur konstant gehalten oder mit einfachen Mitteln gemessen werden kann. Dazu muss das Thermoelement verlängert werden. Dies kann mit einer Thermo- oder Ausgleichsleitung geschehen. Thermoleitungen sind aus demselben Material gefertigt wie das Thermoelement selbst. Ausgleichsleitungen hingegen sind meistens aus günstigeren Werkstoffen mit den Gleichen thermoelektrischen Eigenschaften hergestellt. Beide Arten sind somit für die Verlängerung eines Thermoelements zu einer entfernten Kaltstelle geeignet. Die Drähte für Thermo- und Ausgleichsleitungen sind in der DIN 43713 genormt.

Bei Ausgleichsleitungen muss darauf geachtet werden, dass das verwendete Material nur ähnliche thermoelektrischen Eigenschaften besitzt und nicht zwangsläufig die Gleichen. Die thermischen Eigenschaften gelten nur in einem eng eingeschränkten Temperaturbereich. Am Übergang vom Thermoelement auf die Ausgleichsleitung ergibt sich dann ein weiteres Thermoelement. Daher ergeben sich kleine fehlerhafte Thermospannungen, die das Messergebnis beeinflussen. Werden die Ausgleichsleitungen außerhalb des spezifizierten Temperaturbereichs verwendet, wird die Genauigkeit der Temperaturmessung weiter beeinflusst und so das Messergebnis verschlechtert.

Sowohl für Thermo-, als auch für Ausgleichsleitungen gibt es zwei Genauigkeitsklassen, die die Grenzabweichungen angeben. Diese sind in der DIN 43722 festgelegt. Bei der Auswahl der Thermoelementverlängerung sollte die dadurch entstehende Unsicherheit betrachtet und evaluiert werden.

Sensorstrecke

Eine Veränderung des Sensorkreises durch zusätzliche Elemente wie z. B. Umschalter oder Multiplexer kann die Messgenauigkeit beeinträchtigen. In solchen Schaltern können lokal kleine Thermospannungen entstehen, die die Messung (z.T. stark nichtlinear) verfälschen. Falls dennoch applikativ nötig, sollte der Einfluss solcher Komponenten genau beleuchtet werden.

Max. Leitungslänge zum Thermoelement

Die Leitungslänge vom Messgerät bis zum Thermoelement darf ohne weitere Schutzmaßnahmen max. 30 m betragen. Bei größeren Kabellängen ist ein geeigneter Überspannungsschutz (Surge-Protection) vorzusehen.

Kaltstellenkompensation / Cold Junction Compensation / CJC

Die Korrektur des Thermospannungs-Wertes zur Ermittlung des absoluten Temperaturwerts wird auch als Kaltstellenkompensation bezeichnet. Um einen möglichst genauen, absoluten Temperaturwert zu ermitteln, muss die Temperatur an der Kaltstelle entweder konstant auf einen bekannten Wert gehalten werden oder

kontinuierlich, während der Messung, mit möglichst geringer Unsicherheit gemessen werden. In einigen Anwendungen kann sich die Kaltstelle beispielsweise in einem Eisbad (0 °C) befinden. Dann entspricht die über die Thermospannung ermittelte Temperatur sowohl der Temperaturdifferenz ΔT als auch der absoluten Temperatur. In vielen Anwendungen ist diese Möglichkeit jedoch nicht umsetzbar, sodass eine Kaltstellenkompensation erforderlich ist.

Bei der Thermoelement-Auswertung mit EtherCAT- und Busklemmen im IP20 Gehäuse wird die Kaltstellentemperatur am Übergang vom Thermoelement auf die Kupferkontakte in der frontseitigen Leiter-Anschlussebene des Beckhoff Moduls/ Klemme gemessen. Dieser Wert wird im Betrieb intern in der Klemme über einen Sensor kontinuierlich gemessen, um so die ermittelten Werte zu korrigieren. Diese kontinuierliche Messung auch ausgeschaltet werden, um beispielsweise eine externe Kaltstellenkompensation zu nutzen.

Bei den EJ-Steckmodulen für die Leiterkarte ist die Kaltstellenmessung nicht im Modul integriert. Hier muss eine externe Messung der Kaltstelle erfolgen. Diese Temperatur kann dann für die Kaltstellenkompensation und die Berechnung der absoluten Temperatur an das Modul übergeben werden.

Bei IP67-Modulen und bei EJ-Steckmodulen liegt die Kaltstelle außerhalb des Moduls. Für die Kaltstellenkompensation müssen Pt1000-Messwiderstände extern angeschlossen werden. Für IP67-Module bietet Beckhoff zu diesem Zweck den Stecker ZS2000-3712 mit integriertem Pt1000-Messwiderstand an.

Bestimmung der absoluten Temperatur

Bei der Temperaturmessung mit einem Thermoelement handelt es sich um eine differentielle Temperaturmessung, bei der der Temperaturunterschied zwischen der Messstelle und der Vergleichsstelle, bzw. der Kaltstelle ("Cold Junction"), ermittelt wird. Um die absolute Temperatur an der Messstelle zu ermitteln, muss die gemessene Thermospannung daher um die Thermospannung an der Kaltstelle korrigiert werden. Mit der korrigierten Thermospannung kann dann die Absoluttemperatur an der Messstelle aus geeigneten Tabellen oder Kennlinien ermittelt werden. Aufgrund der Nichtlinearität der Kennlinie ist es zwingend notwendig, dass diese Verrechnung mit den Spannungen und nicht mit der Temperatur durchgeführt wird. Andernfalls würde sich ein wesentlicher Fehler in der Messung ergeben.

Herausforderungen bei der Messung der Temperatur mit Thermoelementen

- Linearisierung
- Kaltstellenkompensation

Allgemein wird die absolute Temperatur über folgende Beziehung berechnet:

$$U_{\text{measuring point}} = U_{\text{thermo}} + U_{\text{cold junction}}$$

$$T_{\text{measuring point}} = f(U_{\text{measuring point}})$$

Nachfolgend wird die Bestimmung der absoluten Temperatur beispielhaft mit der Korrektur der Thermospannungen und mit der Korrektur der Temperatur durchgeführt. Anhand der Beispielrechnung kann der bei falscher Berechnung entstehende Fehler gezeigt werden.

Gesucht: T_{measuring point}

Bekannt: Thermoelement-Typ K, U_{thermo} = 24,255 mV, $T_{cold\ junction}$ = 22 °C

1. Möglichkeit: Berechnung der Thermospannungen – RICHTIG

Die Thermospannung an der Kaltstelle $U_{\text{cold junction}}$ muss aus anhand der bekannten Temperatur $T_{\text{cold junction}}$ aus der Spannungs-Temperatur-Kennlinie oder -Tabelle für den Thermoelement-Typ K bestimmt werden:

$$U_{cold junction} = U(22 °C) = 0.879 mV.$$

Anschließend kann die Thermospannung der Messstelle bezogen auf 0 °C ermittelt werden:

$$U_{\text{measuring point}} = U_{\text{thermo}} + U_{\text{cold junction}} = 24,255 \text{ mV} + 0,879 \text{ mV} = 25,134 \text{ mV}.$$

Aus der ermittelten Thermospannung kann dann aus der Spannungs-Temperatur-Kennlinie oder Tabelle für den Thermoelement-Typ K der zugehörige Temperaturwert ermittelt werden:

$$T_{\text{measuring point}} = T(25,134 \text{ mV}) \approx 605,5 \text{ °C}.$$

2. Möglichkeit: Berechnung der Temperatur – FALSCH

Die Temperaturdifferenz zwischen der Kaltstelle und der Messstelle T_{thermo} könnte anhand der bekannten Thermospannung U_{thermo} aus der Spannungs-Temperatur-Kennlinie oder -Tabelle für den Thermoelement-Typ K bestimmt werden:

$$T_{thermo} = T(24,255 \text{ mV}) = 585 ^{\circ}\text{C}.$$

Anschließend könnte die Temperatur der Messstelle bezogen auf 0 °C ermittelt werden:

$$T_{\text{measuring point}} = T_{\text{thermo}} + T_{\text{cold junction}} = 585 \text{ °C} + 22 \text{ °C} = 607 \text{ °C}.$$

Es ist zu erkennen, dass zwischen dem Wert mit der richtigen Berechnung (Spannungsumrechnung, 1. Möglichkeit) und dem Wert mit der falschen Berechnung (Temperaturumrechnung, 2. Möglichkeit) eine Temperaturdifferenz von 1,5 °C liegt, eine Messabweichung von über 2400 ppm!

Auswertung von Thermoelementen mit Thermoelement-Messgeräten

Beckhoff Thermoelement-Messgeräte können Thermoelemente der verschiedenen Typen auswerten. Die Linearisierung der Kennlinien und die Ermittlung der Vergleichstemperatur erfolgt direkt im Messgerät. Über den Buskoppler bzw. die Steuerung ist das Messgerät vollständig konfigurierbar. Dabei kann zwischen verschiedenen Ausgabeformaten gewählt und auch eigene Skalierungen aktiviert werden. Zusätzlich sind die Linearisierung der Kennlinie und die Ermittlung und Verrechnung der Vergleichstemperatur (Temperatur an den Anschlusskontakten des Messgeräts) abschaltbar, das Messgerät kann so als mV-Messgerät oder auch mit externer Vergleichsstelle verwendet werden. Damit kann neben der internen Auswertung der gemessenen Spannung zur Umrechnung in eine Temperatur auch der reine Spannungswert von dem Messgerät an die Steuerung übergeben und dort weiterverarbeitet werden.

Die Temperaturmessung mit Thermoelementen umfasst generell drei Schritte:

- · Messung der elektrischen Spannung,
- · optional: Temperaturmessung der Kaltstelle bzw. Vergleichsstelle,
- optional: Konvertierung (Umrechnung) der Spannung per Software in einen Temperaturwert nach eingestelltem Thermoelement -Typ (K, J, ...).

Alle drei Schritte können lokal im Beckhoff Messgerät stattfinden. Die Transformation im Messgerät kann auch deaktiviert werden, wenn sie übergeordnet in der Steuerung gerechnet werden soll. Je nach Messgeräte-Typ können mehrere Thermoelement -Konvertierungen implementiert sein, die sich dann nur in Software unterscheiden.

Unsicherheiten bei der Auswertung von Thermoelementen mit Thermoelement-Messgeräten

Die Thermoelement -Messung umfasst eine Verkettung von Mess- und Rechenelementen, die auf die erzielbare Messabweichung einwirken:

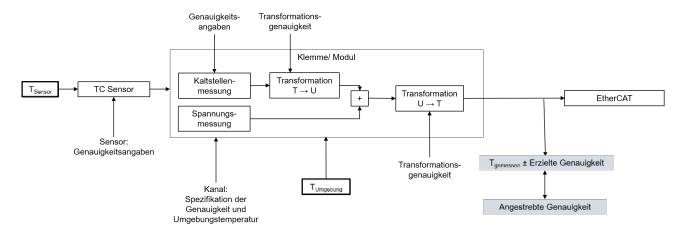


Abb. 6: Verkettung der Unsicherheiten in der Temperaturmessung mit Thermoelementen

Bei der Messung einer Temperatur gibt es verschiedene Einflussfaktoren auf die Genauigkeit, aus denen sich dann die Gesamtungenauigkeit (Gesamtunsicherheit) ergibt.

Unsicherheit der Spannungsmessung

In erster Linie ist die Messung einer Temperatur mit Thermoelementen keine wirkliche Temperaturmessung, sondern eine Spannungsmessung mit anschließender Umrechnung in eine Temperatur. Die Genauigkeit der Spannungsmessung ist also Grundlage für die Genauigkeit der Temperaturbestimmung. Da eine Änderung von 1 °C am Sensor je nach Thermoelement-Typ eine Änderung im einstelligen µV Bereich bewirkt, hat schon eine geringe Unsicherheit der Spannungsmessung einen großen Einfluss auf das Endergebnis.

Unsicherheit der Temperaturumrechnung

Die Umrechnung der gemessenen Spannung in eine Temperatur erfolgt bei der Auswertung entweder über Wertetabellen aus der Spannungs-Temperatur-Kennlinie eines Thermoelement-Typs oder über die Näherung durch ein Polynom. Aufgrund der Nichtlinearität der Spannungs-Temperatur-Kennlinie sind beide Möglichkeiten nur Näherungen an den realen Verlauf, sodass sich durch die Umrechnung eine weitere (kleine) Unsicherheitskomponente aus der Transformation ergibt.

Unsicherheit der Kaltstellenerfassung

Die Kaltstellenkompensation in Thermoelement-Messgeräten muss am Übergang vom Thermoelement auf die Kupferkontakte der Elektronik erfolgen. Dabei ist häufig das Problem, dass die Temperatur an diesem Punkt aus mechanischen Gründen nicht direkt erfassbar ist. Die Temperatur der Kaltstelle muss häufig mit einigen Millimetern Abstand oder durch einen Mittelwert der Temperaturen im Gehäuse angenähert werden. Da der genaue Wert aber häufig nicht bestimmt werden kann, ergibt sich auch daraus eine Unsicherheit.

Unsicherheit des Sensors

Die drei beschriebenen Einflussfaktoren auf die Unsicherheit beschreiben nur die Unsicherheiten in der Auswertung der Thermoelemente. Die Genauigkeit des Thermoelements selbst kommt noch dazu und muss einzeln betrachtet werden.

Da es sich bei der Temperaturmessung mit Thermoelementen eigentlich um eine Spannungsmessung handelt und die Thermoelemente eine nichtlineare Spannungs-Temperatur-Kennlinie haben ist es nicht möglich, die einzelnen Temperaturunsicherheiten einfach zu addieren, um die Gesamtunsicherheit zu erhalten. Zur Berechnung der Gesamtunsicherheit müssen alle Temperaturwerte in den zugehörigen Spannungswert des Thermoelement-Typs umgerechnet werden. Bei einer Addition der Temperaturen ergibt sich ein Fehler, wie in dem Beispiel im Kapitel "Bestimmung der absoluten Temperatur" beschrieben.

Eine Beispielhafte Auswertung der Unsicherheiten der Auswertung eines Thermoelements für eine Thermoelementklemme EL331x mit interner Kaltstellenkompensation und Umrechnung der Spannung in eine Temperatur über ein Polynom zweiten Grades ist in der folgenden Abbildung dargestellt. In der Abbildung wird nicht die Unsicherheit des Thermoelements selber betrachtet, diese kommt noch dazu!

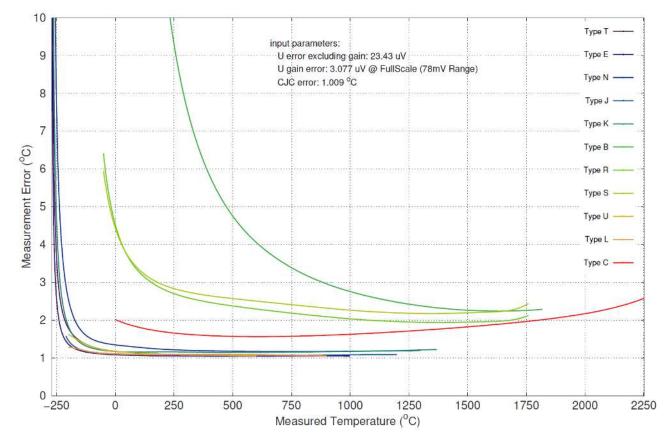
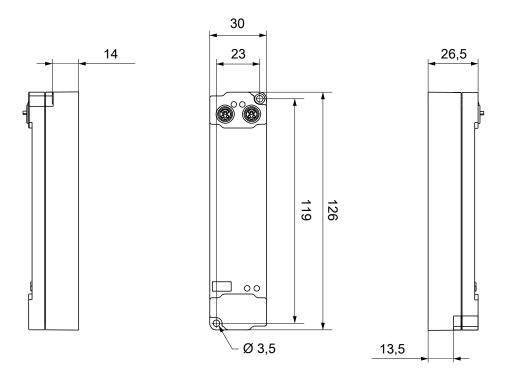


Abb. 7: Beispielhafte Unsicherheitsbetrachtung der Auswertung von Thermoelementen mit einer Thermoelementklemme EL331x

Es ist anhand der Abbildung deutlich zu erkennen, dass die Unsicherheit der gemessenen Temperatur abhängig von der zu messenden Temperatur sind. Vor allem im unteren Temperaturbereich, dort wo eine starke Nichtlinearität von Spannung und Temperatur besteht, steigt die Unsicherheit der Temperaturmessung deutlich an.

Beckhoff bietet einige Produkte zur Auswertung von Thermoelementen an, u.a.

- EL331x-0000: EtherCAT-Klemme, 1/2/4/8-Kanal-Analog-Eingang, Temperatur, Thermoelement, 16 Bit
- EL3314-0002: EtherCAT-Klemme, 4-Kanal-Analog-Eingang, Temperatur, Thermoelement, 24 Bit, galvanisch getrennt
- EL3314-0010: EtherCAT-Klemme, 4-Kanal-Analog-Eingang, Temperatur, Thermoelement, 24 Bit, hochpräzise
- EL3314-0030: EtherCAT-Klemme, 4-Kanal-Analog-Eingang, Temperatur, Thermoelement, 24 Bit, hochpräzise, extern kalibriert
- EL3314-0090: EtherCAT-Klemme, 4-Kanal-Analog-Eingang, Temperatur, Thermoelement, 16 Bit, TwinSAFE SC
- ELM370x-xxxx: EtherCAT-Klemme, 2/4-Kanal-Analog-Eingang, Multifunktion, 24 Bit, 10 kSps
- ELM334x-xxxx: EtherCAT Messtechnikserie, Thermoelementeingang, Mini-Thermoelement-Stecker
- EP3314-0002: EtherCAT Box, 4-Kanal-Analog-Eingang, Temperatur, Thermoelement, 16 Bit, M12
- EPP3314-0002: EtherCAT P-Box, 4-Kanal-Analog-Eingang, Temperatur, Thermoelement, 16 Bit, M12
- KL331x: Busklemme, 1/2/4-Kanal-Analog-Eingang, Temperatur, Thermoelement, 16 Bit
- EJ3318: EtherCAT-Steckmodul, 8-Kanal-Analog-Eingang, Temperatur, Thermoelement, 16 Bit


Die aktuelle Übersicht ist zu finden auf www.beckhoff.de

4 Montage und Anschlüsse

4.1 Montage

4.1.1 Abmessungen

Alle Maße sind in Millimeter angegeben. Die Zeichnung ist nicht maßstabsgetreu.

Gehäuseeigenschaften

Gehäusematerial	PA6 (Polyamid)		
Vergussmasse	Polyurethan		
Montage	zwei Befestigungslöcher Ø 3,5 mm für M3		
Metallteile	Messing, vernickelt		
Kontakte	CuZn, vergoldet		
Einbaulage	beliebig		
Schutzart	im verschraubten Zustand IP65, IP66, IP67 (gemäß EN 60529)		
Abmessungen (H x B x T)	ca. 126 x 30 x 26,5 mm (ohne Steckverbinder)		

4.1.2 Befestigung

HINWEIS

Verschmutzung bei der Montage

Verschmutzte Steckverbinder können zu Fehlfunktion führen. Die Schutzart IP67 ist nur gewährleistet, wenn alle Kabel und Stecker angeschlossen sind.

• Schützen Sie die Steckverbinder bei der Montage vor Verschmutzung.

Montieren Sie das Modul mit zwei M3-Schrauben an den Befestigungslöchern in den Ecken des Moduls. Die Befestigungslöcher haben kein Gewinde.

4.1.3 Funktionserdung (FE)

Das obere Befestigungsloch dient gleichzeitig als Anschluss für die Funktionserdung (FE).

Stellen Sie sicher, dass die Box über den Anschluss für die Funktionserdung (FE) niederimpedant geerdet ist. Das erreichen Sie z.B., indem Sie die Box an einem geerdeten Maschinenbett montieren.

Abb. 8: Anschluss für die Funktionserdung (FE)

4.1.4 Anzugsdrehmomente für Steckverbinder

Schrauben Sie Steckverbinder mit einem Drehmomentschlüssel fest. (z.B. ZB8801 von Beckhoff)

Steckverbinder-Durchmesser	Anzugsdrehmoment
M8	0,4 Nm
M12	0,6 Nm

4.2 Anschlüsse

4.2.1 EtherCAT P

⚠ WARNUNG

Spannungsversorgung aus SELV/PELV-Netzteil!

Zur Versorgung des EtherCAT P Power Sourcing Device (PSD) müssen SELV/PELV-Stromkreise (Schutz-kleinspannung, Sicherheitskleinspannung) nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung (Safety Extra Low Voltage) liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung (Protective Extra Low Voltage) benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

⚠ VORSICHT

UL-Anforderungen beachten

• Beachten Sie beim Betrieb unter UL-Bedingungen die Warnhinweise im Kapitel <u>UL-Anforderungen</u> [• <u>46</u>].

EtherCAT P überträgt zwei Versorgungsspannungen:

Steuerspannung U_s

Die folgenden Teilfunktionen werden aus der Steuerspannung U_s versorgt:

- Der Feldbus
- Die Prozessor-Logik
- typischerweise die Eingänge und die Sensorik, falls die EtherCAT P-Box Eingänge hat.

• Peripheriespannung $U_{\scriptscriptstyle P}$

Bei EtherCAT P-Box-Modulen mit digitalen Ausgängen werden die digitalen Ausgänge typischerweise aus der Peripheriespannung U_P versorgt. U_P kann separat zugeführt werden. Falls U_P abgeschaltet wird, bleiben die Feldbus-Funktion, die Funktion der Eingänge und die Versorgung der Sensorik erhalten.

Die genaue Zuordnung von U_s und U_P finden Sie in der Pinbelegung der I/O-Anschlüsse.

Weiterleitung der Versorgungsspannungen

Die Versorgungsspannungen werden intern vom Anschluss "IN" zum Anschluss "OUT" weitergeleitet. Somit können auf einfache Weise die Versorgungsspannungen U_s und U_p von einer EtherCAT P-Box zur nächsten EtherCAT P-Box weitergereicht werden.

HINWEIS

Maximalen Strom beachten.

Beachten Sie bei der Weiterleitung von EtherCAT P, dass jeweils der für die M8-Steckverbinder maximal zulässige Strom von 3 A nicht überschritten wird.

4.2.1.1 Steckverbinder

HINWEIS

Beschädigung des Gerätes möglich!

Setzen Sie das EtherCAT-/ EtherCAT P-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Module beginnen!

Die Einspeisung und Weiterleitung von EtherCAT P erfolgt über zwei M8-Buchsen am oberen Ende der Module:

- IN: linke M8-Buchse zur Einspeisung von EtherCAT P
- OUT: rechte M8-Buchse zur Weiterleitung von EtherCAT P

Die Metallgewinde der EtherCAT P M8-Buchsen sind intern per hochimpedanter RC-Kombination mit dem FE-Anschluss verbunden. Siehe Kapitel <u>Funktionserdung (FE) [\rightarrow 37]</u>.

Abb. 9: Steckverbinder für EtherCAT P

Abb. 10: M8-Buchse, P-kodiert

Kontakt	Signal	Spannung	Aderfarbe 1)
1	Tx +	GND _s	gelb
2	Rx +	GND _P	weiß
3	Rx -	U _P : Peripheriespannung, +24 V _{DC}	blau
4	Tx -	U _s : Steuerspannung, +24 V _{DC}	orange
Gehäuse	Schirm	Schirm	Schirm

¹⁾ Die Aderfarben gelten für EtherCAT P-Leitungen und ECP-Leitungen von Beckhoff.

4.2.1.2 Status-LEDs

4.2.1.2.1 Versorgungsspannungen

EtherCAT P-Box-Module zeigen den Status der Versorgungsspannungen über zwei Status-LEDs an. Die Status-LEDs sind mit den Bezeichnungen der Versorgungsspannungen beschriftet: Us und Up.

LED	Anzeige	Bedeutung
Us	aus	Die Versorgungsspannung U _s ist nicht vorhanden.
(Steuerspannung) leuchtet grün Die Versorgungsspannung U _s ist vorhanden.		Die Versorgungsspannung U _s ist vorhanden.
U _P aus Die Versorgungsspannung U _P ist nicht vorhanden.		Die Versorgungsspannung U _P ist nicht vorhanden.
(Peripheriespannung)	leuchtet grün	Die Versorgungsspannung U _P ist vorhanden.

4.2.1.2.2 EtherCAT

L/A (Link/Act)

Neben jeder EtherCAT- / EtherCAT P-Buchse befindet sich eine grüne LED, die mit "L/A" oder "Link/Act" beschriftet ist. Die LED signalisiert den Kommunikationsstatus der jeweiligen Buchse:

LED	Bedeutung
aus	keine Verbindung zum angeschlossenen EtherCAT-Gerät
leuchtet	LINK: Verbindung zum angeschlossenen EtherCAT-Gerät
blinkt	ACT: Kommunikation mit dem angeschlossenen EtherCAT-Gerät

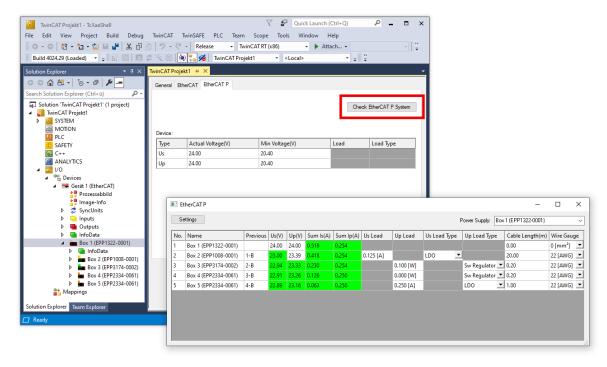
Run

Jeder EtherCAT-Slave hat eine grüne LED, die mit "Run" beschriftet ist. Die LED signalisiert den Status des Slaves im EtherCAT-Netzwerk:

LED	Bedeutung	
aus	Slave ist im Status "Init"	
blinkt gleichmäßig	Slave ist im Status "Pre-Operational"	
blinkt vereinzelt	Slave ist im Status "Safe-Operational"	
leuchtet	Slave ist im Status "Operational"	

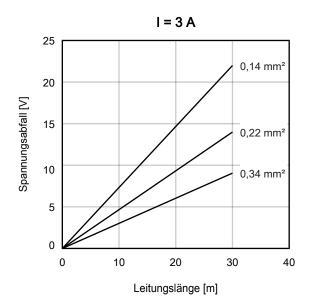
Beschreibung der Stati von EtherCAT-Slaves

4.2.1.3 Leitungsverluste

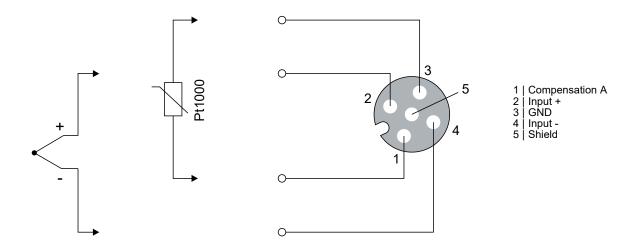

Beachten Sie bei der Planung einer Anlage den Spannungsabfall an der Versorgungs-Zuleitung. Vermeiden Sie, dass der Spannungsabfall so hoch wird, dass die Versorgungsspannungen an der Box die minimale Nennspannung unterschreiten.

Berücksichtigen Sie auch Spannungsschwankungen des Netzteils.

•


Planungstool für EtherCAT P

Sie können Leitungslängen, Spannungen und Ströme Ihres EtherCAT P-Systems mithilfe von TwinCAT 3 planen. Die Voraussetzung dafür ist TwinCAT 3 Build 4020 oder höher.


Weitere Informationen finden Sie in der Schnellstartanleitung <u>IO-Konfiguration in TwinCAT</u> im Kapitel "Konfiguration von EtherCAT P mit TwinCAT".

Spannungsabfall an der Versorgungs-Zuleitung

4.2.2 Thermoelemente

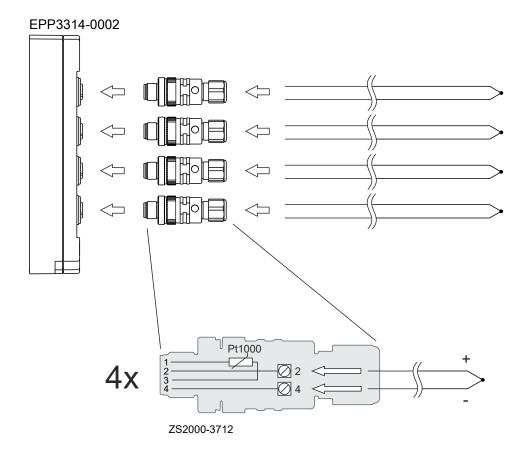
Vergleichsstellen-Kompensation

Die Vergleichsstellen-Temperatur wird nicht in der Box gemessen. Für die Vergleichsstellen-Kompensation müssen Sie zusätzlich zu dem Thermoelement einen Pt1000-Messwiderstand anschließen. Platzieren Sie den Pt1000-Messwiderstand möglichst nahe an der Vergleichsstelle.

Empfehlung: Verwenden Sie anstelle eines gesonderten Pt1000-Messwiderstands den Stecker ZS2000-3712 von Beckhoff. Der ZS2000-3712 hat einen integrierten Pt1000-Messwiderstand, der die Temperatur direkt an der Vergleichsstelle misst.

Sie erzielen die höchste Genauigkeit, wenn Sie für jeden Anschluss einen ZS2000-3712 oder einen Pt1000-Messwiderstand einsetzen. Siehe Anschlussbeispiel 1 [> 43].

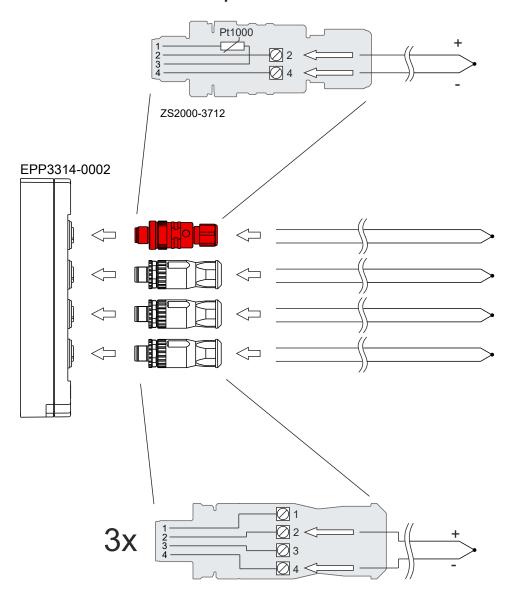
Alternativ können Sie Kosten sparen, indem Sie nur an Kanal 1 einen ZS2000-3712 oder einen Pt1000-Messwiderstand anschließen. Die Vergleichsstellen-Kompensation der anderen Kanäle erfolgt dann mit der Vergleichsstellen-Temperatur von Kanal 1. Siehe Anschlussbeispiel 2 [▶ 44].


Verlängerungsleitung

Sie können eine M12-Verlängerungsleitung zwischen Box und Vergleichsstelle einsetzen. Dadurch verschlechtert sich allerdings die Messgenauigkeit. Je länger die Verlängerungsleitung ist, desto größer ist der Messfehler.

Beachten Sie die maximal zulässige Leitungslänge zwischen Box und Thermoelement von 30 m.

4.2.2.1 Anschlussbeispiel 1



In diesem Anschlussbeispiel werden vier Steckverbinder vom Typ ZS2000-3712 mit integriertem Messwiderstand eingesetzt. Die Vergleichsstellen-Kompensation wird für jeden Kanal einzeln durchgeführt.

Die CoE-Parameter 80n0:0C "Coldjunction compensation" müssen für alle Kanäle auf den Wert 0 "intern" eingestellt sein. Das ist die Werkseinstellung. Siehe Kapitel <u>Vergleichsstellen-Kompensation [\triangleright 49]</u>.

4.2.2.2 Anschlussbeispiel 2

In diesem Anschluss-Beispiel wird nur ein einziger Steckverbinder mit integriertem Messwiderstand vom Typ ZS2000-3712 eingesetzt. An den anderen Kanälen sind die Thermoelemente über handelsübliche M12-Stecker angeschlossen.

Stellen Sie die CoE-Parameter der Kanäle wie folgt ein:

CoE-Parameter	Wert	
8000:0C _{hex}	0 "intern"	
8010:0C _{hex}	3 "by coldjunction temp. of channel 1"	
8020:0C _{hex}	3 "by coldjunction temp. of channel 1"	
8030:0C _{hex}	3 "by coldjunction temp. of channel 1"	

Siehe Kapitel <u>Vergleichsstellen-Kompensation</u> [▶ 49].

4.2.2.3 Status-LEDs an den Signalanschlüssen

Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error*. Eine einwandfreie Funktion besteht wenn die grüne LED *Run* leuchtet und die rote LED *Error* aus ist.

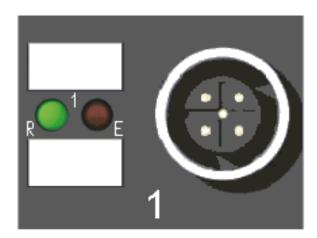


Abb. 11: Status-LEDs an den Signalanschlüssen

Anschluss	LED	Anzeige	Bedeutung	
M12-Buchse Nr.	R	aus	keine Datenübertragung zum A/D-Wandler	
1-4 links		grün	Datenübertragung zum A/D-Wandler	
E		aus	einwandfreie Funktion	
	rechts	rot	Fehler:	
Drahtbruch oder			Drahtbruch oder	
			Messwert außerhalb des Messbereichs oder	
			Temperaturkompensation außerhalb des Gültigkeitsbereich	

4.3 UL-Anforderungen

Die Installation der nach UL zertifizierten EtherCAT Box Module muss den folgenden Anforderungen entsprechen.

Versorgungsspannung

↑ VORSICHT

VORSICHT!

Die folgenden genannten Anforderungen gelten für die Versorgung aller so gekennzeichneten EtherCAT Box Module.

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT Box Module nur mit einer Spannung von 24 V_{DC} versorgt werden, die

- von einer isolierten, mit einer Sicherung (entsprechend UL248) von maximal 4 A geschützten Quelle, oder
- von einer Spannungsquelle die NEC class 2 entspricht stammt.
 Eine Spannungsquelle entsprechend NEC class 2 darf nicht seriell oder parallel mit einer anderen NEC class 2 entsprechenden Spannungsquelle verbunden werden!

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT Box Module nicht mit unbegrenzten Spannungsquellen verbunden werden!

Netzwerke

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT Box Module nicht mit Telekommunikations-Netzen verbunden werden!

Umgebungstemperatur

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT Box Module nur in einem Umgebungstemperaturbereich von -25 °C bis +55 °C betrieben werden!

Kennzeichnung für UL

Alle nach UL (Underwriters Laboratories) zertifizierten EtherCAT Box Module sind mit der folgenden Markierung gekennzeichnet.

Abb. 12: UL-Markierung

4.4 Entsorgung

Mit einer durchgestrichenen Abfalltonne gekennzeichnete Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

5 Inbetriebnahme/Konfiguration

5.1 Einbinden in ein TwinCAT-Projekt

Die Vorgehensweise zum Einbinden in ein TwinCAT-Projekt ist in dieser <u>Schnellstartanleitung</u> beschrieben.

5.2 Einstellungen

5.2.1 Vergleichsstellen-Kompensation

Sie können die Art der Vergleichsstellen-Kompensation für jeden Kanal individuell in den Parametern 80*n*0:0C_{hex} "Coldjunction Compensation" einstellen.

- Kanal 1: Parameter 8000:0C_{hex}
- Kanal 2: Parameter 8010:0C_{hex}
- Kanal 3: Parameter 8020:0C_{hex}
- Kanal 4: Parameter 8030:0C_{hex}

Im Folgenden sind die möglichen Werte für diese Parameter beschrieben.

Wert 0 "intern"

In der Werkseinstellung stehen alle Parameter $80n0:0C_{hex}$ auf "intern". Mit dieser Einstellung wird die Vergleichsstellen-Temperatur an jedem Kanal individuell gemessen.

An jedem Kanal, an dem ein Thermoelement angeschlossen ist, muss auch ein Pt1000-Messwiderstand angeschlossen sein. Siehe <u>Anschlussbeispiel 1 [▶ 43]</u>.

Wert 1 "none"

Es wird keine Vergleichsstellen-Kompensation durchgeführt.

Wert 2 "external process data (1/100°C)"

Diese Einstellung ist z.B. für den Fall vorgesehen, dass Sie die Vergleichsstellen-Temperatur mit einem gesonderten Messgerät messen.

Aktivieren Sie im Karteireiter "Process Data" die Prozessdaten 0x1600 bis 0x1603. Über die Prozessdatenobjekte "TC Outputs Channel n" können Sie die extern gemessenen Vergleichsstellen-Temperaturen an die Box übergeben.

Wert 3 "by coldjunction temp. of channel 1"

Mit dieser Einstellung wird die Vergleichsstellen-Temperatur von Kanal 1 zur Vergleichsstellen-Kompensation der anderen Kanäle genutzt. Das spart die Kosten für einen Pt1000-Widerstand pro Kanal. Siehe Anschlussbeispiel 2 [▶ 44].

Mit dieser Einstellung können allerdings große Messfehler auftreten. Die Einstellung ist nur empfohlen, wenn der Temperaturunterschied zwischen der Vergleichsstelle eines Kanals und der Vergleichsstelle von Kanal 1 konstant ist.

Beispiel: Aktivieren der Vergleichsstelle von Kanal 1 für Kanal 2

- Stellen Sie sicher, dass der Temperatur-Unterschied zwischen den Vergleichsstellen der Kanäle möglichst konstant ist.
- 2. Setzen Sie den Parameter 8010:0C_{hex} "Coldjunction Compensation" auf den Wert "by coldjunction temp. of channel 1".
- 3. Ermitteln Sie den konstanten Temperatur-Unterschied zwischen den Vergleichsstellen von Kanal 1 und Kanal 2:

$$T_{\text{delta}} = T_{\text{V1}} - T_{\text{V2}}$$

Falls die Vergleichsstelle von Kanal 1 wärmer ist als die von Kanal 2, ist der Wert T_{delta} positiv.

4. Tragen Sie den Temperatur-Unterschied in den Parameter $8010:1C_{hex}$ "Coldjunction temperature offset from channel 1" ein. Die Einheit ist 1/100 °C.

Beispiel: für einen Temperatur-Unterschied von 0,5 °C tragen Sie hier den Wert 50 ein.

Für Kanal 3 und 4 ist die Vorgehensweise genauso. Die entsprechenden Parameter sind:

- Kanal 3
 - \circ 8020:0C_{hex} "Coldjunction Compensation"
 - ∘ 8020:1C_{hex} "Coldjunction temperature offset from channel 1"
- Kanal 4
 - 8030:0C_{hex} "Coldjunction Compensation"
 - $\circ~8030{:}1C_{\text{hex}}$ "Coldjunction temperature offset from channel 1"

5.2.2 Darstellung (Presentation), Index 0x80n0:02

Index 0x80n0:02 Presentation bietet die Möglichkeit zur Veränderung der Darstellungsweise des Messwertes

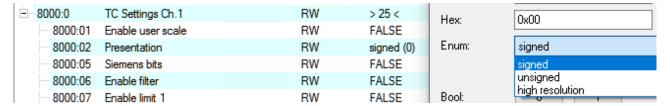


Abb. 13: Index 0x8002, Auswahl der Darstellung

Es sind 3 Wertedarstellungen im 16bit PDO möglich:

Signed Integer (default Einstellung):

Der Messwert mit Auflösung 1 Bit = 1/10°C wird vorzeichenbehaftet im Zweierkomplement dargestellt. Maximaler Darstellungsbereich bei 16 Bit = -32768 ... +32767, entsprechend theoretisch -3276,8°C ... +3276,7°C (real wird der Messwert durch die eingestellte Transformation begrenzt).

Beispiel:

- \circ 1000 0000 0000 0000_{bin} = 0x8000_{hex} = 32768_{dez}
- \circ 1111 1111 1111 1110_{bin} = 0nFFFE_{hex} = 2_{dez}
- \circ 1111 1111 1111 1111_{bin} = $OnFFFF_{hex} = -1_{dez}$
- \circ 0000 0000 0000 0001_{bin} = 0n0001_{hex} = +1_{dez}
- \circ 0000 0000 0000 0010_{bin} = 0n0002_{hex} = +2_{dez}
- \circ 0111 1111 1111 1111_{bin} = 0x7FFF_{hex} = +32767_{dez}

```
K -270...1372°C
J -210...1200°C
L-50...900°C
E -270...1000°C
T -270...400°C
N -270...1300°C
U -50...600°C
B 200...1820°C
R -50...1768°C
S -50...1768°C
C 0...2320°C
```

Abb. 14: Auswahlmöglichkeiten Transformation

· High resolution:

Der Messwert mit Auflösung 1 Bit = 1/100°C wird vorzeichenbehaftet im Zweierkomplement dargestellt, siehe dort. Maximaler Darstellungsbereich bei 16 Bit = -32768 ... +32767, entsprechend theoretisch -327,68°C ... +327,67°C (real wird der Messwert durch die eingestellte Transformation begrenzt).

Die erzielbare Genauigkeit erhöht sich durch die feinere Darstellung nicht! Die zusätzliche Nachkommastelle kann aber für Regelungsaufgaben nützlich sein, wobei die interne ADC-Auflösung die Auflösung begrenzt: zum Beispiel sind bei Typ K reale Messwertänderungen von 60 mK abzulesen:

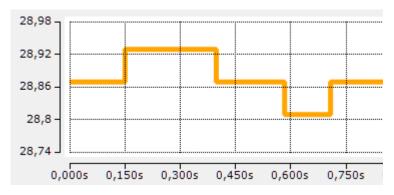


Abb. 15: Darstellung Messwertänderung Thermoelement Typ K

Messwert	Ausgabe (hexadezi-mal)	Ausgabe (Signed Integer, dezimal)	Entspricht in 1/10°C	Entspricht in 1/100°C
-200,0 °C	0nF830	-2000	-200°C	-20°C
-100,0 °C	0nFC18	-1000	-100°C	-10°C
-0,1 °C	0nFFFF	-1	-0,1°C	-0,01°C
0,0 °C	0n0000	0	0°C	0°C
0,1 °C	0n0001	1	0,1°C	0,01°C
100,0 °C	0n03E8	1000	100°C	10°C
200,0 °C	0n07D0	2000	200°C	20°C
500,0 °C	0x1388	5000	500°C	50°C
850,0 °C	0x2134	8500	850°C	85°C
1000,0 °C	0x2170	10000	1000°C	100°C

Tab.: Messwert und Prozessdatenausgabe

· Absolute value with MSB as sign:

Der Messwert mit Auflösung 1 Bit = 1/10°C wird vorzeichenbehaftet in der Betrag-Vorzeichendarstellung ausgegeben.

Maximaler Darstellungsbereich bei 16 Bit = -32768 ... +32767, entsprechend theoretisch -3276,8°C ... +3276,7°C (real wird der Messwert durch die eingestellte Transformation begrenzt)

Beispiel:

- \circ 1111 1111 1111 1111_{bin} = $0nFFFF_{hex} = -32767_{dez}$
- \circ 1000 0000 0000 0010_{bin} = 0x8002_{hex} = -2_{dez}
- \circ 1000 0000 0000 0001_{bin} = 0x8001_{hex} = -1_{dez}
- \circ 0000 0000 0000 0001_{bin} = 0n0001_{hex} = +1_{dez}
- \circ 0000 0000 0000 0010_{bin} = 0n0002_{hex} = +2_{dez}
- \circ 0111 1111 1111 1111_{bin} = 0x7FFF_{hex} = +32767_{dez}

5.2.3 Siemens Bits, Index 0x80n0:05

Mit Setzen des Bits in Index 0x80n0:05 werden auf den niedrigsten 3 Bits Statusanzeigen eingeblendet. Im Fehlerfall "Overrange" bzw. "Underrange" wird Bit 0 gesetzt.

5.2.4 Underrange, Overrange

Unterschreitung und Überschreitung des Messbereiches (Underrange, Overrange), Index 0x60n0:02, 0x60n0:03

- U_k > Uk_{max}: Index 0x60n0:02 und Index 0x60n0:07 (Overrange- und Error-Bit) werden gesetzt. Die Linearisierung der Kennlinie wird mit den Koeffizienten der oberen Bereichsgrenze bis zum Endanschlag des A/D-Wandlers bzw. bis zum Maximalwert 0x7FFF fortgesetzt.
- U_k < Uk_{max}: Index 0x60n0:01 und Index 0x60n0:07 (Underrange- und Error-Bit) werden gesetzt. Die Linearisierung der Kennlinie wird mit den Koeffizienten der unteren Bereichsgrenze bis zum Endanschlag des A/D-Wandlers bzw. bis minimal 0x8000 fortgesetzt.

Bei Overrange bzw. Underrange wird die rote Error-LED eingeschaltet.

5.2.5 Filter

Jeder analoge Eingang hat einen digitalen Filter. Der Filter ist ein Notch-Filter (Kerbfilter).

Der Filter ist immer aktiv, er kann nicht deaktiviert werden. Alle Parameter "Enable Filter" sind wirkungslos: 0x8000:06, 0x8010:06, 0x8020:06, 0x8030:06.

Filter konfigurieren

Sie können die Filter-Frequenz im Parameter 0x8000:15 "Filter Settings" einstellen. Dieser Parameter betrifft alle Kanäle. Die Parameter "Filter Settings" der anderen Kanäle sind wirkungslos: 0x8010:15, 0x8020:15, 0x8030:15.

Einfluss auf die Wandlungszeit

Je höher die Filter-Frequenz ist, desto niedriger ist die Wandlungszeit.

5.2.6 Limit 1 und Limit 2

Limit 1 und Limit 2, Index 0x80n0:13, Index 0x80n0:14

Es kann ein Temperaturbereich eingestellt werden, der von den Werten in den Indizes 0x80n0:13 und 0x80n0:14 begrenzt wird. Beim Überschreiten der Grenzwerte werden die Bits in den Indizes 0x80n0:07 und 0x80n0:08 gesetzt.

Der Temperaturwert wird um in 0,1 °C Auflösung eingegeben.

Beispiel:

Limit 1= 30 °C

Wert Index 0x80n0:13 = 300

5.2.7 Kalibrierung

Hersteller-Kalibrierung, Index 0x80n0:0B

Die Freigabe des Hersteller-Abgleichs erfolgt über den Index 0x80n0:0B. Die Parametrierung erfolgt über die Indizes

• 0x80nF:01

Offset Thermoelement (Herstellerabgleich)

0x80nF:02
 Gain Thermoelement (Herstellerabgleich)

• 0x80nF:03 Offset Vergleichsstelle [Pt1000] (Herstellerabgleich)

0x80nF:04
 Gain Vergleichsstelle [Pt1000] (Herstellerabgleich)

Hersteller- und Anwender-Kalibrierung

Die Aktivierung der Anwender-Kalibrierung (Index 0x80n0:0A) sollte nur anstatt der Herstellerkalibrierung (Index 0x80n0:0B) durchgeführt werden und ist in der Regel nur in Ausnahmefällen notwendig!

Anwender-Kalibrierung, Index 0x80n0:0A

Die Freigabe der Anwender-Kalibrierung erfolgt über den Index 0x80n0:0A. Die Parametrierung erfolgt über die Indizes

0x80n0:17
 Offset Thermoelement (Index 0x80nF:01, Anwenderabgleich)

0x80n0:18
 Gain Thermoelement (Index 0x80nF:02, Anwenderabgleich)

Anwender Skalierung, Index 0x80n0:01

Die Freigabe der Anwender-Skalierung erfolgt über den Index 0x80n0:01. Die Parametrierung erfolgt über die Indizes

0x80n0:11
 Offset Anwender Skalierung

Der Offset beschreibt eine vertikale Verschiebung der Kennlinie um einen linearen Betrag. Bei einer Auslösung von $0,1^\circ$ entspricht 1 Digit $_{(dez)}$ einer Messwerterhöhung von $0,1^\circ$ Bei einer Auflösung von $0,01^\circ$ entspricht 1 Digit $_{(dez)}$ einer Messwerterhöhung von $0,01^\circ$

0x80n0:12
 Gain Anwender Skalierung

Der Default-Wert 65536_(dez) entspricht Gain = 1. Bestimmung des neuen Gain-Wertes für 2-Punkt-Abgleich durch Anwender, nach erfolgtem Offset-Abgleich:

Gain neu = Referenztemperatur / Messwert x 65536_(dez)

Berechnung der Prozessdaten

Der bei Beckhoff historisch begründete Begriff "Kalibrierung" wird hier verwendet, auch wenn er nichts mit Abweichungsaussagen eines Kalibrierungszertifikates zu tun hat. Es werden hier faktisch die hersteller- oder kundenseitigen Abgleichdaten/Justagedaten beschrieben die das Gerät im laufenden Betrieb verwendet um die zugesicherte Messgenauigkeit einzuhalten.

Die Box nimmt permanent Messwerte auf und legt die Rohwerte ihres A/D-Wandlers ins ADC raw value-Objekten 0x80nE:01, 0x80nE:02. Nach jeder Erfassung des Analogsignals erfolgt die Korrekturberechnung mit den Hersteller- und Anwender Abgleichdaten sowie der Anwenderskalierung wenn diese aktiviert sind (s. folgendes Bild).

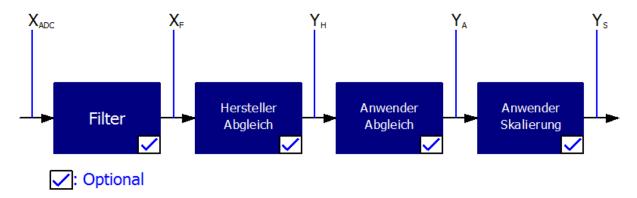


Abb. 16: Berechnung der Prozessdaten

Berechnung	Bezeichung
X _{ADC}	Ausgabe des A/D Wandlers
X_{F}	Ausgabe Wert nach dem Filter
$Y_H = (X_{ADC} - B_H) \times A_H \times 2^{-14}$	Messwert nach Hersteller-Abgleich,
$Y_A = (Y_H - B_A) \times A_A \times 2^{-14}$	Messwert nach Hersteller- und Anwender -Abgleich
Y _S = Y _A x A _S x 2 ⁻¹⁶ + B _S	Messwert nach Anwender-Skalierung

Tab. 1: Legende

Name	Bezeichnung	Index
X _{ADC}	Ausgabe Wert des A/D Wandlers	0x80nE:01
X _F	Ausgabe Wert nach dem Filter	-
B _H	Offset der Hersteller-Abgleich (nicht veränderbar)	0x80nF:01
A _H	Gain der Hersteller-Abgleich (nicht veränderbar)	0x80nF:02
B _A	Offset der Anwender-Abgleich (aktivierbar über Index 0x80n0:0A)	0x80n0:17
A _A	Gain der Anwender-Abgleich (aktivierbar über Index 0x80n0:0A)	0x80n0:18
Bs	Offset der Anwender-Skalierung (aktivierbar über Index 0x80n0:01)	0x80n0:11
As	Gain der Anwender-Skalierung (aktivierbar über Index 0x80n0:01)	0x80n0:12
Ys	Prozessdaten zur Steuerung	-

Messergebnis

Die Genauigkeit des Ergebnisses kann sich verringern, wenn durch eine oder mehrere Multiplikationen der Messwert kleiner als 32767 / 4 beträgt.

5.3 Objektübersicht

•

EtherCAT XML Device Description

ĺ

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT <u>XML</u> Device Description. Es wird empfohlen, die entsprechende aktuellste XML-Datei im Download-Bereich auf der Beckhoff Website herunterzuladen und entsprechend der Installationsanweisungen zu installieren.

Index (hex)		Name	Flags	Default-Wert
<u>1000 [▶ 68]</u>		Device type	RO	0x014A1389 (21631881 _{dez})
1008 [68]		Device name	RO	EPP3314-0002
1009 [> 68]		Hardware version	RO	04
100A [68]		Software version	RO	06
1011:0 [62]	Subindex	Restore default parameters	RO	0x01 (1 _{dez})
1011.0 [7 02]	1011:01	SubIndex 001	RW	0x00000000 (O _{dez})
1018:0 [68]	Subindex	Identity	RO	0x04 (4 _{dez})
	1018:01	Vendor ID	RO	0x00000002 (2 _{dez})
	1018:02	Product code	RO	0x64769529 (1685493033 _{dez})
	1018:03	Revision	RO	0x00120002 (1179650 _{dez})
	1018:04	Serial number	RO	0x0000000 (0 _{dez})
10F0:0 [▶ 68]	Subindex	Backup parameter handling	RO	0x01 (1 _{dez})
	10F0:01	Checksum	RO	0x0000000 (0 _{dez})
1600:0 [▶ 69]	Subindex	TC RxPDO-Map Outputs Ch.1	RO	0x01 (1 _{dez})
	1600:01	SubIndex 001	RO	0x7000:11, 16
1601:0 [▶ 69]	Subindex	TC RxPDO-Map Outputs Ch.2	RO	0x01 (1 _{dez})
	1601:01	SubIndex 001	RO	0x7010:11, 16
1602:0 [▶ 69]	Subindex	TC RxPDO-Map Outputs Ch.3	RO	0x01 (1 _{dez})
	1602:01	SubIndex 001	RO	0x7020:11, 16
<u>1603:0 [▶ 69]</u>	Subindex	TC RxPDO-Map Outputs Ch.4	RO	0x01 (1 _{dez})
	1603:01	SubIndex 001	RO	0x7030:11, 16
1A00:0 [▶ 69]	Subindex	TC TxPDO-Map TCInputs Ch.1	RO	0x0A (10 _{dez})
	1A00:01	SubIndex 001	RO	0x6000:01, 1
	1A00:02	SubIndex 002	RO	0x6000:02, 1
	1A00:03	SubIndex 003	RO	0x6000:03, 2
	1A00:04	SubIndex 004	RO	0x6000:05, 2
	1A00:05	SubIndex 005	RO	0x6000:07, 1
	1A00:06	SubIndex 006	RO	0x0000:00, 1
	1A00:07	SubIndex 007	RO	0x0000:00, 6
	1A00:08	SubIndex 008	RO	0x6000:0F, 1
	1A00:09	SubIndex 009	RO	0x6000:10, 1
	1A00:0A	SubIndex 010	RO	0x6000:11, 16
1A01:0 [▶ 70]	Subindex	TC TxPDO-Map TCInputs Ch.2	RO	0x0A (10 _{dez})
	1A01:01	SubIndex 001	RO	0x6010:01, 1
	1A01:02	SubIndex 002	RO	0x6010:02, 1
	1A01:03	SubIndex 003	RO	0x6010:03, 2
	1A01:04	SubIndex 004	RO	0x6010:05, 2
	1A01:05	SubIndex 005	RO	0x6010:07, 1
	1A01:06	SubIndex 006	RO	0x0000:00, 1
	1A01:07	SubIndex 007	RO	0x0000:00, 6
	1A01:08	SubIndex 008	RO	0x6010:0F, 1
	1A01:09	SubIndex 009	RO	0x6010:10, 1
	1A01:0A	SubIndex 010	RO	0x6010:11, 16

Index (hex)		Name	Flags	Default-Wert
1A02:0 [> 70]	Subindex	TC TxPDO-Map TCInputs Ch.3	RO	0x0A (10 _{dez})
	1A02:01	SubIndex 001	RO	0x6020:01, 1
	1A02:02	SubIndex 002	RO	0x6020:02, 1
	1A02:03	SubIndex 003	RO	0x6020:03, 2
	1A02:04	SubIndex 004	RO	0x6020:05, 2
	1A02:05	SubIndex 005	RO	0x6020:07, 1
	1A02:06	SubIndex 006	RO	0x0000:00, 1
	1A02:07	SubIndex 007	RO	0x0000:00, 6
	1A02:08	SubIndex 008	RO	0x6020:0F, 1
	1A02:09	SubIndex 009	RO	0x6020:10, 1
	1A02:0A	SubIndex 010	RO	0x6020:11, 16
1A03:0 [▶ 71]	Subindex	TC TxPDO-Map TCInputs Ch.4	RO	0x0A (10 _{dez})
	1A03:01	SubIndex 001	RO	0x6030:01, 1
	1A03:02	SubIndex 002	RO	0x6030:02, 1
	1A03:03	SubIndex 003	RO	0x6030:03, 2
	1A03:04	SubIndex 004	RO	0x6030:05, 2
	1A03:05	SubIndex 005	RO	0x6030:07, 1
	1A03:06	SubIndex 006	RO	0x0000:00, 1
	1A03:07	SubIndex 007	RO	0x0000:00, 6
	1A03:08	SubIndex 008	RO	0x6030:0F, 1
	1A03:09	SubIndex 009	RO	0x6030:10, 1
	1A03:0A	SubIndex 010	RO	0x6030:11, 16
1C00:0 [▶ 71]	Subindex	Sync manager type	RO	0x04 (4 _{dez})
	1C00:01	SubIndex 001	RO	0x01 (1 _{dez})
	1C00:02	SubIndex 002	RO	0x02 (2 _{dez})
	1C00:03	SubIndex 003	RO	0x03 (3 _{dez})
	1C00:04	SubIndex 004	RO	0x04 (4 _{dez})
1C12:0 [▶ 71]	Subindex	RxPDO assign	RW	0x00 (0 _{dez})
	1C12:01	SubIndex 001	RW	0x0000 (0 _{dez})
	1C12:02	SubIndex 002	RW	0x0000 (0 _{dez})
	1C12:03	SubIndex 003	RW	0x0000 (0 _{dez})
	1C12:04	SubIndex 004	RW	0x0000 (0 _{dez})
1C13:0 [▶ 71]	Subindex	TxPDO assign	RW	0x04 (4 _{dez})
	1C13:01	SubIndex 001	RW	0x1A00 (6656 _{dez})
	1C13:02	SubIndex 002	RW	0x1A01 (6657 _{dez})
	1C13:03	SubIndex 003	RW	0x1A02 (6658 _{dez})
	1C13:04	SubIndex 004	RW	0x1A03 (6659 _{dez})
1C32:0 [▶ 72]	Subindex	SM output parameter	RO	0x20 (32 _{dez})
	1C32:01	Sync mode	RW	0x0000 (0 _{dez})
	1C32:02	Cycle time	RW	0x000F4240 (1000000 _{dez})
	1C32:03	Shift time	RO	0x0000000 (0 _{dez})
	1C32:04	Sync modes supported	RO	0xC007 (49159 _{dez})
	1C32:05	Minimum cycle time	RO	0x00002710 (10000 _{dez})
	1C32:06	Calc and copy time	RO	0x0000000 (0 _{dez})
	1C32:07	Minimum delay time	RO	0x0000000 (0 _{dez})
	1C32:08	Command	RW	0x0000 (0 _{dez})
	1C32:09	Maximum Delay time	RO	0x0000000 (0 _{dez})
	1C32:0B	SM event missed counter	RO	0x0000 (0 _{dez})
	1C32:0C	Cycle exceeded counter	RO	0x0000 (0 _{dez})
	1C32:0D	Shift too short counter	RO	0x0000 (0 _{dez})
	1C32:20	Sync error	RO	0x00 (0 _{dez})
1C33:0 [▶ 73]	Subindex	SM input parameter	RO	0x20 (32 _{dez})
	1C33:01	Sync mode	RW	0x0000 (0 _{dez})
	1C33:02	Cycle time	RW	0x000F4240 (1000000 _{dez})
	1C33:03	Shift time	RO	0x0000000 (0 _{dez})
	1C33:04	Sync modes supported	RO	0xC007 (49159 _{dez})
	1C33:05	Minimum cycle time	RO	0x00002710 (10000 _{dez})
	1C33:06	Calc and copy time	RO	0x0000000 (0 _{dez})

Index (hex)		Name	Flags	Default-Wert
	1C33:07	Minimum delay time	RO	0x0000000 (0 _{dez})
	1C33:08	Command	RW	0x0000 (0 _{dez})
	1C33:09	Maximum Delay time	RO	0x0000000 (0 _{dez})
	1C33:0B	SM event missed counter	RO	0x0000 (0 _{dez})
	1C33:0C	Cycle exceeded counter	RO	0x0000 (0 _{dez})
	1C33:0D	Shift too short counter	RO	0x0000 (0 _{dez})
	1C33:20	Sync error	RO	0x00 (0 _{dez})
<u>6000:0</u> [▶ <u>74]</u>	Subindex	TC Inputs Ch.1	RO	0x11 (17 _{dez})
	6000:01	Underrange	RO	0x00 (0 _{dez})
	6000:02	Overrange	RO	0x00 (0 _{dez})
	6000:03	Limit 1	RO	0x00 (0 _{dez})
	6000:05	Limit 2	RO	0x00 (0 _{dez})
	6000:07	Error	RO	0x00 (0 _{dez})
	6000:0E	Sync error	RO	0x00 (0 _{dez})
	6000:0F	TxPDO State	RO	0x00 (0 _{dez})
	6000:10	TxPDO Toggle	RO	0x00 (0 _{dez})
	6000:11	Value	RO	0x0000 (0 _{dez})
<u>6010:0 [▶ 75]</u>	Subindex	TC Inputs Ch.2	RO	0x11 (17 _{dez})
	6010:01	Underrange	RO	0x00 (0 _{dez})
	6010:02	Overrange	RO	0x00 (0 _{dez})
	6010:03	Limit 1	RO	0x00 (0 _{dez})
	6010:05	Limit 2	RO	0x00 (0 _{dez})
	6010:07	Error	RO	0x00 (0 _{dez})
	6010:0E	Sync error	RO	0x00 (0 _{dez})
	6010:0F	TxPDO State	RO	0x00 (0 _{dez})
	6010:10	TxPDO Toggle	RO	0x00 (0 _{dez})
	6010:11	Value	RO	0x0000 (0 _{dez})
<u>6020:0 [▶ 75]</u>	Subindex	TC Inputs Ch.3	RO	0x11 (17 _{dez})
<u>5626.6 (</u> , <u>7.51</u>	6020:01	Underrange	RO	0x00 (0 _{dez})
	6020:02	Overrange	RO	0x00 (0 _{dez})
	6020:03	Limit 1	RO	0x00 (0 _{dez})
	6020:05	Limit 2	RO	0x00 (0 _{dez})
	6020:07	Error	RO	0x00 (0 _{dez})
	6020:0E	Sync error	RO	0x00 (0 _{dez})
	6020:0F	TxPDO State	RO	0x00 (0 _{dez})
	6020:10	TxPDO Toggle	RO	0x00 (0 _{dez})
	6020:11	Value	RO	0x0000 (0 _{dez})
<u>6030:0 [▶ 76]</u>	Subindex	TC Inputs Ch.4	RO	0x11 (17 _{dez})
	6030:01	Underrange	RO	0x00 (0 _{dez})
	6030:02	Overrange	RO	0x00 (0 _{dez})
	6030:03	Limit 1	RO	0x00 (0 _{dez})
	6030:05	Limit 2	RO	0x00 (0 _{dez})
	6030:07	Error	RO	0x00 (0 _{dez})
	6030:0E	Sync error	RO	0x00 (0 _{dez})
	6030:0F	TxPDO State	RO	0x00 (0 _{dez})
	6030:10	TxPDO Toggle	RO	0x00 (0 _{dez})
	6030:11	Value	RO	0x0000 (0 _{dez})
7000:0 [▶ 76]	Subindex	TC Outputs Ch.1	RO	0x11 (17 _{dez})
	7000:11	CJCompensation	RO	0x0000 (0 _{dez})
7010:0 [▶ 76]t	Subindex	TC Outputs Ch.2	RO	0x11 (17 _{dez})
	7010:11	CJCompensation	RO	0x0000 (0 _{dez})
<u>7020:0 [▶ 76]</u>	Subindex	TC Outputs Ch.3	RO	0x11 (17 _{dez})
	7020:11	CJCompensation	RO	0x0000 (0 _{dez})
7030:0 [▶ 76]	Subindex	TC Outputs Ch.4	RO	0x11 (17 _{dez})
	7030:11	CJCompensation	RO	0x0000 (0 _{dez})
	Subindex	TC Settings Ch.1	RW	0x1B (27 _{dez})
<u>8000:0 [▶ 63]</u>				
<u>8000:0 [▶ 63]</u>	8000:01	Enable user scale	RW	0x00 (0 _{dez})

Index (hex)		Name	Flags	Default-Wert
	8000:05	Siemens bits	RW	0x00 (0 _{dez})
	8000:06	Enable filter	RW	0x00 (0 _{dez})
	8000:07	Enable limit 1	RW	0x00 (0 _{dez})
	80:008	Enable limit 2	RW	0x00 (0 _{dez})
	8000:0A	Enable user calibration	RW	0x00 (0 _{dez})
	8000:0B	Enable vendor calibration	RW	0x01 (1 _{dez})
	8000:0C	Coldjunction compensation	RW	0x00 (0 _{dez})
	8000:0E	Swap limit bits	RW	0x00 (0 _{dez})
	8000:11	User scale offset	RW	0x0000 (0 _{dez})
	8000:12	User scale gain	RW	0x00010000 (65536 _{dez})
	8000:12	Limit 1	RW	0x0000 (0 _{dez})
	8000:14	Limit 2	RW	0x0000 (0 _{dez})
	8000:15	Filter settings	RW	0x0000 (0 _{dez})
	8000:16	Calibration intervall	RW	
				0x0000 (0 _{dez})
	8000:17	User calibration offset	RW	0x0000 (0 _{dez})
	8000:18	User calibration gain	RW	0x4000 (16384 _{dez})
	8000:19	Sensor Type	RW	0x0000 (0 _{dez})
	8000:1B	Wire calibration 1/32 Ohm	RW	0x0000 (0 _{dez})
800E:0 [▶_77]	Subindex	TC Internal data Ch.1	RO	0x05 (5 _{dez})
	800E:01	ADC raw value TC	RO	0x00000000 (0 _{dez})
	800E:02	ADC raw value PT1000	RO	0x0000000 (0 _{dez})
	800E:03	CJ temperature	RO	0x0000 (0 _{dez})
	800E:04	CJ voltage	RO	0x0000 (0 _{dez})
	800E:05	CJ resistor	RO	0x0000 (0 _{dez})
00F:0 [▶_77]	Subindex	TC Vendor data Ch.1	RW	0x04 (4 _{dez})
	800F:01	Calibration offset TC	RW	0x0000 (0 _{dez})
	800F:02	Calibration gain TC	RW	0x4000 (16384 _{dez})
	800F:03	Calibration offset CJ	RW	0x0000 (O _{dez})
	800F:04	Calibration gain CJ	RW	0x4000 (16384 _{dez})
8010:0 [▶_64]	Subindex	TC Settings Ch.2	RW	0x1B (27 _{dez})
00 10.0 [P <u>0-1]</u>	8010:01	Enable user scale	RW	0x00 (0 _{dez})
	8010:02	Presentation	RW	0x00 (0 _{dez})
	8010:05	Siemens bits	RW	0x00 (0 _{dez})
	8010:06	Enable filter	RW	0x00 (0 _{dez})
	8010:07	Enable limit 1	RW	0x00 (0 _{dez})
			RW	
	8010:08	Enable limit 2		0x00 (0 _{dez})
	8010:0A	Enable user calibration	RW	0x00 (0 _{dez})
	8010:0B	Enable vendor calibration	RW	0x01 (1 _{dez})
	8010:0C	Coldjunction compensation	RW	0x00 (0 _{dez})
	8010:0E	Swap limit bits	RW	0x00 (0 _{dez})
	8010:11	User scale offset	RW	0x0000 (0 _{dez})
	8010:12	User scale gain	RW	0x00010000 (65536 _{dez})
	8010:13	Limit 1	RW	0x0000 (0 _{dez})
	8010:14	Limit 2	RW	0x0000 (0 _{dez})
	8010:15	Filter settings	RW	0x0000 (0 _{dez})
	8010:16	Calibration intervall	RW	0x0000 (0 _{dez})
	8010:17	User calibration offset	RW	0x0000 (0 _{dez})
	8010:18	User calibration gain	RW	0x4000 (16384 _{dez})
	8010:19	Sensor Type	RW	0x0000 (O _{dez})
	8010:1B	Wire calibration 1/32 Ohm	RW	0x0000 (0 _{dez})
01E:0 [▶_77]	Subindex	TC Internal data Ch.2	RO	0x05 (5 _{dez})
<u> </u>	801E:01	ADC raw value TC	RO	0x00000000 (0 _{dez})
	801E:02	ADC raw value PT1000	RO	0x0000000 (0 _{dez})
	801E:03	C.L.veltage	RO	0x0000 (0 _{dez})
	801E:04	CJ voltage	RO	0x0000 (0 _{dez})
	801E:05 Subindex	CJ resistor	RO	0x0000 (0 _{dez})
01F:0 [▶_77]		TC Vendor data Ch.2	RW	0x04 (4 _{dez})

Index (hex)		Name	Flags	Default-Wert
	801F:02	Calibration gain TC	RW	0x4000 (16384 _{dez})
	801F:03	Calibration offset CJ	RW	0x0000 (0 _{dez})
	801F:04	Calibration gain CJ	RW	0x4000 (16384 _{dez})
<u>8020:0 [▶ 65]</u>	Subindex	TC Settings Ch.3	RW	0x1B (27 _{dez})
	8020:01	Enable user scale	RW	0x00 (0 _{dez})
	8020:02	Presentation	RW	0x00 (0 _{dez})
	8020:05	Siemens bits	RW	0x00 (0 _{dez})
	8020:06	Enable filter	RW	0x00 (0 _{dez})
	8020:07	Enable limit 1	RW	0x00 (0 _{dez})
	8020:08	Enable limit 2	RW	0x00 (0 _{dez})
	8020:0A	Enable user calibration	RW	0x00 (0 _{dez})
	8020:0B	Enable vendor calibration	RW	0x01 (1 _{dez})
	8020:0C	Coldjunction compensation	RW	0x00 (0 _{dez})
	8020:0E	Swap limit bits	RW	0x00 (0 _{dez})
	8020:11	User scale offset	RW	0x0000 (0 _{dez})
	8020:12	User scale gain	RW	0x00010000 (65536 _{dez})
	8020:13	Limit 1	RW	0x0000 (0 _{dez})
	8020:14	Limit 2	RW	0x0000 (0 _{dez})
	8020:15	Filter settings	RW	0x0000 (0 _{dez})
	8020:16	Calibration intervall	RW	0x0000 (0 _{dez})
	8020:17	User calibration offset	RW	0x0000 (0 _{dez})
	8020:18	User calibration gain	RW	0x4000 (16384 _{dez})
	8020:19	Sensor Type	RW	0x0000 (0 _{dez})
	8020:1B	Wire calibration 1/32 Ohm	RW	0x0000 (0 _{dez})
802E:0 [▶ 77]	Subindex	TC Internal data Ch.3	RO	0x05 (5 _{dez})
002L.0 [F_77]	802E:01	ADC raw value TC	RO	0x0000000 (0 _{dez})
	802E:02	ADC raw value PT1000	RO	0x0000000 (O _{dez})
	802E:03	CJ temperature	RO	0x0000 (0 _{dez})
	802E:04	CJ voltage	RO	0x0000 (O _{dez})
	802E:05	CJ resistor	RO	0x0000 (O _{dez})
802F:0 [▶ 78]	Subindex	TC Vendor data Ch.3	RW	0x04 (4 _{dez})
002F.0 [F 78]	802F:01	Calibration offset TC	RW	0x0000 (0 _{dez})
	802F:02	Calibration gain TC	RW	0x4000 (16384 _{dez})
	802F:03	Calibration offset CJ	RW	0x0000 (0 _{dez})
	802F:04	Calibration gain CJ	RW	0x4000 (16384 _{dez})
<u>8030:0 [▶ 67]</u>	Subindex	TC Settings Ch.4	RW	0x1B (27 _{dez})
8030.0 [F 07]	8030:01	Enable user scale	RW	0x00 (0 _{dez})
	8030:02	Presentation	RW	0x00 (0 _{dez})
	8030:05	Siemens bits	RW	0x00 (0 _{dez})
	8030:06	Enable filter	RW	0x00 (0 _{dez})
	8030:07	Enable limit 1	RW	0x00 (0 _{dez})
	8030:08	Enable limit 2	RW	0x00 (0 _{dez})
	8030:0A	Enable user calibration	RW	0x00 (0 _{dez})
	8030:0B	Enable vendor calibration	RW	0x01 (1 _{dez})
	8030:0C	Coldjunction compensation	RW	0x00 (0 _{dez})
	8030:0E	Swap limit bits	RW	0x00 (0 _{dez})
	8030:11	User scale offset	RW	0x000 (0 _{dez})
	8030:12	User scale gain	RW	0x0000 (0 _{dez} /
	8030:12	Limit 1	RW	0x0000 (0 _{dez})
	8030:14	Limit 2	RW	0x0000 (0 _{dez})
	8030:14	Filter settings	RW	0x0000 (0 _{dez})
	8030:16	Calibration intervall	RW	0x0000 (0 _{dez})
	8030:17	User calibration offset	RW	0x0000 (0 _{dez})
	8030:17	User calibration gain	RW	0x4000 (0 _{dez})
	8030:19	Sensor Type	RW	0x0000 (0 _{dez})
	8030:19	Wire calibration 1/32 Ohm	RW	
0025-0 11 703		TC Internal data Ch.4	RO	0x0000 (0 _{dez})
803E:0 [▶ 78]	Subindex			0x05 (5 _{dez})
	803E:01	ADC raw value TC	RO	0x00000000 (0 _{dez})

Index (hex)		Name	Flags	Default-Wert
	803E:02	ADC raw value PT1000	RO	0x0000000 (0 _{dez})
	803E:03	CJ temperature	RO	0x0000 (0 _{dez})
	803E:04	CJ voltage	RO	0x0000 (0 _{dez})
	803E:05	CJ resistor	RO	0x0000 (0 _{dez})
803F:0 [▶ 78]	Subindex	TC Vendor data Ch.4	RW	0x04 (4 _{dez})
	803F:01	Calibration offset TC	RW	0x0000 (0 _{dez})
	803F:02	Calibration gain TC	RW	0x4000 (16384 _{dez})
	803F:03	Calibration offset CJ	RW	0x0000 (0 _{dez})
	803F:04	Calibration gain CJ	RW	0x4000 (16384 _{dez})
F000:0 [▶ 78]	Subindex	Modular device profile	RO	0x02 (2 _{dez})
	F000:01	Module index distance	RO	0x0010 (16 _{dez})
	F000:02	Maximum number of modules	RO	0x0004 (4 _{dez})
F008 [▶ 78]		Code word	RW	0x0000000 (0 _{dez})
F010:0 [▶ 78]	Subindex	Module list	RW	0x04 (4 _{dez})
	F010:01	SubIndex 001	RW	0x0000014A (330 _{dez})
	F010:02	SubIndex 002	RW	0x0000014A (330 _{dez})
	F010:03	SubIndex 003	RW	0x0000014A (330 _{dez})
	F010:04	SubIndex 004	RW	0x0000014A (330 _{dez})
F080:0 [▶ 79]	Subindex	Channel Enable	RO	0x04 (4 _{dez})
	F080:01	SubIndex 001	RW	0xFF (255 _{dez})
	F080:02	SubIndex 002	RW	0xFF (255 _{dez})
	F080:03	SubIndex 003	RW	0xFF (255 _{dez})
	F080:04	SubIndex 004	RW	0xFF (255 _{dez})

Legende

Flags:

RO (Read Only): dieses Objekt kann nur gelesen werden RW (Read/Write): dieses Objekt kann gelesen und beschrieben werden

5.4 Objektbeschreibung und Parametrierung

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description. Es wird empfohlen, die entsprechende aktuellste XML-Datei im Download-Bereich auf der Beckhoff Website herunterzuladen und entsprechend der Installationsanweisungen zu installieren.

Parametrierung über das CoE-Verzeichnis (CAN over EtherCAT)

Die Parametrierung des EtherCAT Gerätes wird über den CoE - Online Reiter (mit Doppelklick auf das entsprechende Objekt) bzw. über den Prozessdatenreiter (Zuordnung der PDOs) vorgenommen.

Einführung

In der CoE-Übersicht sind Objekte mit verschiedenem Einsatzzweck enthalten:

- · Objekte die zur Parametrierung bei der Inbetriebnahme nötig sind
- Objekte die zum regulären Betrieb [68] z. B. durch ADS-Zugriff bestimmt sind
- Objekte die interne Settings [▶ 62] anzeigen und ggf. nicht veränderlich sind
- Weitere Profilspezifische Objekte [> 74], die Ein- und Ausgänge, sowie Statusinformationen anzeigen

Im Folgenden werden zuerst die im normalen Betrieb benötigten Objekte vorgestellt, dann die für eine vollständige Übersicht noch fehlenden Objekte.

5.4.1 Objekte zur Parametrierung bei der Inbetriebnahme

Index 1011: Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default para- meters	Herstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01	SubIndex 001	Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt.	UINT32	1	0x0000000 (0 _{dez})

62 Version: 1.4 EPP3314-0002

Index 8000: TC Settings Ch.1

Index (hex)	Name	Bede	Bedeutung		Flags	Default
8000:0	TC Settings Ch.1	Maxi	maler Subindex	UINT8	RO	0x1B (27 _{dez})
8000:01	Enable user scale	Aktiv	riert die Benutzerskalierung	BOOLEAN	RW	0x00 (0 _{dez})
8000:02	Presentation	Dars	tellung des Messwertes	BIT3	RW	0x00 (0 _{dez})
		0	mit Vorzeichen im Zweierkomplement	1		
		1	Höchstwertiges Bit als Vorzeichen			
		2	Hochauflösend (1/100°C Schritte)	1		
8000:05	Siemens bits	Die S	65 Bits werden in den drei niederwertigen Bits eingedet	BOOLEAN	RW	0x00 (0 _{dez})
8000:06	Enable filter	Dies	er Parameter ist wirkungslos. Der Filter ist immer ak-	BOOLEAN	RW	0x00 (0 _{dez})
8000:07	Enable limit 1	Aktiv	riert die Limitprüfung für Limit 1	BOOLEAN	RW	0x00 (0 _{dez})
80:008	Enable limit 2	Aktiv	riert die Limitprüfung für Limit 2	BOOLEAN	RW	0x00 (0 _{dez})
8000:0A	Enable user calibration	Aktiv	iert die Anwenderkalibrierung	BOOLEAN	RW	0x00 (0 _{dez})
8000:0B	Enable vendor cali- bration	Aktiv	iert die Herstellerkalibrierung	BOOLEAN	RW	0x01 (1 _{dez})
8000:0C	Cold junction com-	Kalts	stellenkompensation	BIT2	RW	0x00 (0 _{dez})
	pensation	0	Die Kaltstellenkompensation erfolgt über den Pt1000 im Stecker.			
		1	Die Kaltstellenkompensation ist nicht aktiv.	-		
		2	Die Kaltstellenkompensation erfolgt über die Prozessdaten.	-		
		3	Bewirkt das gleiche wie der Wert 0.			
8000:0E	Swap limit bits		ccht die beiden Limit-Bits um Kompatibilität zu älte- Hardware-Versionen herzustellen.	BOOLEAN	RW	0x00 (0 _{dez})
8000:11	User scale offset	Anw	enderskalierung: Offset	INT16	RW	0x0000 (0 _{dez})
8000:12	User scale gain	Anw	enderskalierung: Gain	INT32	RW	0x00010000 (65536 _{dez})
8000:13	Limit 1	Wert	für das Limit 1	INT16	RW	0x0000 (0 _{dez})
8000:14	Limit 2	Wert	für das Limit 2	INT16	RW	0x0000 (0 _{dez})
8000:15	Filter settings	Filter	reinstellungen (Ch1. gilt für alle Kanäle)	UINT16	RW	0x0000 (0 _{dez})
		0	50 Hz	1		
		1	60 Hz	1		
		2	100 Hz	1		
		3	500 Hz	-		
		4	1 kHz,	1		
		5	2 kHz	1		
		6	3,75 kHz	1		
		7	7,5 kHz	-		
		8	15 kHz	1		
		9	30 kHz	1		
		10	5 Hz	†		
		11	10 Hz	-		
8000:16	Calibration intervall	-	rviert	UINT16	RW	0x0000 (0 _{dez})
8000:17	User calibration offset	_	enderkalibrierung: Offset	INT16	RW	0x0000 (0 _{dez})
8000:17	User calibration gain	_	enderkalibrierung: Gain	UINT16	RW	0x4000 (O _{dez})
5500.10	Soor Gallstation galli	,	ondonamentorung. Odin		1.00	(16384 _{dez})

Index 8000: TC Settings Ch.1

Index (hex)	Name	Bedeutung		Datentyp	Flags	Default
8000:19	Sensor Type	Thermoeleme	nt	UINT16	RW	0x0000 (0 _{dez})
		0 Typ K -2	200°C bis 1370°C			
		1 Typ J -1	00°C bis 1200°C	-		
		2 Typ L 0	°C bis 900°C			
		3 Typ E -1	00°C bis 1000°C			
		4 Typ T -2	00°C bis 400°C			
		5 Typ N -1	00°C bis 1300°C			
		6 Typ U 0°	°C bis 600°C	_		
		7 Typ B 60	00°C bis 1800°C			
		8 Typ R 0°	°C bis 1767°C			
		9 Typ S 0°	°C bis 1760°C			
		10 Typ C 0°	°C bis 2320°C	-		
		100 ± 30 mV	′ (1 μV Auflösung)			
		101 ± 60 mV	′ (2 μV Auflösung)			
		102 ± 75 mV	′ (4 μV Auflösung)			
8000:1B	Wire calibration 1/32 Ohm		nt-Messungen: liderstandswert der Zuleitung des Tempera- 1/32 Ohm).	INT16	RW	0x0000 (0 _{dez})

Index 8010: TC Settings Ch.2

Index (hex)	Name	Bed	eutung	Datentyp	Flags	Default
8010:0	TC Settings Ch.2	Max	Maximaler Subindex		RO	0x1B (27 _{dez})
8010:01	Enable user scale	Aktiv	riert die Benutzerskalierung	BOOLEAN	RW	0x00 (0 _{dez})
8010:02	Presentation	Dars	tellung des Messwertes	BIT3	RW	V 0x00 (0 _{dez})
		0	mit Vorzeichen im Zweierkomplement			
		1	Höchstwertiges Bit als Vorzeichen			
		2	Hochauflösend (1/100°C Schritte)			
8010:05	Siemens bits	Die S blen	S5 Bits werden in den drei niederwertigen Bits eingedet	BOOLEAN	RW	0x00 (0 _{dez})
8010:06	Enable filter	Dies tiv.	er Parameter ist wirkungslos. Der Filter ist immer ak-	BOOLEAN	RW	0x00 (0 _{dez})
8010:07	Enable limit 1	Aktiv	riert die Limitprüfung für Limit 1	BOOLEAN	RW	0x00 (0 _{dez})
8010:08	Enable limit 2	Aktiv	riert die Limitprüfung für Limit 2	BOOLEAN	RW	0x00 (0 _{dez})
8010:0A	Enable user calibration	Aktiv	ktiviert die Anwenderkalibrierung		RW	0x00 (0 _{dez})
8010:0B	Enable vendor cali- bration	Aktiv	Aktiviert die Herstellerkalibrierung		RW	0x01 (1 _{dez})
8010:0C	Cold junction com-	Kalts	stellenkompensation	BIT2	RW	0x00 (0 _{dez})
	pensation	0	Die Kaltstellenkompensation erfolgt über den Pt1000 im Stecker.			
		1	Die Kaltstellenkompensation ist nicht aktiv.			
		2	Die Kaltstellenkompensation erfolgt über die Prozessdaten.			
		3	Die Kaltstellenkompensation erfolgt über den Pt1000 im Stecker von Kanal 1.			
8010:0E	Swap limit bits		scht die beiden Limit-Bits um Kompatibilität zu älte- Hardware-Versionen herzustellen.	BOOLEAN	RW	0x00 (0 _{dez})
8010:11	User scale offset	Anw	enderskalierung: Offset	INT16	RW	0x0000 (0 _{dez})
8010:12	User scale gain	Anw	enderskalierung: Gain	INT32	RW	0x00010000 (65536 _{dez})
8010:13	Limit 1	Wer	t für das Limit 1	INT16	RW	0x0000 (0 _{dez})
8010:14	Limit 2	Wer	t für das Limit 2	INT16	RW	0x0000 (0 _{dez})

Index 8010: TC Settings Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8010:15	Filter settings	Dieser Parameter ist wirkungslos. Der entsprechende	UINT16	RW	0x0000 (0 _{dez})
		Parameter von Kanal 1 gilt für alle Kanäle: 0x8000:15			
		"Filter Settings" [▶ 63].			
8010:16	Calibration intervall	Reserviert	UINT16	RW	0x0000 (0 _{dez})
8010:17	User calibration offset	Anwenderkalibrierung: Offset	INT16	RW	0x0000 (0 _{dez})
8010:18	User calibration gain	Anwenderkalibrierung: Gain	UINT16	RW	0x4000 (16384 _{dez})
8010:19	Sensor Type	Thermoelement	UINT16	RW	0x0000 (0 _{dez})
		0 Typ K -200°C bis 1370°C			
		1 Typ J -100°C bis 1200°C			
		2 Typ L 0°C bis 900°C			
		3 Typ E -100°C bis 1000°C			
		4 Typ T -200°C bis 400°C			
		5 Typ N -100°C bis 1300°C			
		6 Typ U 0°C bis 600°C			
		7 Typ B 600°C bis 1800°C			
		8 Typ R 0°C bis 1767°C			
		9 Typ S 0°C bis 1760°C			
		10 Typ C 0°C bis 2320°C			
		100 ± 30 mV (1 μV Auflösung)			
		101 ± 60 mV (2 μV Auflösung)			
		102 ± 75 mV (4 μV Auflösung)			
8010:1B	Wire calibration 1/32 Ohm	Nur für 2-Draht-Messungen: Enthält den Widerstandswert der Zuleitung des Temperatursensors (in 1/32 Ohm).	INT16	RW	0x0000 (0 _{dez})

Index 8020: TC Settings Ch.3

Index (hex)	Name	Bede	eutung	Datentyp	Flags	Default
8020:0	TC Settings Ch.3	Maxi	maler Subindex	UINT8	RO	0x1B (27 _{dez})
8020:01	Enable user scale	Aktiv	riert die Benutzerskalierung	BOOLEAN	RW	0x00 (0 _{dez})
8020:02	Presentation	Dars	tellung des Messwertes	BIT3	RW	0x00 (0 _{dez})
		0	mit Vorzeichen im Zweierkomplement			
		1	Höchstwertiges Bit als Vorzeichen]		
		2	Hochauflösend (1/100°C Schritte)			
8020:05	Siemens bits	Die S	65 Bits werden in den drei niederwertigen Bits eingedet	BOOLEAN	RW	0x00 (0 _{dez})
8020:06	Enable filter	Dies	er Parameter ist wirkungslos. Der Filter ist immer ak-	BOOLEAN	RW	0x00 (0 _{dez})
8020:07	Enable limit 1	Aktiv	riert die Limitprüfung für Limit 1	BOOLEAN	RW	0x00 (0 _{dez})
8020:08	Enable limit 2	Aktiv	riert die Limitprüfung für Limit 2	BOOLEAN	RW	0x00 (0 _{dez})
8020:0A	Enable user calibration	Aktiv	ktiviert die Anwenderkalibrierung		RW	0x00 (0 _{dez})
8020:0B	Enable vendor cali- bration	Aktiv	iert die Herstellerkalibrierung	BOOLEAN	RW	0x01 (1 _{dez})

Index 8020: TC Settings Ch.3

Index (hex)	Name	Bede	eutung	Datentyp	Flags	Default
8020:0C	Cold junction com-	Kalts	stellenkompensation	BIT2	RW	0x00 (0 _{dez})
	pensation	0	Die Kaltstellenkompensation erfolgt über den Pt1000 im Stecker.	_		
		1	Die Kaltstellenkompensation ist nicht aktiv.			
		2	Die Kaltstellenkompensation erfolgt über die Prozessdaten.			
		3	Die Kaltstellenkompensation erfolgt über den Pt1000 im Stecker von Kanal 1.			
8020:0E	Swap limit bits		scht die beiden Limit-Bits um Kompatibilität zu älte- Hardware-Versionen herzustellen.	BOOLEAN	RW	0x00 (0 _{dez})
8020:11	User scale offset	Anw	enderskalierung: Offset	INT16	RW	0x0000 (0 _{dez})
8020:12	User scale gain	Anw	enderskalierung: Gain	INT32	RW	0x00010000 (65536 _{dez})
8020:13	Limit 1	Wert	für das Limit 1	INT16	RW	0x0000 (0 _{dez})
8020:14	Limit 2	Wert	für das Limit 2	INT16	RW	0x0000 (0 _{dez})
8020:15	Pa	Para	er Parameter ist wirkungslos. Der entsprechende meter von Kanal 1 gilt für alle Kanäle: <u>0x8000:15</u> er <u>Settings</u> " [▶ 63].	UINT16	RW	0x0000 (0 _{dez})
8020:16	Calibration intervall	rese	rviert	UINT16	RW	0x0000 (0 _{dez})
8020:17	User calibration offset	Anw	enderkalibrierung: Offset	INT16	RW	0x0000 (0 _{dez})
8020:18	User calibration gain	Anw	enderkalibrierung: Gain	UINT16	RW	0x4000 (16384 _{dez})
8020:19	Sensor Type	Ther	moelement	UINT16	RW	0x0000 (0 _{dez})
		0	Typ K -200°C bis 1370°C			
		1	Typ J -100°C bis 1200°C			
		2	Typ L 0°C bis 900°C			
		3	Typ E -100°C bis 1000°C			
		4	Typ T -200°C bis 400°C			
		5	Typ N -100°C bis 1300°C			
		6	Typ U 0°C bis 600°C			
		7	Typ B 600°C bis 1800°C			
		8	Typ R 0°C bis 1767°C			
		9	Typ S 0°C bis 1760°C			
		10	Typ C 0°C bis 2320°C			
		100	± 30 mV (1 μV Auflösung)			
		101	± 60 mV (2 μV Auflösung)			
		102	± 75 mV (4 μV Auflösung)			
8020:1B	Wire calibration 1/32 Ohm	Enth	für 2-Draht-Messungen: ält den Widerstandswert der Zuleitung des Tempera ensors (in 1/32 Ohm).	INT16	RW	0x0000 (0 _{dez})

Index 8030: TC Settings Ch.4

Index (hex)	Name	Bed	eutung	Datentyp	Flags	Default
8030:0	TC Settings Ch.4	Maxi	maler Subindex	UINT8	RO	0x1B (27 _{dez})
8030:01	Enable user scale	Aktiv	Aktiviert die Benutzerskalierung		RW	0x00 (0 _{dez})
8030:02	Presentation	Dars	tellung des Messwertes	BIT3	RW	0x00 (0 _{dez})
		0	mit Vorzeichen im Zweierkomplement	1		
		1	Höchstwertiges Bit als Vorzeichen			
		2	Hochauflösend (1/100°C Schritte)			
8030:05	Siemens bits	Die S	S5 Bits werden in den drei niederwertigen Bits eingedet	BOOLEAN	RW	0x00 (0 _{dez})
8030:06	Enable filter	Dies tiv.	er Parameter ist wirkungslos. Der Filter ist immer ak-	BOOLEAN	RW	0x00 (0 _{dez})
8030:07	Enable limit 1	Aktiv	riert die Limitprüfung für Limit 1	BOOLEAN	RW	0x00 (0 _{dez})
8030:08	Enable limit 2	Aktiv	riert die Limitprüfung für Limit 2	BOOLEAN	RW	0x00 (0 _{dez})
8030:0A	Enable user calibration	Aktiv	riert die Anwenderkalibrierung	BOOLEAN	RW	0x00 (0 _{dez})
8030:0B	Enable vendor cali- bration	Aktiv	Aktiviert die Herstellerkalibrierung BOOLEAN R		RW	0x01 (1 _{dez})
8030:0C	Cold junction com-	Kalts	stellenkompensation	BIT2	RW	0x00 (0 _{dez})
	pensation	0	Die Kaltstellenkompensation erfolgt über den Pt1000 im Stecker.			
		1	Die Kaltstellenkompensation ist nicht aktiv.	1		
		2	Die Kaltstellenkompensation erfolgt über die Prozessdaten.	-		
		3	Die Kaltstellenkompensation erfolgt über den Pt1000 im Stecker von Kanal 1.	-		
8030:0E	Swap limit bits		scht die beiden Limit-Bits um Kompatibilität zu älte- Hardware-Versionen herzustellen.	BOOLEAN	RW	0x00 (0 _{dez})
8030:11	User scale offset	Anw	enderskalierung: Offset	INT16	RW	0x0000 (0 _{dez})
8030:12	User scale gain	Anw	enderskalierung: Gain	INT32	RW	0x00010000 (65536 _{dez})
8030:13	Limit 1	Wert	für das Limit 1	INT16	RW	0x0000 (0 _{dez})
8030:14	Limit 2	Wert	für das Limit 2	INT16	RW	0x0000 (0 _{dez})
8030:15	Filter settings	Para	er Parameter ist wirkungslos. Der entsprechende meter von Kanal 1 gilt für alle Kanäle: 0x8000:15 er Settings" [• 63].	UINT16	RW	0x0000 (0 _{dez})
8030:16	Calibration intervall	+	rviert	UINT16	RW	0x0000 (0 _{dez})
8030:17	User calibration offset	Anw	enderkalibrierung: Offset	INT16	RW	0x0000 (0 _{dez})
8030:18	User calibration gain	_	enderkalibrierung: Gain	UINT16	RW	0x4000 (16384 _{dez})

Index 8030: TC Settings Ch.4

Index (hex)	Name	Bede	eutung	Datentyp	Flags	Default	
8030:19	Sensor Type	Theri	moelement	UINT16	RW	0x0000 (0 _{dez})	
		0	Typ K -200°C bis 1370°C				
		1	Typ J -100°C bis 1200°C				
		2	Typ L 0°C bis 900°C				
		3	Typ E -100°C bis 1000°C				
		4	Typ T -200°C bis 400°C				
		5	Typ N -100°C bis 1300°C				
		6	Typ U 0°C bis 600°C				
		7	Typ B 600°C bis 1800°C				
		8	Typ R 0°C bis 1767°C				
		9	Typ S 0°C bis 1760°C				
		10	Typ C 0°C bis 2320°C				
		100	± 30 mV (1 μV Auflösung)				
		101	± 60 mV (2 μV Auflösung)				
		102	± 75 mV (4 μV Auflösung)				
8030:1B	· · · · · · · · · · · · · · · · · · ·	RW	0x0000 (0 _{dez})				

5.4.2 Objekte für den regulären Betrieb

Die EP3314 verfügt über keine solchen Objekte.

5.4.3 Standardobjekte (0x1000-0x1FFF)

Die Standardobjekte haben für alle EtherCAT-Slaves die gleiche Bedeutung.

Index 1000: Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0	Device type	Geräte-Typ des EtherCAT-Slaves: Das Low-Word enthält	UINT32	RO	0x014A1389
		das verwendete CoE Profil (5001). Das High-Word ent-			(21631881 _{dez})
		hält das Modul Profil entsprechend des Modular Device			
		Profile.			

Index 1008: Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EPP3314-000
					2

Index 1009: Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	04

Index 100A: Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default	
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	06	

Index 1018: Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x64769529 (1685493033 _d
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low-Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x00120002 (1179650 _{dez})
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x00000000 (0 _{dez})

Index 10F0: Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F0:0		Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT- Slaves	UINT32	RO	0x0000000 (0 _{dez})

68 Version: 1.4 EPP3314-0002

Index 1600: TC RxPDO-Map Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	TC RxPDO-Map Outputs Ch.1	PDO Mapping RxPDO 1	UINT8	RO	0x01 (1 _{dez})
1600:01		1. PDO Mapping entry (object 0x7000 (TC Outputs Ch.1), entry 0x11 (CJCompensation))	UINT32	RO	0x7000:11, 16

Index 1601: TC RxPDO-Map Outputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	TC RxPDO-Map Outputs Ch.2	PDO Mapping RxPDO 2	UINT8	RO	0x01 (1 _{dez})
1601:01	SubIndex 001	PDO Mapping entry (object 0x7010 (TC Outputs Ch.2), entry 0x11 (CJCompensation))	UINT32	RO	0x7010:11, 16

Index 1602: TC RxPDO-Map Outputs Ch.3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1602:0	TC RxPDO-Map Outputs Ch.3	PDO Mapping RxPDO 3	UINT8	RO	0x01 (1 _{dez})
1602:01	SubIndex 001	PDO Mapping entry (object 0x7020 (TC Outputs Ch.3), entry 0x11 (CJCompensation))	UINT32	RO	0x7020:11, 16

Index 1603: TC RxPDO-Map Outputs Ch.4

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1603:0	TC RxPDO-Map Outputs Ch.4	PDO Mapping RxPDO 4	UINT8	RO	0x01 (1 _{dez})
1603:01	I .	1. PDO Mapping entry (object 0x7030 (TC Outputs Ch.4), entry 0x11 (CJCompensation))	UINT32	RO	0x7030:11, 16

Index 1A00: TC TxPDO-Map TCInputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	TC TxPDO-Map TCInputs Ch.1	PDO Mapping TxPDO 1	UINT8	RO	0x0A (10 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (TC Inputs Ch.1), entry 0x01 (Underrange))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (TC Inputs Ch.1), entry 0x02 (Overrange))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (TC Inputs Ch.1), entry 0x03 (Limit 1))	UINT32	RO	0x6000:03, 2
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (TC Inputs Ch.1), entry 0x05 (Limit 2))	UINT32	RO	0x6000:05, 2
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (TC Inputs Ch.1), entry 0x07 (Error))	UINT32	RO	0x6000:07, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (TC Inputs Ch.1), entry 0x0E (Sync error))	UINT32	RO	0x6000:0E, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x1800, entry 0x07)	UINT32	RO	0x1800:07, 1
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x1800, entry 0x09)	UINT32	RO	0x1800:09, 1
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (TC Inputs Ch.1), entry 0x11 (Value))	UINT32	RO	0x6000:11, 16

Index 1A01: TC TxPDO-Map TCInputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	TC TxPDO-Map TCInputs Ch.2	PDO Mapping TxPDO 2	UINT8	RO	0x0A (10 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (TC Inputs Ch.2), entry 0x01 (Underrange))	UINT32	RO	0x6010:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (TC Inputs Ch.2), entry 0x02 (Overrange))	UINT32	RO	0x6010:02, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (TC Inputs Ch.2), entry 0x03 (Limit 1))	UINT32	RO	0x6010:03, 2
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (TC Inputs Ch.2), entry 0x05 (Limit 2))	UINT32	RO	0x6010:05, 2
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (TC Inputs Ch.2), entry 0x07 (Error))	UINT32	RO	0x6010:07, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1A01:07	SubIndex 007	7. PDO Mapping entry (object 0x6010 (TC Inputs Ch.2), entry 0x0E (Sync error))	UINT32	RO	0x6010:0E, 1
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x1801, entry 0x07)	UINT32	RO	0x1801:07, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x1801, entry 0x09)	UINT32	RO	0x1801:09, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (object 0x6010 (TC Inputs Ch.2), entry 0x11 (Value))	UINT32	RO	0x6010:11, 16

Index 1A02: TC TxPDO-Map TCInputs Ch.3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	TC TxPDO-Map TCInputs Ch.3	PDO Mapping TxPDO 3	UINT8	RO	0x0A (10 _{dez})
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (TC Inputs Ch.3), entry 0x01 (Underrange))	UINT32	RO	0x6020:01, 1
1A02:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (TC Inputs Ch.3), entry 0x02 (Overrange))	UINT32	RO	0x6020:02, 1
1A02:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (TC Inputs Ch.3), entry 0x03 (Limit 1))	UINT32	RO	0x6020:03, 2
1A02:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (TC Inputs Ch.3), entry 0x05 (Limit 2))	UINT32	RO	0x6020:05, 2
1A02:05	SubIndex 005	5. PDO Mapping entry (object 0x6020 (TC Inputs Ch.3), entry 0x07 (Error))	UINT32	RO	0x6020:07, 1
1A02:06	SubIndex 006	6. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1A02:07	SubIndex 007	7. PDO Mapping entry (object 0x6020 (TC Inputs Ch.3), entry 0x0E (Sync error))	UINT32	RO	0x6020:0E, 1
1A02:08	SubIndex 008	8. PDO Mapping entry (object 0x1802, entry 0x07)	UINT32	RO	0x1802:07, 1
1A02:09	SubIndex 009	9. PDO Mapping entry (object 0x1802, entry 0x09)	UINT32	RO	0x1802:09, 1
1A02:0A	SubIndex 010	10. PDO Mapping entry (object 0x6020 (TC Inputs Ch.3), entry 0x11 (Value))	UINT32	RO	0x6020:11, 16

70 Version: 1.4 EPP3314-0002

Index 1A03: TC TxPDO-Map TCInputs Ch.4

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	TC TxPDO-Map TCInputs Ch.4	PDO Mapping TxPDO 4	UINT8	RO	0x0A (10 _{dez})
1A03:01	SubIndex 001	1. PDO Mapping entry (object 0x6030 (TC Inputs Ch.4), entry 0x01 (Underrange))	UINT32	RO	0x6030:01, 1
1A03:02	SubIndex 002	2. PDO Mapping entry (object 0x6030 (TC Inputs Ch.4), entry 0x02 (Overrange))	UINT32	RO	0x6030:02, 1
1A03:03	SubIndex 003	3. PDO Mapping entry (object 0x6030 (TC Inputs Ch.4), entry 0x03 (Limit 1))	UINT32	RO	0x6030:03, 2
1A03:04	SubIndex 004	4. PDO Mapping entry (object 0x6030 (TC Inputs Ch.4), entry 0x05 (Limit 2))	UINT32	RO	0x6030:05, 2
1A03:05	SubIndex 005	5. PDO Mapping entry (object 0x6030 (TC Inputs Ch.4), entry 0x07 (Error))	UINT32	RO	0x6030:07, 1
1A03:06	SubIndex 006	6. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1A03:07	SubIndex 007	7. PDO Mapping entry (object 0x6030 (TC Inputs Ch.4), entry 0x0E (Sync error))	UINT32	RO	0x6030:0E, 1
1A03:08	SubIndex 008	8. PDO Mapping entry (object 0x1803, entry 0x07)	UINT32	RO	0x1803:07, 1
1A03:09	SubIndex 009	9. PDO Mapping entry (object 0x1803, entry 0x09)	UINT32	RO	0x1803:09, 1
1A03:0A	SubIndex 010	10. PDO Mapping entry (object 0x6030 (TC Inputs Ch.4), entry 0x11 (Value))	UINT32	RO	0x6030:11, 16

Index 1C00: Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12: RxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x00 (0 _{dez})
1C12:01	Subindex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:02	Subindex 002	2. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:03	Subindex 003	3. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:04	Subindex 004	4. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})

Index 1C13: TxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x04 (4 _{dez})
1C13:01	Subindex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})
1C13:02	Subindex 002	2. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A01 (6657 _{dez})
1C13:03	Subindex 003	3. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A02 (6658 _{dez})
1C13:04	Subindex 004	4. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A03 (6659 _{dez})

Index 1C32: SM output parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez})
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0000 (0 _{dez})
		0: Free Run			
		1: Synchron with SM 2 Event			
		2: DC-Mode - Synchron with SYNC0 Event			
		3: DC-Mode - Synchron with SYNC1 Event			
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x000F4240
		Free Run: Zykluszeit des lokalen Timers			(1000000 _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:04	Sync modes suppor-	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	ted	Bit 0 = 1: Free Run wird unterstützt			(49159 _{dez})
		Bit 1 = 1: Synchron with SM 2 Event wird unterstützt			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC- Mode)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 72])			
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x00002710 (10000 _{dez})
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
1C32:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})
1C32:08	Command	0: Messung der lokalen Zykluszeit wird gestoppt	UINT16	RW	0x0000 (0 _{dez})
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries <u>0x1C32:03 [▶ 72]</u> , <u>0x1C32:05 [▶ 72]</u> ,			
		0x1C32:06 [▶ 72], 0x1C32:09 [▶ 72], 0x1C33:03 [▶ 73],			
		0x1C33:06 [▶ 72], 0x1C33:09 [▶ 73] werden mit den ma-			
		ximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zu-			
		rückgesetzt			
1C32:09	Maximum Delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez})

72 Version: 1.4 EPP3314-0002

Index 1C33: SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0000 (0 _{dez})
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	wie <u>0x1C32:02</u> [▶ <u>72]</u>	UINT32	RW	0x000F4240 (1000000 _{dez})
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:04	Sync modes suppor-	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	ted	Bit 0: Free Run wird unterstützt			(49159 _{dez})
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch			
		Beschreiben von <u>0x1C32:08 [▶ 72]</u> oder <u>0x1C33:08</u> [▶ <u>73]</u>)			
1C33:05	Minimum cycle time	wie <u>0x1C32:05</u> [▶ <u>72]</u>	UINT32	RO	0x00002710 (10000 _{dez})
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})
1C33:08	Command	wie <u>0x1C32:08 [▶ 72]</u>	UINT16	RW	0x0000 (0 _{dez})
1C33:09	Maximum Delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:0B	SM event missed counter	wie <u>0x1C32:11 [▶ 72]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0C	Cycle exceeded counter	wie <u>0x1C32:12 [▶ 72]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0D	Shift too short counter	wie <u>0x1C32:13 [▶ 72]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	wie <u>0x1C32:32 [▶ 72]</u>	BOOLEAN	RO	0x00 (0 _{dez})

5.4.4 Profilspezifische Objekte (0x6000-0xFFFF)

Die profilspezifischen Objekte haben für alle EtherCAT Slaves, die das Profil 5001 unterstützen, die gleiche Bedeutung.

Index 6000: TC Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6000:0	TC Inputs Ch.1	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
6000:01	Underrange	Wird gesetzt, wenn der Arbeitsbereich des Sensors un- terschritten wird oder das Prozessdatum den niedrigst- möglichen Wert enthält.	BOOLEAN	RO	0x00 (0 _{dez})
6000:02	Overrange	Wird gesetzt, wenn der Arbeitsbereich des Sensors über- schritten wird oder das Prozessdatum den höchstmögli- chen Wert enthält.	BOOLEAN	RO	0x00 (0 _{dez})
6000:03	Limit 1	Nur bei aktivierter Limit-Prüfung	BIT2	RO	0x00 (0 _{dez})
		1 Eingestelltes Limit unterschritten			
		2 Eingestelltes Limit überschritten			
		3 Eingestelltes Limit erreicht			
6000:05	Limit 2	Nur bei aktivierter Limit-Prüfung	BIT2	RO	0x00 (0 _{dez})
		1 Eingestelltes Limit unterschritten			
		2 Eingestelltes Limit überschritten			
		3 Eingestelltes Limit erreicht			
6000:07	Error	Das Error-Bit wird gesetzt, wenn das Prozessdatum ungültig ist (Leitungsbruch, Overrange, Underrange).	BOOLEAN	RO	0x00 (0 _{dez})
6000:0E	Sync error	Nur in DC: Bit wird gesetzt, wenn der Slave nicht im Stande ist, Synchron zum Master zu arbeiten da er die Zykluszeit nicht einhalten kann.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0F	TxPDO State	Gültigkeit der Daten der zugehörigen TxPDO	BOOLEAN	RO	0x00 (0 _{dez})
		0 valid			
		1 invalid			
6000:10	TxPDO Toggle	TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:11	Value	Analoges Eingangsdatum (Auflösung in 1/10 °C)	INT16	RO	0x0000 (0 _{dez})

Index 6010: TC Inputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6010:0	TC Inputs Ch.2	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
6010:01	Underrange	Wird gesetzt, wenn der Arbeitsbereich des Sensors un- terschritten wird oder das Prozessdatum den niedrigst- möglichen Wert enthält.	BOOLEAN	RO	0x00 (0 _{dez})
6010:02	Overrange	Wird gesetzt, wenn der Arbeitsbereich des Sensors über schritten wird oder das Prozessdatum den höchstmögli- chen Wert enthält.	BOOLEAN	RO	0x00 (0 _{dez})
6010:03	Limit 1	Nur bei aktivierter Limit-Prüfung	BIT2	RO	0x00 (0 _{dez})
		1 Eingestelltes Limit unterschritten			
		2 Eingestelltes Limit überschritten			
		3 Eingestelltes Limit erreicht			
6010:05	Limit 2	Nur bei aktivierter Limit-Prüfung	BIT2	RO	0x00 (0 _{dez})
		1 Eingestelltes Limit unterschritten			
		2 Eingestelltes Limit überschritten			
		3 Eingestelltes Limit erreicht			
6010:07	Error	Das Error-Bit wird gesetzt, wenn das Prozessdatum ungültig ist (Leitungsbruch, Overrange, Underrange).	BOOLEAN	RO	0x00 (0 _{dez})
6010:0E	Sync error	Nur in DC: Bit wird gesetzt, wenn der Slave nicht im Stande ist, Synchron zum Master zu arbeiten da er die Zykluszeit nicht einhalten kann.	BOOLEAN	RO	0x00 (0 _{dez})
6010:0F	TxPDO State	Gültigkeit der Daten der zugehörigen TxPDO	BOOLEAN	RO	0x00 (0 _{dez})
		0 valid			
		1 invalid	1		
6010:10	TxPDO Toggle	TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6010:11	Value	Analoges Eingangsdatum (Auflösung in 1/10 °C)	INT16	RO	0x0000 (0 _{dez})

Index 6020: TC Inputs Ch.3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6020:0	TC Inputs Ch.3	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
6020:01	Underrange	Wird gesetzt, wenn der Arbeitsbereich des Sensors ur terschritten wird oder das Prozessdatum den niedrigst möglichen Wert enthält.		RO	0x00 (0 _{dez})
6020:02	Overrange	Wird gesetzt, wenn der Arbeitsbereich des Sensors üb schritten wird oder das Prozessdatum den höchstmög chen Wert enthält.		RO	0x00 (0 _{dez})
6020:03	Limit 1	Nur bei aktivierter Limit-Prüfung	BIT2	RO	0x00 (0 _{dez})
		1 Eingestelltes Limit unterschritten			
		2 Eingestelltes Limit überschritten			
		3 Eingestelltes Limit erreicht			
6020:05	Limit 2	Nur bei aktivierter Limit-Prüfung	BIT2	RO	0x00 (0 _{dez})
		1 Eingestelltes Limit unterschritten			
		2 Eingestelltes Limit überschritten			
		3 Eingestelltes Limit erreicht			
6020:07	Error	Das Error-Bit wird gesetzt, wenn das Prozessdatum un gültig ist (Leitungsbruch, Overrange, Underrange).	n- BOOLEAN	RO	0x00 (0 _{dez})
6020:0E	Sync error	Nur in DC: Bit wird gesetzt, wenn der Slave nicht im Stande ist, Synchron zum Master zu arbeiten da er die Zykluszeit nicht einhalten kann.	BOOLEAN	RO	0x00 (0 _{dez})
6020:0F	TxPDO State	Gültigkeit der Daten der zugehörigen TxPDO	BOOLEAN	RO	0x00 (0 _{dez})
		0 valid			
		1 invalid			
6020:10	TxPDO Toggle	TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6020:11	Value	Analoges Eingangsdatum (Auflösung in 1/10°C)	INT16	RO	0x0000 (0 _{dez}

Index 6030: TC Inputs Ch.4

Index (hex)	Name	Bedeu	itung	Datentyp	Flags	Default
6030:0	TC Inputs Ch.4	Maxim	aler Subindex	UINT8	RO	0x11 (17 _{dez})
6030:01	Underrange	schritte	ird gesetzt, wenn der Arbeitsbereich des Sensors unter- hritten wird oder das Prozessdatum den niedrigstmögli- len Wert enthält.		RO	0x00 (0 _{dez})
6030:02	Overrange	schritte	esetzt, wenn der Arbeitsbereich des Sensors über- en wird oder das Prozessdatum den höchstmögli- Vert enthält.	BOOLEAN	RO	0x00 (0 _{dez})
6030:03	Limit 1	Nur be	i aktivierter Limit-Prüfung	BIT2	RO	0x00 (0 _{dez})
		1	Eingestelltes Limit unterschritten			
		2	Eingestelltes Limit erreicht			
		3	Eingestelltes Limit überschritten	1		
6030:05	Limit 2	Nur be	i aktivierter Limit-Prüfung	BIT2	RO	0x00 (0 _{dez})
		1	Eingestelltes Limit unterschritten			
		2	Eingestelltes Limit erreicht			
		3	Eingestelltes Limit überschritten			
6030:07	Error		rror-Bit wird gesetzt, wenn das Prozessdatum ungül- Leitungsbruch, Overrange, Underrange).	BOOLEAN	RO	0x00 (0 _{dez})
6030:0E	Sync error	de ist,	DC: Bit wird gesetzt, wenn der Slave nicht im Stan- Synchron zum Master zu arbeiten da er die Zyklus- cht einhalten kann.	BOOLEAN	RO	0x00 (0 _{dez})
6030:0F	TxPDO State	Gültigl	ceit der Daten der zugehörigen TxPDO	BOOLEAN	RO	0x00 (0 _{dez})
		0	valid			
		1	invalid			
6030:10	TxPDO Toggle		D Toggle wird vom Slave getoggelt, wenn die Daten gehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6030:11	Value	Analog	ges Eingangsdatum (Auflösung in 1/10°C)	INT16	RO	0x0000 (0 _{dez})

Index 7000: TC Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7000:0	TC Outputs Ch.1	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
7000:11	CJCompensation	Temperatur der Vergleichsstelle (Auflösung in 1/10°C) (Index <u>0x8000:0C [▶ 63]</u> , Vergleich erfolgt über die Prozessdaten)	INT16	RO	0x0000 (0 _{dez})

Index 7010: TC Outputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7010:0	TC Outputs Ch.2	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
7010:11	CJCompensation	Temperatur der Vergleichsstelle (Auflösung in 1/10°C) (Index <u>0x8010:0C</u> [▶ <u>64]</u> , Vergleich erfolgt über die Prozessdaten)	INT16	RO	0x0000 (0 _{dez})

Index 7020: TC Outputs Ch.3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7020:0	TC Outputs Ch.3	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
7020:11	CJCompensation	Temperatur der Vergleichsstelle (Auflösung in 1/10°C) (Index 0x8020:0C [▶ 65], Vergleich erfolgt über die Prozessdaten)	INT16	RO	0x0000 (0 _{dez})

Index 7030: TC Outputs Ch.4

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7030:0	TC Outputs Ch.4	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
7030:11	CJCompensation	Temperatur der Vergleichsstelle (Auflösung in 1/10°C) (Index 0x8030:0C [▶ 67], Vergleich erfolgt über die Prozessdaten)	INT16	RO	0x0000 (0 _{dez})

76 Version: 1.4 EPP3314-0002

Index 800E: TC Internal data Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
800E:0	TC Internal data Ch.1	Maximaler Subindex	UINT8	RO	0x05 (5 _{dez})
800E:01	ADC raw value TC	Rohwert des Analog/Digital-Wandlers für das Thermoelement	INT32	RO	0x00000000 (0 _{dez})
800E:02	ADC raw value PT1000	Rohwert des Analog/Digital-Wandlers für den Pt1000	INT32	RO	0x00000000 (0 _{dez})
800E:03	CJ temperature	Vergleichsstellen-Temperatur (Auflösung 1/10 °C)	INT16	RO	0x0000 (0 _{dez})
800E:04	CJ voltage	Vergleichsstellen-Spannung (Auflösung 1 μV)	INT16	RO	0x0000 (0 _{dez})
800E:05	CJ resistor	Vergleichsstellen-Widerstand für Pt1000 Temperatursensor (Auflösung 1/10 Ohm)	UINT16	RO	0x0000 (0 _{dez})

Index 800F: TC Vendor data Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
800F:0	TC Vendor data Ch.1	Maximaler Subindex	UINT8	RO	0x04 (4 _{dez})
800F:01	Calibration offset TC	Herstellerkalibrierung für Thermoelement: Offset	INT16	RW	0x0000 (0 _{dez})
800F:02	Calibration gain TC	Herstellerkalibrierung für Thermoelement: Gain	UINT16	RW	0x4000 (16384 _{dez})
800F:03	Calibration offset CJ	Herstellerkalibrierung für Vergleichsstelle (Pt1000): Offset	INT16	RW	0x0000 (0 _{dez})
800F:04	Calibration gain CJ	Herstellerkalibrierung für Vergleichsstelle (Pt1000): Gain	UINT16	RW	0x4000 (16384 _{dez})

Index 801E: TC Internal data Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
801E:0	TC Internal data Ch.2	Maximaler Subindex	UINT8	RO	0x05 (5 _{dez})
801E:01	ADC raw value TC	Rohwert des Analog/Digital-Wandlers für das Thermoelement	INT32	RO	0x00000000 (0 _{dez})
801E:02	ADC raw value PT1000	Rohwert des Analog/Digital-Wandlers für den Pt1000	INT32	RO	0x00000000 (0 _{dez})
801E:03	CJ temperature	Vergleichsstellen-Temperatur (Auflösung 1/10 °C)	INT16	RO	0x0000 (0 _{dez})
801E:04	CJ voltage	Vergleichsstellen-Spannung (Auflösung 1 μV)	INT16	RO	0x0000 (0 _{dez})
801E:05	CJ resistor	Vergleichsstellen-Widerstand für Pt1000 Temperatursensor (Auflösung 1/10 Ohm)	UINT16	RO	0x0000 (0 _{dez})

Index 801F: TC Vendor data Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
801F:0	TC Vendor data Ch.2	Maximaler Subindex	UINT8	RO	0x04 (4 _{dez})
801F:01	Calibration offset TC	Herstellerkalibrierung für Thermoelement: Offset	INT16	RW	0x0000 (0 _{dez})
801F:02	Calibration gain TC	Herstellerkalibrierung für Thermoelement: Gain	UINT16	RW	0x4000 (16384 _{dez})
801F:03	Calibration offset CJ	Herstellerkalibrierung für Vergleichsstelle (Pt1000): Offset	INT16	RW	0x0000 (0 _{dez})
801F:04	Calibration gain CJ	Herstellerkalibrierung für Vergleichsstelle (Pt1000): Gain	UINT16	RW	0x4000 (16384 _{dez})

Index 802E: TC Internal data Ch.3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
802E:0	TC Internal data Ch.3	Maximaler Subindex	UINT8	RO	0x05 (5 _{dez})
802E:01	ADC raw value TC	Rohwert des Analog/Digital-Wandlers für das Thermoelement	INT32	RO	0x00000000 (0 _{dez})
802E:02	ADC raw value PT1000	Rohwert des Analog/Digital-Wandlers für den Pt1000	INT32	RO	0x00000000 (0 _{dez})
802E:03	CJ temperature	Vergleichsstellen-Temperatur (Auflösung 1/10°C)	INT16	RO	0x0000 (0 _{dez})
802E:04	CJ voltage	Vergleichsstellen-Spannung (Auflösung 1 μV)	INT16	RO	0x0000 (0 _{dez})
802E:05	CJ resistor	Vergleichsstellen-Widerstand für Pt1000 Temperatursensor (Auflösung 1/10 Ohm)	UINT16	RO	0x0000 (0 _{dez})

Index 802F: TC Vendor data Ch.3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
802F:0	TC Vendor data Ch.3	Maximaler Subindex	UINT8	RO	0x04 (4 _{dez})
802F:01	Calibration offset TC	et TC Herstellerkalibrierung für Thermoelement: Offset INT16		RW	0x0000 (0 _{dez})
802F:02	Calibration gain TC	Herstellerkalibrierung für Thermoelement: Gain	UINT16	RW	0x4000 (16384 _{dez})
802F:03	Calibration offset CJ	Herstellerkalibrierung für Vergleichsstelle (Pt1000): Offset	INT16	RW	0x0000 (0 _{dez})
802F:04	Calibration gain CJ	Herstellerkalibrierung für Vergleichsstelle (Pt1000): Gain	UINT16	RW	0x4000 (16384 _{dez})

Index 803E: TC Internal data Ch.4

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
803E:0	TC Internal data Ch.4	Maximaler Subindex	UINT8	RO	0x05 (5 _{dez})
803E:01	ADC raw value TC	Rohwert des Analog/Digital-Wandlers für das Thermoelement	INT32	RO	0x0000000 (0 _{dez})
803E:02	ADC raw value PT1000	Rohwert des Analog/Digital-Wandlers für den Pt1000	INT32	RO	0x0000000 (0 _{dez})
803E:03	CJ temperature	Vergleichsstellen-Temperatur (Auflösung 1/10°C)	INT16	RO	0x0000 (0 _{dez})
803E:04	CJ voltage	Vergleichsstellen-Spannung (Auflösung 1 μV)	INT16	RO	0x0000 (0 _{dez})
803E:05	CJ resistor	Vergleichsstellen-Widerstand für Pt1000 Temperatursensor (Auflösung 1/10 Ohm)	UINT16	RO	0x0000 (0 _{dez})

Index 803F: TC Vendor data Ch.4

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
803F:0	TC Vendor data Ch.4	Maximaler Subindex	UINT8	RO	0x04 (4 _{dez})
803F:01	Calibration offset TC	Herstellerkalibrierung für Thermoelement: Offset	INT16	RW	0x0000 (0 _{dez})
803F:02	Calibration gain TC	Herstellerkalibrierung für Thermoelement: Gain	UINT16	RW	0x4000 (16384 _{dez})
803F:03	Calibration offset CJ	Herstellerkalibrierung für Vergleichsstelle (Pt1000): Offset	INT16	RW	0x0000 (0 _{dez})
803F:04	Calibration gain CJ	Herstellerkalibrierung für Vergleichsstelle (Pt1000): Gain	UINT16	RW	0x4000 (16384 _{dez})

Index F000: Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Maximaler Subindex	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distan- ce	Indexabstand für die Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0004 (4 _{dez})

Index F008: Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word	reserviert	UINT32	RW	0x00000000
					(0 _{dez})

Index F010: Module list

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module list	Maximaler Subindex	UINT8	RW	0x04 (4 _{dez})
F010:01	SubIndex 001		UINT32	RW	0x0000014A (330 _{dez})
F010:02	SubIndex 002		UINT32	RW	0x0000014A (330 _{dez})
F010:03	SubIndex 003		UINT32	RW	0x0000014A (330 _{dez})
F010:04	SubIndex 004		UINT32	RW	0x0000014A (330 _{dez})

78 Version: 1.4 EPP3314-0002

Index F080: Channel Enable

Index (hex)	Name	Bede	eutung	Datentyp	Flags	Default	
F080:0	Channel Enable	Maxii	maler Subindex	aler Subindex		RO	0x04 (4 _{dez})
F080:01	SubIndex 001	0	Kanal 1 deaktiviert	(ab Hardware-Version 01 wer-	BOOLEAN	RW	0x01 (1 _{dez})
		1	Kanal 1 aktiviert	den deaktivierte Kanäle nicht			
F080:02	SubIndex 002	0	Kanal 2 deaktiviert	gemessen und die grüne LED R dieser Kanäle erlischt)	BOOLEAN	RW	0x01 (1 _{dez})
		1	Kanal 2 aktiviert				
F080:03	SubIndex 003	0	Kanal 3 deaktiviert		BOOLEAN	RW	0x01 (1 _{dez})
		1	Kanal 3 aktiviert				
F080:04	SubIndex 004	0	Kanal 4 deaktiviert		BOOLEAN	RW	0x01 (1 _{dez})
ı		1	Kanal 5 aktiviert				

5.5 Wiederherstellen des Auslieferungszustandes

Um den Auslieferungszustand der Backup-Objekte bei den ELxxxx-Klemmen / EPxxxx- und EPPxxxx-Box-Modulen wiederherzustellen, kann im TwinCAT System Manger (Config-Modus) das CoE-Objekt Restore default parameters, Subindex 001 angewählt werden).

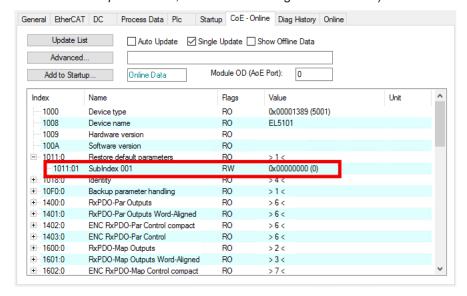


Abb. 17: Auswahl des PDO Restore default parameters

Durch Doppelklick auf *SubIndex 001* gelangen Sie in den Set Value -Dialog. Tragen Sie im Feld *Dec* den Wert **1684107116** oder alternativ im Feld *Hex* den Wert **0x64616F6C** ein und bestätigen Sie mit OK.

Alle Backup-Objekte werden so in den Auslieferungszustand zurückgesetzt.

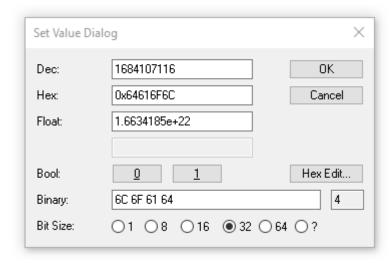


Abb. 18: Eingabe des Restore-Wertes im Set Value Dialog

Alternativer Restore-Wert

Bei einigen Modulen älterer Bauart lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen:

Dezimalwert: 1819238756 Hexadezimalwert: 0x6C6F6164

Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung!

5.6 Außerbetriebnahme

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag!

Setzen Sie das Bus-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Demontage der Geräte beginnen!

6 Anhang

6.1 Allgemeine Betriebsbedingungen

Schutzarten nach IP-Code

In der Norm IEC 60529 (DIN EN 60529) sind die Schutzgrade festgelegt und nach verschiedenen Klassen eingeteilt. Die Bezeichnung erfolgt in nachstehender Weise.

1. Ziffer: Staub- und Be- rührungsschutz	Bedeutung
0	Nicht geschützt
1	Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Geschützt gegen feste Fremd- körper Ø 50 mm
2	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Geschützt gegen feste Fremdkörper Ø 12,5 mm
3	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Geschützt gegen feste Fremdkörper Ø 2,5 mm
4	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Geschützt gegen feste Fremdkörper Ø 1 mm
5	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubgeschützt. Eindringen von Staub ist nicht vollständig verhindert, aber der Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird
6	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubdicht. Kein Eindringen von Staub

2. Ziffer: Wasserschutz*	Bedeutung
0	Nicht geschützt
1	Geschützt gegen Tropfwasser
2	Geschützt gegen Tropfwasser, wenn das Gehäuse bis zu 15° geneigt ist
3	Geschützt gegen Sprühwasser. Wasser, das in einem Winkel bis zu 60° beiderseits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben
4	Geschützt gegen Spritzwasser. Wasser, das aus jeder Richtung gegen das Gehäuse spritzt, darf keine schädlichen Wirkungen haben
5	Geschützt gegen Strahlwasser.
6	Geschützt gegen starkes Strahlwasser.
7	Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser. Wasser darf nicht in einer Menge eintreten, die schädliche Wirkungen verursacht, wenn das Gehäuse für 30 Minuten in 1 m Tiefe in Wasser untergetaucht ist

^{*)} In diesen Schutzklassen wird nur der Schutz gegen Wasser definiert.

Chemische Beständigkeit

Die Beständigkeit bezieht sich auf das Gehäuse der IP67-Module und die verwendeten Metallteile. In der nachfolgenden Tabelle finden Sie einige typische Beständigkeiten.

Art	Beständigkeit
Wasserdampf	bei Temperaturen >100°C nicht beständig
Natriumlauge (ph-Wert > 12)	bei Raumtemperatur beständig > 40°C unbeständig
Essigsäure	unbeständig
Argon (technisch rein)	beständig

Legende

- · beständig: Lebensdauer mehrere Monate
- bedingt beständig: Lebensdauer mehrere Wochen
- unbeständig: Lebensdauer mehrere Stunden bzw. baldige Zersetzung

6.2 Zubehör

Befestigung

Bestellangabe	Beschreibung	Link
ZS5300-0011	Montageschiene	<u>Website</u>

Leitungen

Eine vollständige Übersicht von vorkonfektionierten Leitungen für IO-Komponenten finden sie hier.

Bestellangabe	Beschreibung	Link
ZK2000-7xxx-0xxx	Sensorleitung M12, 4-polig + Schirm	<u>Website</u>
ZK700x-xxxx-xxxx	EtherCAT P-Leitung M8	<u>Website</u>
ZS2000-3712	Sensor-Stecker M12 mit Thermoelement-Kompensation	Website

Beschriftungsmaterial, Schutzkappen

Bestellangabe	Beschreibung
ZS5000-0010	Schutzkappe für M8-Buchsen, IP67 (50 Stück)
ZS5000-0020	Schutzkappe für M12-Buchsen, IP67 (50 Stück)
ZS5100-0000	Beschriftungsschilder nicht bedruckt, 4 Streifen à 10 Stück
ZS5000-xxxx	Beschriftungsschilder bedruckt, auf Anfrage

Werkzeug

Bestellangabe	Beschreibung
ZB8801-0000	Drehmoment-Schraubwerkzeug für Stecker, 0,4…1,0 Nm
ZB8801-0001	Wechselklinge für M8 / SW9 für ZB8801-0000
ZB8801-0002	Wechselklinge für M12 / SW13 für ZB8801-0000
ZB8801-0003	Wechselklinge für M12 feldkonfektionierbar / SW18 für ZB8801-0000

Weiteres Zubehör

Weiteres Zubehör finden Sie in der Preisliste für Feldbuskomponenten von Beckhoff und im Internet auf https://www.beckhoff.de.

6.3 Versionsidentifikation von EtherCAT-Geräten

6.3.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14stellige technische Bezeichnung, die sich zusammensetzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016	EL-Klemme (12 mm, nicht steckbare Anschlussebene)	3314 (4 kanalige Thermoelementklemme)	0000 (Grundtyp)	0016
ES3602-0010-0017	ES-Klemme (12 mm, steckbare Anschlussebene)	3602 (2 kanalige Spannungsmessung)	0010 (Hochpräzise Version)	0017
CU2008-0000-0000	CU-Gerät	2008 (8 Port FastEthernet Switch)	0000 (Grundtyp)	0000

Hinweise

- die oben genannten Elemente ergeben die technische Bezeichnung, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die Revision -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.
 - Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.
 - Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht. Die Revision wird seit 2014/01 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "EL5021 EL-Klemme, Standard IP20-IO-Gerät mit Chargennummer und Revisionskennzeichnung (seit 2014/01)".
- Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

6.3.2 Versionsidentifikation von EP/EPI/EPP/ER/ERI Boxen

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder auf einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr FF - Firmware-Stand HH - Hardware-Stand Beispiel mit Seriennummer 12 06 3A 02:

12 - Produktionswoche 12 06 - Produktionsjahr 2006 3A - Firmware-Stand 3A 02 - Hardware-Stand 02

Ausnahmen können im **IP67-Bereich** auftreten, dort kann folgende Syntax verwendet werden (siehe jeweilige Gerätedokumentation):

Syntax: D ww yy x y z u

D - Vorsatzbezeichnung

ww - Kalenderwoche

yy - Jahr

x - Firmware-Stand der Busplatine

y - Hardware-Stand der Busplatine

z - Firmware-Stand der E/A-Platine

u - Hardware-Stand der E/A-Platine

Beispiel: D.22081501 Kalenderwoche 22 des Jahres 2008 Firmware-Stand Busplatine: 1 Hardware Stand Busplatine: 5 Firmware-Stand E/A-Platine: 0 (keine Firmware für diese Platine notwendig) Hardware-Stand E/A-Platine: 1

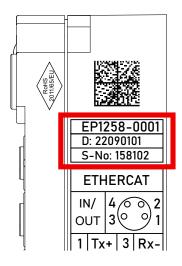


Abb. 19: EP1258-0001 IP67 EtherCAT Box mit Chargennummer/ DateCode 22090101 und eindeutiger Seriennummer 158102

6.3.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 20: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- · direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z. B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S 678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	32	30PF971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 21: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Information können keine Ansprüche auf Änderung geltend gemacht werden.

6.3.4 Elektronischer Zugriff auf den BIC (eBIC)

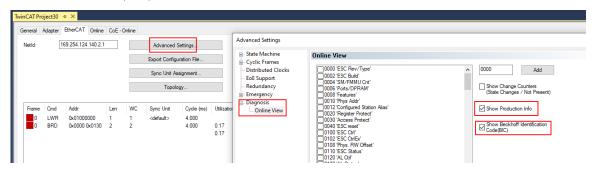
Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff Produkten außen sichtbar aufgebracht. Er soll wo möglich, auch elektronisch auslesbar sein.

Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt elektronisch angesprochen werden kann.

K-Bus Geräte (IP20, IP67)

Für diese Geräte sind derzeit keine elektronische Speicherung und Auslesung geplant.


EtherCAT-Geräte (P20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, dass die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).

In das ESI-EEPROM wird auch die eBIC gespeichert. Die Einführung des eBIC in die Beckhoff IO Produktion (Klemmen, Box-Module) erfolgt ab 2020; mit einer weitgehenden Umsetzung ist in 2021 zu rechnen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen
 - Ab TwinCAT 3.1 build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter
 EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

Die BTN und Inhalte daraus werden dann angezeigt:

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcReadBIC und FB_EcReadBTN zum Einlesen in die PLC und weitere eBIC-Hilfsfunktionen zur Verfügung.
- Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC genutzt werden, hier kann auch die PLC einfach auf die Information zugreifen:

Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein:

Ind	ex	Name	Flags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
•	1011:0	Restore default parameters	RO	>1<		
	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
•	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	> 21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcCoEReadBIC und FB_EcCoEReadBTN zum Einlesen in die PLC und weitere eBIC-Hilfsfunktionen zur Verfügung.
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Technischer Hintergrund
 Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM
 geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben,
 demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010
 abgelegt. Durch die ID 03 ist für alle EtherCAT Master vorgegeben, dass sie im Updatefall diese Daten
 nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen.
 Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca.
 50..200 Byte im EEPROM.
- Sonderfälle
 - Sind mehrere ESC in einem Gerät verbaut die hierarchisch angeordnet sind, trägt nur der TopLevel ESC die eBIC Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC des TopLevel-Geräts, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

Profibus/Profinet/DeviceNet... Geräte

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.

6.4 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den <u>lokalen Support und Service</u> zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: https://www.beckhoff.de

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49(0)5246 963 157
Fax: +49(0)5246 963 9157
E-Mail: support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- · Ersatzteilservice
- · Hotline-Service

Hotline: +49(0)5246 963 460 Fax: +49(0)5246 963 479 E-Mail: service@beckhoff.com

Beckhoff Firmenzentrale

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

 Telefon:
 +49(0)5246 963 0

 Fax:
 +49(0)5246 963 198

 E-Mail:
 info@beckhoff.com

 Internet:
 https://www.beckhoff.de

Mehr Informationen: www.beckhoff.de/epp3314-0002/

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.de www.beckhoff.de

