BECKHOFF New Automation Technology

Kurzdokumentation | DE

EL3751

1-Kanal-Multifunktionseingang für analoge Messtechnik, 24 Bit, 10 kSps

Inhaltsverzeichnis

1	Vorw	ort		7					
	1.1	Hinweise zur Dokumentation							
	1.2	Sicherhe	eitshinweise	8					
	1.3	Ausgabe	estände der Dokumentation	9					
	1.4	Wegweis	ser durch die Dokumentation	10					
	1.5	Versions	sidentifikation von EtherCAT-Geräten	11					
		1.5.1	Allgemeine Hinweise zur Kennzeichnung	11					
		1.5.2	Versionsidentifikation von EL-Klemmen	11					
		1.5.3	Beckhoff Identification Code (BIC)	12					
		1.5.4	Elektronischer Zugriff auf den BIC (eBIC)	14					
		1.5.5	BIC im CoE bei EL3751	16					
2	Prod	uktübers	icht	17					
	2.1	Beschre	ibung	17					
	2.2	Techniso	che Daten						
		2.2.1	Allgemeine technische Daten	18					
		2.2.2	Prozessdaten Interpretation	20					
		2.2.3	Allgemeines zur Messgenauigkeit/Messunsicherheit	22					
		2.2.4	Messung ±30 V	26					
		2.2.5	Messung ±10 V	29					
		2.2.6	Messung ±5 V	31					
		2.2.7	Messung ±2,5 V	33					
		2.2.8	Messung ±1,25 V	35					
		2.2.9	Messung ±640 mV	37					
		2.2.10	Messung ±320 mV	39					
		2.2.11	Messung ±160 mV	41					
		2.2.12	Messung ±80 mV	43					
		2.2.13	Messung ±40 mV	45					
		2.2.14	Messung ±20 mV	47					
		2.2.15	Messung ±10 mV	49					
		2.2.16	Messung ±5 mV	51					
		2.2.17	Messung 05 V	53					
		2.2.18	Messung 010 V	55					
		2.2.19	Messung ±20 mA	57					
		2.2.20	Messung 020 mA	59					
		2.2.21	Messung 420 mA	61					
		2.2.22	Messung 3,6…21 mA (NAMUR NE43)	64					
		2.2.23	Messung Widerstand 0…5 k Ω	66					
		2.2.24	Messung RTD						
		2.2.25	Messung Potentiometer	72					
		2.2.26	Messung SG 1/1-Bridge (Vollbrücke) 4/6-Leiter-Anschluss	74					
		2.2.27	Messung SG 1/2-Bridge (Halbbrücke) 3/5-Leiter-Anschluss	79					
		2.2.28	Messung SG 1/4-Bridge (Viertelbrücke) 120 Ω 2/3-Leiter-Anschluss	85					
		2.2.29	Messung SG 1/4-Bridge (Viertelbrücke) 350 Ω 2/3-Leiter-Anschluss	89					
3	Inbet	riebnahn	ne	92					

	3.1	Hinweis	zur Kurzdokumentation	92
	3.2	CoE Übe	ersicht	93
		3.2.1	0x6000 PAI Status Ch.1	93
		3.2.2	0x6001 PAI Samples Ch.1	93
		3.2.3	0x6002 PAI Synchronous Oversampling Ch.1	93
		3.2.4	0x7000 PAI Control Ch.1	93
		3.2.5	0x8000 PAI Settings Ch.1	94
		3.2.6	0x8001 PAI Filter 1 Settings Ch.1	96
		3.2.7	0x8003 PAI Filter 2 Settings Ch.1	96
		3.2.8	0x8005 Scaler Settings Ch.1	96
		3.2.9	0x800E PAI User Calibration Data Ch.1	97
		3.2.10	0x800F PAI Vendor Calibration Data Ch.1	97
		3.2.11	0x9000 PAI Internal Data Ch.1	98
		3.2.12	0x900F PAI Calibration Dates Ch.1	. 100
		3.2.13	0xF000 Modular device profile	. 102
		3.2.14	0xF008 Code word	. 102
		3.2.15	0xF009 Password Protection	. 102
		3.2.16	0xF010 Module list	. 102
		3.2.17	0xF600 PAI Timestamp	. 103
		3.2.18	0xF900 PAI Info Data	. 103
		3.2.19	0xF912 Filter info	. 103
		3.2.20	0xFB00 PAI Command	. 103
	3.3	Beispielp	programme	. 104
		3.3.1	Beispielprogramm 1 und 2 (Offset/Gain)	. 106
		3.3.2	Beispielprogramm 3 (LookUp-Tabelle schreiben)	. 112
		3.3.3	Beispielprogramm 4 (LookUp-Tabelle erzeugen)	. 114
		3.3.4	Beispielprogramm 5 (Filterkoeffizienten schreiben)	. 115
		3.3.5	Beispielprogramm 6 (Verschränken von Messwerten)	. 118
		3.3.6	Beispielprogramm 7 (Allgemeine Dezimierung in der PLC)	. 122
		3.3.7	Beispielprogramm 8 (FB zur Echtzeit Diagnose)	. 128
		3.3.8	Beispielprogramm 9 (R/W Signatur der Kalibrierung)	. 131
4	EI 37	51 Foatuu	res	133
_				
5	Inbet	riebnahm	ne am EtherCAT Master	. 134
	5.1	Aligemei	ne Indetriednanmeninweise für einen EtherCAT Slave	. 134
	5.2	TWINCAT		. 142
		5.2.1	TwinCAT 2	. 144
	5.0	5.2.2		. 154
	5.3	TwinCAI		. 167
		5.3.1	Installation der TwinCAT Realtime-Treiber	. 167
		5.3.2	Hinweise zur ESI-Gerätebeschreibung	. 173
		5.3.3	IWINCAT ESI Updater	. 177
		5.3.4	Unterscheidung Online/Offline	. 177
		5.3.5	OFFLINE Konfigurationserstellung	. 178
		5.3.6		. 183
		5.3.7	EtherCA I-Teilnehmerkonfiguration	. 191

		5.3.8 Import/Export von EtherCAT-Teilnehmern mittels SCI und XTI	200
	5.4	EtherCAT-Grundlagen	206
	5.5	EtherCAT-Verkabelung - Drahtgebunden	206
	5.6	Allgemeine Hinweise zur Watchdog-Einstellung	208
	5.7	EtherCAT State Machine	209
	5.8	CoE-Interface	211
	5.9	Distributed Clock	216
6	Mont	age und Verdrahtung	217
	6.1	Einbaulagen	217
	6.2	Positionierung von passiven Klemmen	218
	6.3	ATEX - Besondere Bedingungen (Standardtemperaturbereich)	220
	6.4	Hinweise zu Stecker und Verdrahtung	221
	6.5	Schirmkonzept	222
	6.6	Tragschienenmontage	224
	6.7	Anschluss	227
		6.7.1 Anschlusstechnik	227
		6.7.2 Verdrahtung	230
		6.7.3 Schirmung	231
	6.8	Hinweis Spannungsversorgung	231
	6.9	Bedeutung der LEDs	231
	6.10	Anschlussbelegung	232
	6.11	Entsorgung	233
7	Anha	ng	234
	7.1	Diagnose - Grundlagen zu Diag Messages	234
	7.2	TcEventLogger und IO	241
	7.3	UL-Hinweise	245
	7.4	Weiterführende Dokumentation zu ATEX und IECEx	247
	7.5	EtherCAT AL Status Codes	247
	7.6	Firmware Update EL/ES/ELM/EM/EPxxxx	247
		7.6.1 Gerätebeschreibung ESI-File/XML	248
		7.6.2 Erläuterungen zur Firmware	251
		7.6.3 Update Controller-Firmware *.efw	252
		7.6.4 FPGA-Firmware *.rbf	254
		7.6.5 Gleichzeitiges Update mehrerer EtherCAT-Geräte	258
	7.7	Firmware Kompatibilität	259
	7.8	Firmware Kompatibilität - Passive Klemmen	259
	7.9	Wiederherstellen des Auslieferungszustandes	259
	7.10	Analogtechnische Hinweise zu EL3751/ ELM3xxx	260
	7.11	Weiterführende Dokumentation zu I/O-Komponenten mit analogen Ein- und Ausgängen	261
	7.12	Support und Service	262

1 Vorwort

HINWEIS

In dieser Kurzdokumentation liegen einige Kapitel nur in gekürzter Fassung vor. Bitte wenden Sie sich an den für Sie zuständigen Beckhoff Vertrieb um die vollständige Dokumentation zu erhalten.

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, für jede Installation und Inbetriebnahme die zu dem betreffenden Zeitpunkt veröffentlichte Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiter entwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff[®], TwinCAT[®], TwinCAT/BSD[®], TC/BSD[®], EtherCAT[®], EtherCAT G[®], EtherCAT G10[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®], XTS[®] und XPlanar[®] sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT[®] ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland. Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Erklärung der Hinweise

In der vorliegenden Dokumentation werden die folgenden Hinweise verwendet. Diese Hinweise sind aufmerksam zu lesen und unbedingt zu befolgen!

▲ GEFAHR

Akute Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht unmittelbare Gefahr für Leben und Gesundheit von Personen!

WARNUNG

Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht Gefahr für Leben und Gesundheit von Personen!

Schädigung von Personen!

Wenn dieser Sicherheitshinweis nicht beachtet wird, können Personen geschädigt werden!

HINWEIS

Schädigung von Umwelt/Geräten oder Datenverlust

Wenn dieser Hinweis nicht beachtet wird, können Umweltschäden, Gerätebeschädigungen oder Datenverlust entstehen.

Tipp oder Fingerzeig

Dieses Symbol kennzeichnet Informationen, die zum besseren Verständnis beitragen.

1.3 Ausgabestände der Dokumentation

Version	Kommentar
3.9	"Wegweiser durch die Dokumentation" im Vorwort ergänzt
	 Kapitel "Produktübersicht" und Unterkapitel "Montage und Verdrahtung"/ "Bedeutung der LEDs" aktualisiert
	 Unterkapitel "Inbetriebnahme"/ "CoE Übersicht" aktualisiert

1.4 Wegweiser durch die Dokumentation

Weitere Bestandteile der Dokumentation

Diese Dokumentation beschreibt gerätespezifische Inhalte. Sie ist Bestandteil des modular aufgebauten Dokumentationskonzepts für Beckhoff I/O-Komponenten. Für den Einsatz und sicheren Betrieb des in dieser Dokumentation beschriebenen Gerätes / der in dieser Dokumentation beschriebenen Geräte werden zusätzliche, produktübergreifende Beschreibungen benötigt, die der folgenden Tabelle zu entnehmen sind.

Titel	Beschreibung
EtherCAT System-Dokumentation (PDF)	Systemübersicht
	EtherCAT-Grundlagen
	Kabel-Redundanz
	Hot Connect
	 Konfiguration von EtherCAT-Geräten
I/O-Analog-Handbuch (PDF)	Hinweise zu I/O-Komponenten mit analogen Ein- und Ausgängen
Explosionsschutz für Klemmensysteme (<u>PDF</u>)	Hinweise zum Einsatz der Beckhoff Klemmensysteme in explosionsgefährdeten Bereichen gemäß ATEX und IECEx
Infrastruktur für EtherCAT/Ethernet (PDF)	Technische Empfehlungen und Hinweise zur Auslegung, Ausfertigung und Prüfung
Software-Deklarationen I/O (PDF)	Open-Source-Software-Deklarationen für Beckhoff-I/O-Komponenten

HINWEIS

Die Dokumentationen können auf der Beckhoff-Homepage (<u>www.beckhoff.com</u>) eingesehen und heruntergeladen werden über:

- den Bereich "Dokumentation und Downloads" der jeweiligen Produktseite,
- den <u>Downloadfinder</u>,
- das **Beckhoff Information System**.

1.5 Versionsidentifikation von EtherCAT-Geräten

1.5.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14-stellige technische Bezeichnung, die sich zusammen setzt aus

- · Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016	EL-Klemme 12 mm, nicht steckbare Anschlussebene	3314 4-kanalige Thermoelementklemme	0000 Grundtyp	0016
ES3602-0010-0017	ES-Klemme 12 mm, steckbare Anschlussebene	3602 2-kanalige Spannungsmessung	0010 hochpräzise Version	0017
CU2008-0000-0000	CU-Gerät	2008 8 Port FastEthernet Switch	0000 Grundtyp	0000

Hinweise

- die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die **Revision** -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.

Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.

Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht. Die Revision wird seit 2014/01 außen auf den IP20-Klemmen aufgebracht, siehe Abb. *"EL5021 EL-Klemme, Standard IP20-IO-Gerät mit Chargennummer und Revisionskennzeichnung (seit 2014/01)"*.

• Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

1.5.2 Versionsidentifikation von EL-Klemmen

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder auf einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module einer Charge.

Aufbau der Seriennummer: KK YY FF HH

- KK Produktionswoche (Kalenderwoche)
- YY Produktionsjahr
- FF Firmware-Stand
- HH Hardware-Stand

Beispiel mit Seriennummer 12 06 3A 02:

- 12 Produktionswoche 12
- 06 Produktionsjahr 2006
- 3A Firmware-Stand 3A
- 02 Hardware-Stand 02

Abb. 1: EL2872 mit Revision 0022 und Seriennummer 01200815

1.5.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 2: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- auf der Verpackungseinheit
- direkt auf dem Produkt (bei ausreichendem Platz)
- auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P072222

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10…	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z. B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	<mark>51S</mark> 678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	32	30PF971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 3: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Information können keine Ansprüche auf Änderung geltend gemacht werden.

1.5.4 Elektronischer Zugriff auf den BIC (eBIC)

Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff Produkten außen sichtbar aufgebracht. Er soll wo möglich, auch elektronisch auslesbar sein.

Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt elektronisch angesprochen werden kann.

K-Bus Geräte (IP20, IP67)

Für diese Geräte sind derzeit keine elektronische Speicherung und Auslesung geplant.

EtherCAT-Geräte (P20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, dass die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).

In das ESI-EEPROM wird auch die eBIC gespeichert. Die Einführung des eBIC in die Beckhoff IO Produktion (Klemmen, Box-Module) erfolgt ab 2020; mit einer weitgehenden Umsetzung ist in 2021 zu rechnen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen
 - Ab TwinCAT 3.1 build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter

TwinCA	AT Pro	ject30	+ ×								
Gene	eral /	dapter	EtherCAT Online	CoE -	Online			0			
Net	tld:	1	69.254.124.140.2.1			Advanced Export Config	Settings		Advanced Settings State Machine Online View		
						Sync Unit Ar Topok	ssignment		- Opiki Francis	0000 Show Change Cou (State Changes / N	Add nters lot Present)
F	o 0 0	Cmd LWR BRD	Addr 0x01000000 0x0000 0x0130	Len 1 2	WC 1 2	Sync Unit <default></default>	Cycle (ms) 4.000 4.000	Utilizatio 0.17 0.17	Diagnosis Online View Online View	Show Production In Show Beckhoff Ide Code(BIC)	ntification

• Die BTN und Inhalte daraus werden dann angezeigt:

G	General Adapter EtherCAT Online CoE-Online													
	No	Addr	Name	State	CRC	Fw	Hw	Production Data	ItemNo	BTN	Description	Quantity	BatchNo	SerialNo
	1	1001	Term 1 (EK1100)	OP	0.0	0	0							
	2	1002	Term 2 (EL1018)	OP	0.0	0	0	2020 KW36 Fr	072222	k4p562d7	EL1809	1		678294
	1 3	1003	Term 3 (EL3204)	OP	0.0	7	6	2012 KW24 Sa						
	- 4	1004	Term 4 (EL2004)	OP	0.0	0	0		072223	k4p562d7	EL2004	1		678295
	5	1005	Term 5 (EL1008)	OP	0.0	0	0							
	6	1006	Term 6 (EL2008)	OP	0.0	0	12	2014 KW14 Mo						
	•].7	1007	Tem 7 (EK1110)	OP	0	1	8	2012 KW25 Mo						

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcReadBIC und FB_EcReadBTN zum Einlesen in die PLC und weitere eBIC-Hilfsfunktionen zur Verfügung.
- Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC genutzt werden, hier kann auch die PLC einfach auf die Information zugreifen:

• Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein:

Index		Name	Flags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
•	1011:0	Restore default parameters	RO	>1<		
•	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
•	10F0:0	Backup parameter handling	RO	>1<		
•	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcCoEReadBIC und FB_EcCoEReadBTN zum Einlesen in die PLC und weitere eBIC-Hilfsfunktionen zur Verfügung.
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Technischer Hintergrund

Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben, demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010 abgelegt. Durch die ID 03 ist für alle EtherCAT Master vorgegeben, dass sie im Updatefall diese Daten nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen. Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca. 50..200 Byte im EEPROM.

- Sonderfälle
 - Sind mehrere ESC in einem Gerät verbaut die hierarchisch angeordnet sind, trägt nur der TopLevel ESC die eBIC Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC des TopLevel-Geräts, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

PROFIBUS-, PROFINET-, DeviceNet-Geräte usw.

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.

1.5.5 BIC im CoE bei EL3751

Übersicht zur Unterstützung des BIC-Eintrags: CoE Objekt 0x10E2 (BIC) ist ab FW13 enthalten.

Zur eindeutigen Identifizierung ist das Objekt 0x10E2 statt des bisher teilweise vorhandenen 0xF083 zu verwenden.

2 Produktübersicht

Abb. 4: EL3751, EL3751-0004, EL3751-0024; LEDs, Anschlüsse und Belegung

1-Kanal-Multifunktionseingang für analoge Messtechnik, 24 Bit, 10 kSps, Differentialeingänge, Oversampling

2.1 Beschreibung

Diese Dokumentation deckt folgende Klemmen ab

- EL3751-0000 Multifunktionsklemme
- EL3751-0020 wie EL3751-0000, zusätzlich mit Beckhoff Werkskalibrierzertifikat
- EL3751-0004 auf Widerstandsmessung reduzierte Variante der EL3751-0000 für Widerstandsmessung bis 5 kΩ und RTD-basierte (Temperatur) Messung, technische Eigenschaften dort wie EL3751-0000
- EL3751-0024 wie EL3751-0004, zusätzlich mit Beckhoff Werkskalibrierzertifikat

Die analoge Eingangsklemme EL3751-0000 als Multifunktionseingang für analoge Messtechnik kann zur Messung von elektrischen Größen in mehreren Messbereichen verwendet werden. Der Messbereich beträgt dabei jeweils nominell:

- Spannung von ±5 mV bis ±30 V, 0..10 V, 0..5 V
- Strom im Bereich von ±20 mA , 4..20 mA, 0..20 mA, NAMUR NE43
- Widerstandsbrücke, Dehnungsmessstreifen (DMS): 1/4-Brücke (350 Ω + 120 Ω), 1/2- Brücke (±16 mV/V) sowie 1/1- Brücke (±32 mV/V) im 2-6 Leiteranschluss
- elektr. Widerstand R / Temperatur mit RTD (PT100 etc.): 0...5 kΩ im 2-4 Leiteranschluss
- Potentiometer ab 1 k Ω

Der genannte nominelle Messbereich ist jeweils Teil des insgesamt zur Verfügung stehenden und nutzbaren technischen Messbereichs, der bei der EL3751 je nach Messbereich bei ca. ±107% liegt. Diese Eigenschaft "extended Range" des erweiterten Messbereichs ist abschaltbar, somit ist auch das kompatible Verhalten zur EL30/31/36xx Serie als "legacy Range" herstellbar.

Die Messung geschieht über einen differentiellen Eingangskanal und wird mit einer Auflösung von 24 Bit und 10 kSps digitalisiert, galvanisch getrennt zum Feldbus und wahlweise mit Oversampling zum übergeordneten Automatisierungsgerät transportiert. Durch die integrierte Versorgung und die schaltbaren Ergänzungswiderstände ist der direkte Anschluss einer Widerstandsbrücke (Dehnmessstreifen DMS) oder Wägezelle in 2/3/4/6-Leiter Anschlusstechnik, eines ohmschen Festwiderstandes, PTC oder Potentiometers möglich. Der Signalzustand der EtherCAT-Klemme wird durch Leuchtdioden angezeigt.

Falls eine niedrigere Abtastrate gewünscht ist, kann ausgehend von der festen analogen Abtastrate von 10 kSps intern eine Datenratenreduzierung (sog. Dezimieren) eingestellt werden. Die so erzielte effektive Abtastrate ≤ 10 kSps kann dann unter Einbeziehung der Taskzykluszeit über den entsprechenden Oversampling-Faktor über EtherCAT an die Steuerung übertragen werden.

Die Klemme verfügt über 2 einstellbare numerische Softwarefilter bis FIR 39.Ordnung (40 Taps) bzw. IIR 6.Ordnung. Der erste Filter arbeitet auf den 10 kSps Rohdaten, der zweite arbeitet nach dem frei einstellbaren Dezimierer und ist so zur Unterdrückung von Aliasing-Effekten anwenderseitig einzustellen. Beide Filter können entweder nach integrierter Liste (einige Tiefpass-, Hochpass-, Mittelwertfilter) oder nach freier Koeffiziententabelle gesetzt werden.

Nichtlineare Sensorkennlinien können durch eine integrierte Stützstellentabelle flexibel korrigiert werden; es sind auch einfache mathematische Operationen möglich.

Jede Klemme verfügt über eine eindeutige, aufgedruckte und elektronisch auslesbare ID-Nummer. Das optional verfügbare Werkskalibrierzertifikat (EL3751-0020, EL3751-0024) kann über diese ID-Nummer zugeordnet werden, eine Re-Kalibrierung ist möglich.

2.2 Technische Daten

2.2.1 Allgemeine technische Daten

Technische Daten	EL3751
Analoge Eingänge	1 Kanal
Anschlusstechnik	2 - 6 Leiter
Auflösung	24 Bit inkl. Vorz., Darstellung 32 Bit
Samplingart	simultan
Massebezug	differentiell
Auswahl Oversampling-Faktoren	1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64
ADC Wandlungsmethode	deltaSigma $\Delta\Sigma$, 1,28 MSps (interne Abtastrate);
Grenzfrequenz Eingangsfilter Hardware	Vor AD-Wandler: 30 kHz Hardware Filter
	Im ADC nach Wandlung: -3dB @ 3,2 kHz, Mittelwertfilter 5.Ordnung
Messfehler	typ. $\pm 0,01\%$ @23°C, Ausnahmen bei einzelnen Messbereichen, Details siehe Funktionstabellen und s.u. ²)
Max. Samplingrate/min. Wandlungszeit	10 kSps / 100 μs (fest, zusätzlich freies downsampling in Firmware durch Dezimierungsfaktor.
Unterstützte EtherCAT Zykluszeit	DistributedClocks: min. 100 µs, max. 25 ms
(in Abhängigkeit von der Betriebsart)	(max. 10 ms empfohlen)
	FrameTriggered/Synchron: min. 200 µs, max. 100 ms
	FreeRun: wird nicht unterstützt
Signalverzögerung (Sprungantwort)	tbd.
Signalverzögerung (linear)	tbd.
	Linearer Phasengang, Gruppenlaufzeit konstant
Erfassungsart	Simultan (1 Kanal, simultan bei DC-Synchronisierung mehrerer Klemmen)
Spannungsfestigkeit - Zerstörgrenze	max. zul. Kurzzeitig/dauerhaft anliegende Spannung

Technische Daten	EL3751
	 Spannung zwischen den Kontaktstellen ±I1, ±I2, +Uv und –Uv: Unversorgt ±40 V, Versorgt ±36 V
	 Spannung zwischen jeder Kontaktstelle und SGND (Schirm, Montageschiene): siehe Angabe zur Po- tentialtrennung
	Hinweis: -Uv entspricht dem internen GND
Distributed Clocks	Ja, mit Oversampling
Empfohlener Einsatzspannungsbereich zur Einhaltung der Spezifikation (U _{CM} , common mode)	max. zul. Spannung während bestimmungsgemäßem Betrieb
	 ±I1 und ±I2: typ. ±10 V gegen –Uv
	Hinweis: -Uv entspricht dem internen GND
Potentialtrennung Bus/Kanal	500 V DC (1 min. Typ-Prüfspannung)
Potentialtrennung Kanal/Kanal	(nicht zutreffend da 1 Kanal)
Bitbreite im Prozessabbild (Standardeinstellung)	32 Bit / pro Wert
Unterstützt Funktion <u>NoCoeStorage [> 212]</u>	Ja
Besondere Eigenschaften	integrierte schaltbare $^{1}\!$
	Abgleich höherer Ordnung, PeakHold Schleppzeiger, vordefinierte und frei einstellbare Software-Filter, TrueRMS, beliebiges Downsampling, 2stufiger Integrator/Differenzierer, freie Scaling-Funktion (auch nichtlinear), Endwertbegrenzer (Limiter), extended/ legacy Range, Leitungskompensation
	Auf Anfrage auch mit Werkskalibrierzertifikat erhältlich
Interner Überspannungsschutz der Eingänge bezogen auf –Uv (interne Masse)	+IN1, -IN1: bei ca. 12 ±0,5 V (im 30 V-Modus bei ca. 37 ±1 V)
	+IN2, -IN2: bei ca. < -0,3 V oder > +5,3 V
Spannungsversorgung für Elektronik	über den E-Bus
Stromaufnahme aus dem E-Bus	typ. 260 mA
Thermische Verlustleistung	typ. 1,2 W
Stromaufnahme aus den Powerkontakten	keine
Zulässiger Einsatzhöhenbereich	0 bis 2000m (Derating bei größerer Höhe auf Anfrage)
Gewicht	ca. 65 g
Zulässiger Umgebungstemperaturbereich im Betrieb	0+55 °C (in waagerechter Einbaulage)
	0+45°C (alle anderen Einbaulagen)
Zulässiger Umgebungstemperaturbereich bei Lagerung	-25+85 °C
Einbaulage	Betrieb in allen Lagen möglich, Einhaltung der vollen Genauigkeit nur bei waagerechter/Standardlage möglich.
Zulässige relative Luftfeuchtigkeit	95%, keine Betauung
Max. Sensor-Leitungslänge	Die Leitungslänge von der EtherCAT Klemme bis zum Sensor/Geber darf ohne weitere Schutzmaßnahmen max. 30 m betragen. Bei größeren Kabellängen ist ein geeigneter Überspannungsschutz (Surge-Protection) vorzusehen.
Abmessungen (B x H x T)	ca. 15 mm x 100 mm x 70 mm (Breite angereiht: 12 mm)
Montage	auf 35 mm Tragschiene nach EN 60715

Technische Daten	EL3751
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Zulassungen/ Kennzeichnungen *)	CE, UKCA, EAC, <u>UL [▶ 245]</u> , <u>ATEX [▶ 220]</u>

*) Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

²) Dominierender Anteil der Grundgenauigkeit ist die Offset-Spezifikation (siehe folgende Tabellen). Durch Offset-Korrektur gemäß Kapitel Offset Korrektur kann dieser Anteil eliminiert und die Messgenauigkeit erheblich gesteigert werden.

Ex-Kennzeichnung

Standard	Kennzeichnung
ATEX	II 3 G Ex nA IIC T4 Gc

2.2.2 **Prozessdaten Interpretation**

Der gesamte Messbereich stellt sich in Bezug auf die Ausgabe über die zyklischen Prozessdaten folgendermaßen dar:

Abb. 5: Basis Bereich eines Prozessdatenwertes

Der Kanal dieser Klemme verfügt über die Möglichkeit, den Messbereich entweder auf die bei Beckhoff bisher übliche Art "nomineller Messbereichsendwert = PDO Endwert: LegacyRange" oder die neue Methode "technischer Messbereichsendwert = PDO Endwert: ExtendedRange" einzustellen.

- Für den Extended Range Modus gilt:
 - Technischer Messbereichsendwert = PDO Endwert 0x007FFFFF.
 - Der Kanal kann zu informativen Zwecken ca. 107 % über den nominellen Bereich hinaus messen, Genauigkeitsspezifikationen etc. sind dann allerdings nicht mehr gültig.
 - Außerhalb des nominellen Messbereichs wird das Overrange bzw. Underrange-Bit gesetzt.
 - Zur weiteren Diagnose wird das Error-Bit und die Error-LED gesetzt, wenn einstellbare Grenzen über- bzw. unterschritten werden. Diese sind auf den technischen Messbereich voreingestellt (default), können aber anwenderseitig auf einen schmaleren Bereich verändert werden.

Beispiel: im Messbereich 4...20 mA ist die untere Grenze auf 0 mA gesetzt, sie kann aber kundenseitig im CoE z.B. auf 3,6 mA hochgesetzt werden, um ggf. einen Sensorfehler früher zu erkennen.

- Der Extended Range Modus ist bei Werkseinstellung der Klemme voreingestellt (default).
- Der Modus ist definiert durch die nicht-periodische rationale LSB Schrittweite und einen ganzzahligen Endwert. Dadurch ist die Schrittweite ohne Rundungsfehler in einem PLC-Programm verwendbar.
- Für den Legacy Range Modus gilt:
 - Nomineller Messbereichsendwert = PDO Endwert.
 - Kompatibel zur bisherigen Schnittstelle aus EL30xx/EL31xx/EL36xx.
 - Overrange/Underrange, Error-Bit und Error-LED werden zugleich bei Überschreiten des nominellen/technischen Messbereichs gesetzt.
 - Für die Klemme optional aktivierbar.
 - Der Modus ist definiert durch einen ganzzahligen Endwert; unter Inkaufnahme, dass die LSB Schrittweite keine ganze Zahl mehr ist.

2.2.3 Allgemeines zur Messgenauigkeit/Messunsicherheit

Zur grundsätzlichen Einordnung nachfolgender Erläuterungen ist das Kapitel "Hinweise zu analogen Datenwerten" unter <u>Weiterführende Dokumentation zu I/O-Komponenten mit analogen Ein- und Ausgängen</u> [▶ 261] insbesondere zum Messbereichsendwert zu beachten!

Es lohnt sich diese Anleitung aufmerksam zu lesen und die Ratschläge zu befolgen – Sie ersparen sich Mühe, Zeit und vermutlich auch Geld.

Die genaue Kenntnis dieser Anleitung kann Ihnen die leichte Beherrschung der Technik bei allen Anwendungen vermitteln und damit Freude bereiten.

Grundsätzliches zur Messtechnik:

Mit Messgeräten wird mit mehr oder weniger Aufwand versucht, den "wahren Wert" einer Messgröße z.B. Umgebungstemperatur zu bestimmen. Dies ist aus verschiedenen praktischen Gründen nicht endgültig möglich. Die Messung/der Messwert unterliegt je nach Aufwand einem zufälligen, nicht eliminierbaren Messfehler. Beckhoff gibt mit seinen praktisch ermittelten Spezifikationsangaben eine Handhabe, um theoretisch die verbleibende Messunsicherheit im Einsatzfall berechnen zu können. Dazu dienen die folgenden Absätze.

Allgemeine Hinweise

Es ist keine besondere Wartung erforderlich, für die Klemme wird allerdings eine jährliche Überprüfung empfohlen.

Falls ein Werkskalibrierzertifikat für das Gerät vorliegt, gilt für das Rekalibrierintervall eine Empfehlung von 1 Jahr, falls nicht anders angegeben.

Hinweise zu den Spezifikationsdaten:

- Spezifikationsangaben lauten üblicherweise "% vom nominellen Messbereichsendwert" = "% MBE" wenn nicht anders angegeben
- In Zusammenhang mit einem einzelnen Wert bedeutet "typisch", dass diese Kenngröße durchschnittlich den angegebenen Wert hat. Bei individuellen Klemmen kann die Kenngröße vom typischen Wert jedoch abweichen. Ein Beispiel ist der Stromverbrauch.
- In Zusammenhang mit einer Grenze (Kenngröße ist typisch max./min. X) oder mit zwei Grenzen (Kenngröße ist typisch zwischen X und Y) bedeutet "typisch", dass diese Kenngröße bei individuellen Klemmen überwiegend zwischen den Grenzen liegt. Abweichungen sind jedoch möglich, siehe Konfidenzniveau. Ein Beispiel ist das Rauschen. Es werden üblicherweise keine Messungen unternommen, um Angaben über Standardabweichung oder Ergebnis-Häufigkeiten machen zu können. Ein typischer Wert wird üblicherweise mit der Abkürzung "typ." hinter der Einheit gekennzeichnet.
- Das Konfidenzniveau/ Vertrauenslevel liegt, wenn nicht anders angegeben, bei 95%.
- Beim Betrieb in EMV-gestörter Umgebung ist zur Einhaltung der Spezifikation verdrillte und geschirmte Signalleitung, mindestens einseitig geerdet zu verwenden. Es wird der Einsatz von Beckhoff Schirmzubehör ZB8511 oder ZS9100-0002 empfohlen:

Die Hutschienenbefestigung ZB8520 wird in Bezug auf analoge Schutzwirkung nicht empfohlen:

 Wenn nicht anders spezifiziert, werden Messfehler etc. im DC-Betrieb angegeben (keine Wechselgrößen). Bei Messung eines AC-Signals beeinflusst der Frequenzgang des Analogeingangs die Messung selbst.

Hinweis zur Temperatur

Die Temperatur innerhalb/außerhalb des Gerätes hat Einfluss auf die Messung durch die Elektronik. So weist eine messtechnische Schaltung in der Regel eine Temperaturabhängigkeit auf, die u.a. in der Angabe der Temperaturdrift spezifiziert wird. Die Spezifikationsangaben gelten für eine konstante Umgebungstemperatur – veränderliche Verhältnisse (Aufheizen des Schaltschranks, Temperatursturz durch Öffnen des Schaltschranks bei kalter Witterung), also ein Temperaturübergang, kann unter Umständen zu einer Veränderung von Messwerten durch dynamische und heterogene Temperaturverteilung führen. Zur Bereinigung solcher Effekte kann die Geräte-Innentemperatur online aus dem CoE ausgelesen und ggf. zur Verrechnung herangezogen werden. Manche Geräte zeigen auch elektronisch an, dass sie sich thermisch stabilisiert haben, siehe dazu die Diagnose Eigenschaften.

Die Spezifikationsdaten gelten

- nach einer Aufwärmzeit des Gerätes unter Betriebsspannung und Feldbusbetrieb von mind. 60 Minuten bei konstanter Umgebungstemperatur
 - Praktischer Hinweis: nach dem Einschalten erwärmt sich das Gerät in der Regel exponentiell derart, dass der wesentliche Anteil der Erwärmung je nach Gerät bereits innerhalb kurzer Zeit in ca. 10-15 Minuten durchlaufen ist und sich die Messeigenschaften innerhalb der Spezifikationsgrenzen bewegen.
 - Zur Verdeutlichung: typischer Verlauf einer Innentemperatur (ohne konkrete Aussagekraft f
 ür ein bestimmtes Ger
 ät):

- Einige Geräte zeigen im <u>CoE-Objekt 0xF900:02</u> [▶ <u>103</u>] an, dass sie innerlich thermisch stabilisiert sind und ∆T im Gerät sehr klein ist. Das kann durch eine Applikation ausgewertet werden,
- bei waagerechter Einbaulage unter Beachtung der Mindestabstände,
- bei freier Konvektion (keine Zwangslüftung),

• bei Beachtung der Spezifikationsangaben.

Liegen andere Bedingungen vor, ist ein anwenderspezifischer Abgleich nötig.

Hinweise zur Rechnung mit den Spezifikationsangaben:

Die unabhängigen Spezifikationsangaben lassen sich in zwei Gruppen einteilen:

- die Angaben zur Offset-/Gain-Abweichung, Nichtlinearität, Wiederholgenauigkeit, deren Wirkung auf die Messung nicht vom Anwender beeinflussbar ist. Diese werden von Beckhoff nach der u.a. Rechnung zur sogenannten "Grundgenauigkeit bei 23°C" zusammengefasst.
- die Spezifikationsangaben, deren Wirkung auf die Messung vom Anwender beeinflussbar sind, dazu gehören:
 - · das Rauschen: Auswirkung beeinflussbar durch Samplerate, Filtern sowie
 - die Temperatur: Auswirkung beeinflussbar durch Schaltschrankklimatisierung, Abschirmung, Kühlung, ...

Die unabhängigen Einzel-Genauigkeitsangaben sind nach der u.a. Formel quadratisch zu addieren, um eine Gesamt-Messgenauigkeit zu ermitteln - wenn keine besonderen Bedingungen vorliegen, die gegen eine Gleichverteilung und damit den quadratischen Ansatz sprechen (englisch: RSS – root of the sum of the squares).

$$F_{\text{Gesamt}} = \sqrt{\left(F_{\text{Gain}} \cdot \frac{\text{MW}}{\text{MBE}}\right)^{2} + \left(\text{Tk}_{\text{Gain}} \cdot \Delta T \cdot \frac{\text{MW}}{\text{MBE}}\right)^{2} + F_{\text{Offset}}^{2} + F_{\text{Lin}}^{2} + F_{\text{Rep}}^{2} + \left(\frac{1}{2} \cdot F_{\text{Noise,PtP}}\right)^{2} + \left(\text{Tk}_{\text{Offset}} \cdot \Delta T\right)^{2} + \left(F_{\text{Age}} \cdot N_{\text{Years}}\right)^{2}}$$

Für Messbereiche, bei denen der Temperaturkoeffizient nur als Tk_{Terminal} spezifiziert ist:

$$F_{\text{Gesamt}} = \sqrt{\left(F_{\text{Gain}} \cdot \frac{\text{MW}}{\text{MBE}}\right)^2 + F_{\text{Offset}}^2 + F_{\text{Lin}}^2 + F_{\text{Rep}}^2 + \left(\frac{1}{2} \cdot F_{\text{Noise, PtP}}\right)^2 + \left(Tk_{\text{Terminal}} \cdot \Delta T\right)^2 + \left(F_{\text{Age}} \cdot N_{\text{Years}}\right)^2}$$

F _{Offset}	: Offset-Spezifikation (bei 23°C)
F_{Gain}	: Gain/Scale-Spezifikation (bei 23°C)
F _{Noise, PtP}	: Rausch-Spezifikation als Peak-to-Peak-Wert (gültig für alle Temperaturen)
MW	: Gemessener Wert
MBE	: Messbereichsendwert
F _{Lin}	: Nichtlinearitätsfehler über den gesamten Messbereich (gültig für alle Temperaturen)
F _{Rep}	: Wiederholgenauigkeit (gültig für alle Temperaturen)
Tk _{Offset}	: Temperaturkoeffizient Offset
Tk_{Gain}	: Temperaturkoeffizient Gain
Tk _{Terminal}	: Temperaturkoeffizient der Klemme
ΔΤ	: Differenz der Umgebungstemperatur zur spezifizierten Grundtemperatur (23°C wenn nicht anders angegeben)
F _{Age}	: Fehlerkoeffizient der Alterung
N _{Years}	: Anzahl Jahre
F _{Gesamt}	: Theoretisch berechneter Gesamtfehler

Beispielsweise seien bei einem ermittelten Messwert MW = 8,13 V im 10 V Messbereich (MBE = 10 V) die folgenden Werte vorliegend ($N_{Years} = 0$):

- Gain-Spezifikation: F_{Gain} = 60 ppm
- Offset-Spezifikation: F_{Offset} = 70 ppm_{MBE}
- Nichtlinearität: F_{Lin} = 25 ppm_{MBE}
- Wiederholgenauigkeit: F_{Rep} = 20 ppm_{MBE}
- Rauschen (ohne Filterung): F_{Noise, PtP} = 100 ppm_{peak-to-peak},
- Temperaturkoeffizienten:
 - Tk_{Gain} = 8 ppm/K
 - Tk_{Offset} = 5 ppm_{MBE}/K

Dann berechnet sich die theoretisch mögliche Gesamt-Messgenauigkeit bei $\Delta T = 12K$ zur Grundtemperatur wie folgt:

 $F_{\text{Gesamt}} = \sqrt{(60 \text{ ppm} \cdot 0.813)^2 + (12 \text{K} \cdot 8 \text{ ppm}/\text{K} \cdot 0.813)^2 + (70 \text{ ppm}_{\text{MBE}})^2 + (25 \text{ ppm}_{\text{MBE}})^2 + (20 \text{ ppm}_{\text{MBE}})^2 + (50 \text{ ppm}_{\text{MBE}})^2 + (12 \text{K} \cdot 5 \text{ ppm}_{\text{MBE}}/\text{K})^2} = 143,16..\text{ ppm}_{\text{MBE}}$

bzw. = $\pm 0,0143...\%_{MBE}$ Anmerkungen: ppm $\pm 10^{-6}$ % $\pm 10^{-2}$

Allgemein kann also wie folgt gerechnet werden:

- Wenn nur der Einsatz bei 23°C zu betrachten ist: Gesamt-Messgenauigkeit = Grundgenauigkeit & Rauschen nach o.a. Formel
- Wenn der Einsatz bei 23°C mit langsamer Messung (=Mittelwertbildung/Filterung) zu betrachten ist: Gesamt-Messgenauigkeit = Grundgenauigkeit
- Wenn der allgemeine Einsatz bei bekannter Temperaturspanne und inkl. Rauschen zu betrachten ist: Gesamt-Messgenauigkeit = Grundgenauigkeit & Rauschen & Temperaturwerte nach o.a. Formel

Beckhoff gibt die Spezifikationsdaten üblicherweise symmetrisch in $[\pm\%]$ an, also z.B. $\pm0,01\%$ oder ±100 ppm. Entsprechend wäre das vorzeichenlose Gesamtfenster also der doppelte Wert. Auch eine Peak-to-peak-Angabe ist eine Gesamtfensterangabe, der symmetrische Wert also die Hälfte davon. In der u.a. quadratischen Verrechnung ist der symmetrische "einseitige" Wert ohne Vorzeichen einzusetzen. Rauschangaben erfolgen üblicherweise in peak-to-peak-Form, deshalb enthält die Formel für den Rauschwert schon den Teilungsfaktor 2.

Beispiel:

- symmetrische Angabe: ±0,01% (entspricht ±100 ppm) z.B. bei Offset-Spezifikation
- Gesamtfenster: 0,02% (200 ppm)
- Zur Verwendung in der Formel: 0,01% (100 ppm)

Der so berechnete Gesamtfehler ist wieder als symmetrischer Maximalwert zu sehen und somit zur weiteren Verwendung mit ± und ≤ zu versehen.

Beispiel:

- F_{Gesamt} = 100 ppm
- Zur weiteren Verwendung: "≤ ± 100 ppm"

Das heißt gesprochen: "Die Verrechnung der Einzel-Genauigkeitsangaben unter den geg. Bedingungen erbrachte ein Fenster von 200 ppm, das symmetrisch um dem einzelnen Messwert liegt. Die Messwertangabe x hat damit eine Unsicherheit von x ±100 ppm, der *wahre* Wert liegt damit zu 95% in diesem Bereich".

•

Der Rauschanteil kann entfallen

Der Anteil des Rauschens F_{Noise} in der o.a. Formel kann entfallen (= 0 ppm), wenn nicht ein einzelnes Sample sondern ein gemittelter Wert über einen Satz von Samples in Betracht gezogen wird. Die Mittelung kann in der PLC, aber auch durch einen der Filter im Analogkanal erfolgen. Der Ausgabewert einer gleitenden Mittelwertbildung über viele Samples hat einen annähernd eliminierten Rauschanteil. Die erzielbare Genauigkeit steigt somit, wenn der Rauschanteil verringert wird.

Fehlerkoeffizient der Alterung

Wird der Spezifikationswert zur Alterung von Beckhoff (noch) nicht spezifiziert, muss er bei Messunsicherheitsbetrachtungen wie im o.a. Beispiel zu 0 ppm angenommen werden, auch wenn in der Realität über die Betriebszeit davon auszugehen ist, dass sich die Messunsicherheit des betrachteten Gerätes ändert, umgangssprachlich der Messwert "driftet".

Erfahrungsgemäß kann als Größenordnung für eine Jahres-Veränderung (10.000 h) bei spezifikationsgemäßem Betrieb die Grundgenauigkeit des betrachteten Gerätes angenommen werden. Dies ist eine informative Aussage, ohne Spezifikationscharakter, Ausnahmen möglich. Generell wird die Alterungsveränderung sehr applikationsspezifisch ausfallen, eine allgemeine Alterungsspezifikation von Seiten Beckhoff wird daher bei Veröffentlichung eher Richtwertcharakter als garantierte Obergrenze darstellen.

Ergibt die Messunsicherheitsbetrachtung in der Applikation, dass die Alterung über die gewünschte Betriebszeit den Messerfolg gefährden kann, empfiehlt Beckhoff die zyklische Überprüfung (Rekalibrierung) des Messkanals, sowohl was Sensor, Verkabelung als auch die Beckhoff Messklemmen betrifft. Dadurch können potentielle Langzeitveränderungen in der Messkette frühzeitig entdeckt und ggf. sogar der Auslöser (z.B. Übertemperatur) eliminiert werden. Siehe dazu auch <u>Weiterführende Dokumentation zu I/O-Komponenten mit analogen Ein- und Ausgängen</u> [▶ 261].

Grundgenau

Grundgenauigkeit, erweiterte Grundgenauigkeit und Mittelwertbildung

✓ Die Grundgenauigkeit wird zur vereinfachten Verwendung extra ausgewiesen.

- a) Die Grundgenauigkeit beinhaltet Offset-/Gain-Abweichung, Nichtlinearität und Wiederholgenauigkeit, nicht aber den Temperaturkoeffizienten und das Rauschen und ist damit eine Teilmenge der o.a. vollständigen Rechnung. Es besteht die Möglichkeit mittels der Offset-Korrektur die Messgenauigkeit über die Grundgenauigkeit hinaus zu steigern. Hinweis: Die "**erweiterte** Grundgenauigkeit" beinhaltet zusätzlich durch den Temperaturkoeffizienten das Temperaturverhalten über den angegebenen Betriebstemperaturbereich z.B. 0...60 °C.
- b) "Mittelwertbildung" bedeutet, dass der Wert aus der arithmetischen Mittelung über i.d.R. 100.000 Werte zur Eliminierung des Rauschens gewonnen wurde. Dabei muss nicht unbedingt die in der Klemme integrierte Mittelwert-Funktion genutzt werden - es kann im Falle noch vorhandener Ressourcen die Mittelwertbildung ebenso in der PLC durchgeführt werden.

Messgenauigkeit vom Messwert (vom Messwert)

Manchmal ist statt der Genauigkeitsangabe "Genauigkeit bezogen auf den Messbereichsendwert (MBE)" (englisch: percentage of range) die "Genauigkeit bezogen auf den aktuellen Messwert" d.h. "Genauigkeit vom Wert (v.W.)" gesucht (englisch: percentage of reading).

Aus den in der Spezifikation gegebenen Daten kann dieser Wert einfach ermittelt werden, denn die Gesamtgenauigkeit setzt sich nach der Formel aus einem vom Messwert und Messbereichsendwert abhängigen Teil und einem ausschließlich vom Messbereichsendwert abhängigen Teil zusammen:

2.2.4 Messung ±30 V

Messung Modus	±30 V
Messbereich, nominell	-30+30 V
Messbereich, Endwert (MBE)	30 V
Messbereich, technisch nutzbar	-32,212+32,212 V
PDO Auflösung	24 Bit (inkl. Vorzeichen)
PDO LSB (Extended Range)	3,84 µV
PDO LSB (Legacy Range)	3,576 μV

Messung Modus		±30 V				
Grundgenauigkeit: Messabweichung bei 23°C, mit Mittelwertbildung		< ±0,01% _{MBE} = ±100 ppm _{MBE}				
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 65 ppm _{MBE}				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 65 ppm				
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 45 ppm _{MBE}				
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}				
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 100 ppm _{MBE}	< 781 [digits]		
	F _{Noise, RMS}	< 18 ppm _{MBE}	< 141 [digits]		
	Max. SNR	> 94,9 dB				
	Rauschdichte@1kHz					
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 10 ppm _{MBE}	< 78 [digits]			
	F _{Noise, RMS}	< 2,5 ppm _{MBE} < 20 [digits]				
	Max. SNR	> 112,0 dB				
Temperaturkoeffizient	Tk _{Gain}	< 11 ppm/K typ.				
	Tk _{Offset}	< 10 ppm _{MBE} /K typ.				
Gleichtaktunterdrückung (ohne Filter)		DC: >68 dB typ.	50 Hz: >68 dB typ.		1 kHz: >52 dB typ.	
Gleichtaktunterdrückung (mit 50 Hz FIR Filter)		DC: >68 dB typ.	50 Hz: >100 dB 1 kH typ. typ.		1 kHz: >100 dB typ.	
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung		$\pm 0.05\%_{\rm MBE} = \pm 500 \text{ ppm}_{\rm MBE} \text{ typ.}$				
Eingangsimpedanz ±Input 1		Differentiell typ. 570 kΩ 11 nF				
(Innenwiderstand)		CommonMode typ. 140 kΩ 40 nF				
		Methodik: Widerstand gegen –U _v , Kapazität gegen SGND				
Eingangsimpedanz ±Input 2		Eingang wird in diesem Modus nicht benutzt				

Abb. 6: Darstellung ±30 V Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

Im Legacy Range Mode führt ein Underrange/Overrange -Ereignis zugleich zu einem Error im PDO-Status.

Abb. 7: Frequenzgang ± 30 V Messbereich, $f_{sampling} = 10$ kHz, integrierte Filter 1/2 deaktiviert

2.2.5 Messung ±10 V

Messung Modus		±10 V				
Messbereich, nominell		-10+10 V				
Messbereich, Endwert (MBE)		10 V				
Messbereich, technisch nutzbar		-10,737+10,7	737 \	V		
PDO Auflösung		24 Bit (inkl. Vo	rzeic	hen)		
PDO LSB (Extended Range)		1,28 µV				
PDO LSB (Legacy Range)		1,192 μV				
Grundgenauigkeit: Messabweichu Mittelwertbildung	ng bei 23°C, mit	$< \pm 0.01\%_{MBE} = \pm 100 \text{ ppm}_{MBE}$				
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ppm _{MBE}				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 60 ppm				
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 ppm _{MBE}				
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}				
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 100 ppm _{MBE}		< 781 [digits]		
	F _{Noise, RMS}	< 18 ppm _{MBE}		< 141 [digits]		
	Max. SNR	> 94,9 dB				
	Rauschdichte@1kHz	< 2.55 ^{µV/V} / /Hz				
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 10 ppm _{MBE} < 78 [digits]				
	F _{Noise, RMS}	< 2,0 ppm _{MBE}		< 16 [digits]		
	Max. SNR	> 114,0 dB				
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.				
	Tk _{Offset}	< 5 ppm _{MBE} /K typ.				
Gleichtaktunterdrückung (ohne Filter)		DC: >115 dB typ.	50 Hz: >105 dB typ.		1 kHz: >80 dB typ.	
Gleichtaktunterdrückung (mit 50 Hz FIR Filter)		DC: >115 dB typ.	50 Hz: >115 dB typ.		1 kHz: >115 dB typ.	
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung		$\pm 0.05\%_{\rm MBE} = \pm 500 \text{ ppm}_{\rm MBE} \text{ typ.}$				
Eingangsimpedanz ±Input 1		Differentiell typ. 4,1 MΩ 11 nF				
(Innenwiderstand)		CommonMode typ. 1 MΩ 40 nF				
		Methodik: Widerstand gegen – U_v , Kapazität gegen SGND				
Eingangsimpedanz ±Input 2		Eingang wird in diesem Modus nicht benutzt				

In Anlehnung an den Beckhoff "Messfehler" kann wie in Kapitel <u>"Allgemeines zur Messgenauigkeit/</u> <u>Messunsicherheit"</u> [▶ 22] angeben auch als Vergleichswert der "Gesamtmessfehler über alles" berechnet werden.

Für den Messbereich ±10V ergibt sich dieser damit aus den o.a. Daten und $T_{Umgebung,max} = 55^{\circ}C zu \pm 321 ppm_{MBE}$ (bzw. 0,032%_{MBE}).

Siehe dazu auch Messfehler/Messabweichung/Messunsicherheit, Ausgabeunsicherheit unter Weiterführende Dokumentation zu I/O-Komponenten mit analogen Ein- und Ausgängen [> 261].

Abb. 8: Darstellung ±10 V Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

Im Legacy Range Mode führt ein Underrange/Overrange -Ereignis zugleich zu einem Error im PDO-Status.

Abb. 9: Frequenzgang ±10 V Messbereich, f_{sampling} = 10 kHz, integrierte Filter 1/2 deaktiviert

2.2.6 Messung ±5 V

Messung Modus		±5 V				
Messbereich, nominell		-5+5 V				
Messbereich, Endwert (MBE)		5 V				
Messbereich, technisch nutzbar		-5,368+5,368	3 V			
PDO Auflösung		24 Bit (inkl. Vo	rzeichen)			
PDO LSB (Extended Range)		640 nV				
PDO LSB (Legacy Range)		596 nV				
Grundgenauigkeit: Messabweichung bei 23°C, mit Mittelwertbildung		$< \pm 0.01\%_{MBE} = \pm 100 \text{ ppm}_{MBE}$				
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ppm _{MBE}				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 55 ppm				
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 ppm _{MBE}				
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}				
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 100 ppm _{MBE}	< 100 ppm _{MBE} < 781 [digits]			
	F _{Noise, RMS}	< 18 ppm _{MBE}]			
	Max. SNR	> 94,9 dB				
	Rauschdichte@1kHz	< 1.27 VHz				
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 10 ppm _{MBE} < 78 [digits]				
	F _{Noise, RMS}	< 2,0 ppm _{MBE}				
	Max. SNR	> 114,0 dB				
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.				
	Tk _{Offset}	< 5 ppm _{MBE} /K typ.				
Gleichtaktunterdrückung (ohne Filter)		DC: >115 dB typ.	50 Hz: >105 dB typ.	1 kHz: >80 dB typ.		
Gleichtaktunterdrückung (mit 50 Hz FIR Filter)		DC: >115 dB typ.	50 Hz: >115 dB typ.	1 kHz: >115 dB typ.		
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung		$\pm 0.05\%_{\rm MBE} = \pm 500 \text{ ppm}_{\rm MBE} \text{ typ.}$				
Eingangsimpedanz ±Input 1		Differentiell typ. 4,1 MΩ 11 nF				
(Innenwiderstand)		CommonMode typ. 1 MΩ 40 nF				
		Methodik: Widerstand gegen –U _∨ , Kapazität gegen SGND				
Eingangsimpedanz ±Input 2		Eingang wird in diesem Modus nicht benutzt				

Abb. 10: Darstellung ±5 V Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

Im Legacy Range Mode führt ein Underrange/Overrange -Ereignis zugleich zu einem Error im PDO-Status.

Abb. 11: Frequenzgang ±5 V Messbereich, f_{sampling} = 10 kHz, integrierte Filter 1/2 deaktiviert

2.2.7 Messung ±2,5 V

Messung Modus		±2,5 V				
Messbereich, nominell		-2,5+2,5 V				
Messbereich, Endwert (MBE)		2,5 V				
Messbereich, technisch nutzbar		-2,684+2,684	4 V			
PDO Auflösung		24 Bit (inkl. Vo	rzeich	en)		
PDO LSB (Extended Range)		320 nV				
PDO LSB (Legacy Range)		298 nV				
Grundgenauigkeit: Messabweich Mittelwertbildung	nung bei 23°C, mit	$< \pm 0.01\%_{MBE} = \pm 100 \text{ ppm}_{MBE}$				
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ppm _{MBE}				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 55 ppm				
Nichtlinearität über den gesamten Messbereich	F _{⊥in}	< 25 ppm _{MBE}				
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}				
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 90 ppm _{MBE}		< 703 [digits]		
	F _{Noise, RMS}	< 17 ppm _{MBE} < 133 [digits]				
	Max. SNR	> 95,4 dB				
	Rauschdichte@1kHz	< 0,60 ^{μV/V} /Hz				
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 9 ppm _{MBE} < 70 [digits]				
	F _{Noise, RMS}	< 2,0 ppm _{MBE}		< 16 [digits]		
	Max. SNR	> 114,0 dB				
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.				
	Tk _{Offset}	< 5 ppm _{мве} /K typ.				
Gleichtaktunterdrückung (ohne Filter)		DC: >115 dB typ.	50 Hz typ.	z: >105 dB	1 kHz: >80 dB typ.	
Gleichtaktunterdrückung (mit 50 Hz FIR Filter)		DC: >115 dB typ.	50 Hz: >115 dB 1 k typ. typ.		1 kHz: >115 dB typ.	
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung		$\pm 0.05\%_{\rm MBE} = \pm 500 \text{ ppm}_{\rm MBE} \text{ typ.}$				
Eingangsimpedanz ±Input 1		Differentiell typ. 4,1 MΩ 11 nF				
(Innenwiderstand)		CommonMode typ. 1 MΩ 40 nF				
		Methodik: Widerstand gegen –U _v , Kapazität gegen SGND				
Eingangsimpedanz ±Input 2		Eingang wird in diesem Modus nicht benutzt				

Abb. 12: Darstellung ±2,5 V Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

Im Legacy Range Mode führt ein Underrange/Overrange -Ereignis zugleich zu einem Error im PDO-Status.

2.2.8 Messung ±1,25 V

Messung Modus		±1,25 V				
Messbereich, nominell		-1,25+1,25 V				
Messbereich, Endwert (MBE)		1,25 V				
Messbereich, technisch nutzbar		-1,490+1,490) V (
PDO Auflösung		24 Bit (inkl. Vor	rzeic	chen)		
PDO LSB (Extended Range)		160 nV				
PDO LSB (Legacy Range)		149 nV				
Grundgenauigkeit: Messabweichu Mittelwertbildung	ng bei 23°C, mit	< ±0,01% _{MBE} =	±10	0 ppm _{MBE}		
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ppm _{MBE}				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 55 ppm				
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 ppm _{MBE}				
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}				
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 90 ppm _{MBE}	< 90 ppm _{MBE} < 703 [digits]			
	F _{Noise, RMS}	< 17 ppm _{MBE}		< 133 [digits]		
	Max. SNR	> 95,4 dB				
	Rauschdichte@1kHz	< 0.30 ^{µV/V} / _{\Hz}				
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 9 ppm _{MBE} < 70 [digits]				
	F _{Noise, RMS}	$< 2,0 \text{ ppm}_{\text{MBE}}$ $< 16 \text{ [digits]}$		< 16 [digits]		
	Max. SNR	> 114,0 dB				
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.				
	Tk _{Offset}	< 5 ppm _{MBE} /K typ.				
Gleichtaktunterdrückung (ohne Filter)		DC: >115 dB typ.	50 Hz: >105 dB typ.		1 kHz: >80 dB typ.	
Gleichtaktunterdrückung (mit 50 Hz FIR Filter)		DC: >115 dB typ.	50 Hz: >115 dB typ.		1 kHz: >115 dB typ.	
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung		$\pm 0.05\%_{MBE} = \pm 500 \text{ ppm}_{MBE} \text{ typ.}$				
Eingangsimpedanz ±Input 1		Differentiell typ. 4,1 MΩ 11 nF				
(Innenwiderstand)		CommonMode typ. 1 MΩ 40 nF				
		Methodik: Widerstand gegen $-U_v$, Kapazität gegen SGND				
Eingangsimpedanz ±Input 2		Eingang wird in diesem Modus nicht benutzt				

Abb. 14: Darstellung ±1,25 V Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

Im Legacy Range Mode führt ein Underrange/Overrange -Ereignis zugleich zu einem Error im PDO-Status.

2.2.9 Messung ±640 mV

Messung Modus		±640 mV			
Messbereich, nominell		-640+640 m	V		
Messbereich, Endwert (MBE)		640 mV			
Messbereich, technisch nutzbar		-687,2+687,2	2 mV		
PDO Auflösung		24 Bit (inkl. Vo	rzeiche	en)	
PDO LSB (Extended Range)		81,92 nV			
PDO LSB (Legacy Range)		76,29 nV			
Grundgenauigkeit: Messabweichu Mittelwertbildung	ng bei 23°C, mit	$< \pm 0.01\%_{MBE} =$	±100 p	opm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ppm _{MBE}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 55 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 90 ppm _{MBE}	< '	703 [digits]	
	F _{Noise, RMS}	< 17 ppm _{MBE}	<	133 [digits]	
	Max. SNR	> 95,4 dB			
	Rauschdichte@1kHz	<u>μV/V</u> < 0,15 √Hz			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 9 ppm _{MBE}	< 1	70 [digits]	
	F _{Noise, RMS}	< 2,0 ppm _{MBE}	<	16 [digits]	
	Max. SNR	> 114,0 dB			
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.			
	Tk _{Offset}	< 5 ppm _{MBE} /K ty	yp.		
Gleichtaktunterdrückung (ohne Fil	ter)	DC: >115 dB typ.	50 Hz typ.	: >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50 H	z FIR Filter)	DC: >115 dB typ.	50 Hz typ.	:: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung wä festgelegten elektrischen Störprüft	ährend einer ung	$\pm 0.05\%_{\rm MBE} = \pm 5$	500 ppi	т _{мве} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	. 4,1 M	1Ω 11 nF	
(Innenwiderstand)		CommonMode	typ. 1	MΩ 40 nl	=
		Methodik: Wide gegen SGND	erstand	l gegen –U,	√, Kapazität
Eingangsimpedanz ±Input 2		Eingang wird ir	n diese	m Modus n	icht benutzt

BECKHOFF

Abb. 16: Darstellung ±640 mV Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.10 Messung ±320 mV

Messung Modus		±320 mV			
Messbereich, nominell		-320+320 m	V		
Messbereich, Endwert (MBE)		320 mV			
Messbereich, technisch nutzbar		-343,6+343,	6 mV		
PDO Auflösung		24 Bit (inkl. Vo	rzeich	en)	
PDO LSB (Extended Range)		40,96 nV			
PDO LSB (Legacy Range)		38,14 nV			
Grundgenauigkeit: Messabweich Mittelwertbildung	nung bei 23°C, mit	< ±0,01% _{MBE} =	±100	ppm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ppm _{MBE}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 55 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 90 ppm _{MBE}		< 703 [digits]	
	F _{Noise, RMS}	< 17 ppm _{MBE}		< 133 [digits]	
	Max. SNR	> 95,4 dB			
	Rauschdichte@1kHz	76,93 √Hz			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 9 ppm _{MBE}		< 70 [digits]	
	F _{Noise, RMS}	< 2,0 ppm _{MBE}		< 16 [digits]	
	Max. SNR	> 114,0 dB		1	
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.			
	Tk _{Offset}	< 5 ppm _{MBE} /K t	yp.		
Gleichtaktunterdrückung (ohne F	Filter)	DC: >115 dB typ.	50 Hz typ.	z: >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50	Hz FIR Filter)	DC: >115 dB typ.	50 Hz typ.	z: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung festgelegten elektrischen Störpri	während einer üfung	$\pm 0.05\%_{MBE} = \pm 3$	500 pp	om _{MBE} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	. 4,1 N	//Ω 11 nF	
(Innenwiderstand)		CommonMode	typ. 1	MΩ 40 nF	
		Methodik: Wide SGND	erstan	d gegen – U_v ,	Kapazität gegen
Eingangsimpedanz ±Input 2		Eingang wird ir	n diese	em Modus nic	ht benutzt

Abb. 18: Darstellung ±320 mV Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.11 Messung ±160 mV

Messung Modus		±160 mV			
Messbereich, nominell		-160+160 m	V		
Messbereich, Endwert (MBE)		160 mV			
Messbereich, technisch nutzbar		-171,8+171,8	8 mV		
PDO Auflösung		24 Bit (inkl. Vo	rzeich	en)	
PDO LSB (Extended Range)		20,48 nV			
PDO LSB (Legacy Range)		19,07 nV			
Grundgenauigkeit: Messabweich Mittelwertbildung	nung bei 23°C, mit	< ±0,01% _{MBE} =	±100	ppm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ppm _{MBE}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 55 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 120 ppm _{MBE}		< 938 [digits]	
	F _{Noise, RMS}	< 22 ppm _{MBE}		< 172 [digits]	
	Max. SNR	> 93,2 dB			
	Rauschdichte@1kHz	< 49,78			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 13 ppm _{MBE}		< 102 [digits]	
	F _{Noise, RMS}	< 2,5 ppm _{MBE}		< 20 [digits]	
	Max. SNR	> 112,0 dB			
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.			
	Tk _{Offset}	< 5 ppm _{MBE} /K t	yp.		
Gleichtaktunterdrückung (ohne F	Filter)	DC: >115 dB typ.	50 Hz typ.	z: >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50	Hz FIR Filter)	DC: >115 dB typ.	50 Hz typ.	z: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung festgelegten elektrischen Störpro	während einer üfung	$\pm 0.05\%_{\text{MBE}} = \pm 3$	500 pp	om _{MBE} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	. 4,1 N	//Ω 11 nF	
(Innenwiderstand)		CommonMode	typ. 1	MΩ 40 nF	
		Methodik: Wide SGND	erstan	d gegen – U_v ,	Kapazität gegen
Eingangsimpedanz ±Input 2		Eingang wird ir	n diese	em Modus nic	ht benutzt

Abb. 20: Darstellung ±160 mV Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.12 Messung ±80 mV

Messung Modus		±80 mV			
Messbereich, nominell		-80+80 mV			
Messbereich, Endwert (MBE)		80 mV			
Messbereich, technisch nutzbar		-85,9+85,9 n	nV		
PDO Auflösung		24 Bit (inkl. Vo	rzeich	en)	
PDO LSB (Extended Range)		10,24 nV			
PDO LSB (Legacy Range)		9,536 nV			
Grundgenauigkeit: Messabweich Mittelwertbildung	nung bei 23°C, mit	< ±0,01% _{MBE} =	±100	ppm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ppm _{MBE}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 55 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 ррт _{мве}			
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 160 ppm _{MBE}		< 1250 [digits	s]
	F _{Noise, RMS}	< 37 ppm _{MBE}		< 289 [digits]	
	Max. SNR	> 88,6 dB			
	Rauschdichte@1kHz	< 41,86 ^{nV} / _{√Hz}			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 18 ppm _{MBE}		< 141 [digits]	
	F _{Noise, RMS}	< 3,5 ppm _{MBE}		< 27 [digits]	
	Max. SNR	> 109,1 dB		1	
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.			
	Tk _{Offset}	< 5 ppm _{MBE} /K t	yp.		
Gleichtaktunterdrückung (ohne F	Filter)	DC: >115 dB typ.	50 Hz typ.	z: >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50	Hz FIR Filter)	DC: >115 dB typ.	50 Hz typ.	z: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung festgelegten elektrischen Störpri	während einer üfung	$\pm 0.05\%_{\text{MBE}} = \pm 3$	500 pp	m _{MBE} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	. 4,1 N	/IΩ 11 nF	
(Innenwiderstand)		CommonMode	typ. 1	MΩ 40 nF	
		Methodik: Wide SGND	erstan	d gegen – U_v ,	Kapazität gegen
Eingangsimpedanz ±Input 2		Eingang wird ir	n diese	em Modus nic	ht benutzt

Abb. 22: Darstellung ±80 mV Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.13 Messung ±40 mV

Messung Modus		±40 mV			
Messbereich, nominell		-40+40 mV			
Messbereich, Endwert (MBE)		40 mV			
Messbereich, technisch nutzbar		-42,95+42,9	5 V		
PDO Auflösung		24 Bit (inkl. Vo	rzeich	en)	
PDO LSB (Extended Range)		5,12 nV			
PDO LSB (Legacy Range)		4,768 nV			
Grundgenauigkeit: Messabweich Mittelwertbildung	nung bei 23°C, mit	< ±0,02% _{MBE} =	±200	ppm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 175 ppm _{мве}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 65 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 45 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 30 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 375 ppm _{MBE}		< 2930 [digits	5]
	F _{Noise, RMS}	< 75 ppm _{MBE}		< 586 [digits]	
	Max. SNR	> 82,5 dB			
	Rauschdichte@1kHz	< 42,43			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 40 ppm _{MBE}		< 313 [digits]	
	F _{Noise, RMS}	< 5,5 ppm _{MBE}		< 43 [digits]	
	Max. SNR	> 105,2 dB			
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.			
	Tk _{Offset}	< 6 ppm _{MBE} /K t	yp.		
Gleichtaktunterdrückung (ohne F	Filter)	DC: >115 dB typ.	50 Hz typ.	z: >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50	Hz FIR Filter)	DC: >115 dB typ.	50 H: typ.	z: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung festgelegten elektrischen Störprü	während einer üfung	$\pm 0,1\%_{MBE} = \pm 10$	000 pp	om _{MBE} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	. 4,1 M	//Ω 11 nF	
(Innenwiderstand)		CommonMode	typ. 1	MΩ 40 nF	
		Methodik: Wide SGND	erstan	d gegen – U_v ,	Kapazität gegen
Eingangsimpedanz ±Input 2		Eingang wird ir	n diese	em Modus nic	ht benutzt

Abb. 24: Darstellung ±40 mV Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.14 Messung ±20 mV

Messung Modus		±20 mV			
Messbereich, nominell		-20+20 mV			
Messbereich, Endwert (MBE)		20 mV			
Messbereich, technisch nutzbar		-21,474+21,4	474 m	V	
PDO Auflösung		24 Bit (inkl. Vo	rzeich	en)	
PDO LSB (Extended Range)		2,56 nV			
PDO LSB (Legacy Range)		2,384 nV			
Grundgenauigkeit: Messabweich Mittelwertbildung	nung bei 23°C, mit	< ±0,03% _{MBE} =	±300	ppm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 260 ppm _{MBE}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 100 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 90 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 35 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 750 ppm _{MBE}		< 5859 [digits	5]
	F _{Noise, RMS}	< 150 ppm _{MBE}		< 1172 [digits	5]
	Max. SNR	> 76,5 dB			
	Rauschdichte@1kHz	< 42,43 ^{nV} / _{VHz}			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 75 ppm _{MBE}		< 586 [digits]	
	F _{Noise, RMS}	< 11,5 ppm _{MBE}		< 90 [digits]	
	Max. SNR	> 98,8 dB		1	
Temperaturkoeffizient	Tk _{Gain}	< 12 ppm/K typ).		
	Tk _{Offset}	< 12 ppm _{MBE} /K	typ.		
Gleichtaktunterdrückung (ohne F	Filter)	DC: >115 dB typ.	50 Hz typ.	z: >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50	Hz FIR Filter)	DC: >115 dB typ.	50 Hz typ.	z: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung festgelegten elektrischen Störpri	während einer üfung	$\pm 0,1\%_{MBE} = \pm 10$	000 pp	οm _{MBE} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	. 4,1 N	//Ω 11 nF	
(Innenwiderstand)		CommonMode	typ. 1	MΩ 40 nF	
		Methodik: Wide SGND	erstan	d gegen – U_v ,	Kapazität gegen
Eingangsimpedanz ±Input 2		Eingang wird ir	n diese	em Modus nic	ht benutzt

BECKHOFF

Abb. 26: Darstellung ±20 mV Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.15 Messung ±10 mV

Messung Modus		±10 mV			
Messbereich, nominell		-10+10 mV			
Messbereich, Endwert (MBE)		10 mV			
Messbereich, technisch nutzbar		-10,737+10,7	737 m	V	
PDO Auflösung		24 Bit (inkl. Vo	rzeich	en)	
PDO LSB (Extended Range)		1,28 nV			
PDO LSB (Legacy Range)		1,192 nV			
Grundgenauigkeit: Messabweich Mittelwertbildung	nung bei 23°C, mit	$< \pm 0.06\%_{MBE} =$	±600	ppm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 550 ppm _{MBE}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 150 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 160 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 50 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 1200 ppm _{MBE}		< 9375 [digits	s]
	F _{Noise, RMS}	< 200 ppm _{MBE}		< 1563 [digits	s]
	Max. SNR	> 74,0 dB			
	Rauschdichte@1kHz	< 28,28			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise. PtP}	< 120 ppm _{MBE}		< 938 [digits]	
	F _{Noise, RMS}	< 21,0 ppm _{MBE}		< 164 [digits]	
	Max. SNR	> 93,6 dB			
Temperaturkoeffizient	Tk _{Gain}	< 22 ppm/K typ).		
	Tk _{Offset}	< 20 ppm _{MBE} /K	typ.		
Gleichtaktunterdrückung (ohne F	-ilter)	DC: >115 dB typ.	50 Hz typ.	<u>z:</u> >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50	Hz FIR Filter)	DC: >115 dB typ.	50 Hz typ.	z: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung festgelegten elektrischen Störprö	während einer üfung	$\pm 0.2\%_{\rm MBE} = \pm 20$	000 pp	рт _{мве} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	. 4,1 N	/IΩ 11 nF	
(Innenwiderstand)		CommonMode	typ. 1	MΩ 40 nF	
		Methodik: Wide SGND	erstan	d gegen – U_v ,	Kapazität gegen
Eingangsimpedanz ±Input 2		Eingang wird ir	n diese	em Modus nic	ht benutzt

BECKHOFF

Abb. 27: Darstellung ±10 mV Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.16 Messung ±5 mV

Messung Modus		±5 mV			
Messbereich, nominell		-5+5 mV			
Messbereich, Endwert (MBE)		5 mV			
Messbereich, technisch nutzbar		-5,368+5,368	8 mV		
PDO Auflösung		24 Bit (inkl. Vo	rzeich	en)	
PDO LSB (Extended Range)		0,64 nV			
PDO LSB (Legacy Range)		0,596 nV			
Grundgenauigkeit: Messabweich Mittelwertbildung	nung bei 23°C, mit	< ±0,12% _{MBE} =	±1200) ppm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 1120 ppm _{MBE}	1		
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 290 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 290 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 90 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 2400 ppm _{MBE}		< 18750 [digi	its]
	F _{Noise, RMS}	< 380 ppm _{MBE}		< 2969 [digits	s]
	Max. SNR	> 68,4 dB			
	Rauschdichte@1kHz	< 26,87			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 240 ppm _{MBE}		< 1875 [digits	s]
	F _{Noise, RMS}	< 42,0 ppm _{MBE}		< 328 [digits]	
	Max. SNR	> 87,5 dB			
Temperaturkoeffizient	Tk _{Gain}	< 35 ppm/K typ).		
	Tk _{Offset}	< 35 ppm _{MBE} /K	typ.		
Gleichtaktunterdrückung (ohne F	-ilter)	DC: >115 dB typ.	50 Hz typ.	z: >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50	Hz FIR Filter)	DC: >115 dB typ.	50 Hz typ.	z: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung festgelegten elektrischen Störpri	während einer üfung	$\pm 0.2\%_{\rm MBE} = \pm 20$	000 pp	рт _{мве} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	. 4,1 N	/Ω 11 nF	
(Innenwiderstand)		CommonMode	typ. 1	MΩ 40 nF	
		Methodik: Wide SGND	erstan	d gegen – U_v ,	Kapazität gegen
Eingangsimpedanz ±Input 2		Eingang wird ir	n diese	em Modus nic	ht benutzt

Abb. 28: Darstellung ±5 mV Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.17 Messung 0...5 V

Messung Modus		05 V			
Messbereich, nominell		05 V			
Messbereich, Endwert (MBE)		5 V			
Messbereich, technisch nutzbar		05,368 V			
PDO Auflösung		23 Bit (vorzeic	henlos	;)	
PDO LSB (Extended Range)		0,64 µV			
Grundgenauigkeit: Messabweich Mittelwertbildung	nung bei 23°C, mit	< ±0,01% _{MBE} =	±100	ppm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ррт _{мве}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 55 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 100 ppm _{MBE}		< 781 [digits]	
	F _{Noise, RMS}	< 18 ppm _{MBE}		< 141 [digits]	
	Max. SNR	> 94,9 dB			
	Rauschdichte@1kHz	< 1,27 ^{µV/V} /Hz			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 10 ppm _{MBE}		< 78 [digits]	
	F _{Noise, RMS}	< 2,0 ppm _{MBE}		< 16 [digits]	
	Max. SNR	> 114,0 dB			
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.			
	Tk _{Offset}	< 5 ppm _{MBE} /K t	ур.		
Gleichtaktunterdrückung (ohne F	ilter)	DC: >115 dB typ.	50 Hz typ.	z: >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50	Hz FIR Filter)	DC: >115 dB typ.	50 Hz typ.	z: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung festgelegten elektrischen Störprü	während einer ìfung	$\pm 0,05\%_{MBE} = \pm 3$	500 pp	om _{MBE} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	o. 4,1 N	//Ω 11 nF	
(Innenwiderstand)		CommonMode	e typ. 1	MΩ 40 nF	
		Methodik: Wide SGND	erstan	d gegen –U _∨ ,	Kapazität gegen
Eingangsimpedanz ±Input 2		Eingang wird i	n diese	em Modus nic	ht benutzt

Abb. 29: Darstellung 0...5 V Messbereich

Anmerkung: Auch in den unipolaren Messbereichen (Messung ab 0 V, 0 mA, 4 mA, 0 Ω) arbeitet der Kanal elektrisch bipolar und erfasst negative Werte. Dadurch kann der Kanal eine präzise Diagnose auch bei Signalenwerten < 0 liefern. In diesen Messbereichen liegt der Grenzwert für den "Underrange Error" im ExtendedMode bei -1 % des Messbereich Endwerts (MBE). Der Grenzwert ist im CoE-Objekt <u>0x80n0:32 [▶ 94]</u> einstellbar. Dadurch kommt es nicht zu irritierenden Fehlermeldungen wenn der Kanal nicht beschaltet (z.B. ohne Sensor) betrieben wird oder das elektrische Signal leicht um Null herum schwankt. Der Prozessdatenwert von 0x0000000 wird dabei nicht unterschritten.

Soll die "UnderrangeError"-Erkennung noch weniger empfindlich eingestellt werden, kann der Betrag des negativen Grenzwertes im genannten CoE-Objekt noch höher gesetzt werden.

2.2.18 Messung 0...10 V

Messung Modus		010 V			
Messbereich, nominell		010 V			
Messbereich, Endwert (MBE)		10 V			
Messbereich, technisch nutzbar		0+10,737 V			
PDO Auflösung		23 Bit (vorzeic	henlos	5)	
PDO LSB (Extended Range)		1,28 µV			
Grundgenauigkeit: Messabweich Mittelwertbildung	ung bei 23°C, mit	< ±0,01% _{MBE} =	±100	ppm _{MBE}	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 ppm _{мве}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 60 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 20 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 100 ppm _{MBE}		< 781 [digits]	
	F _{Noise, RMS}	< 18 ppm _{MBE}		< 141 [digits]	
	Max. SNR	> 94,9 dB			
	Rauschdichte@1kHz	< 2,55			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 10 ppm _{MBE}		< 78 [digits]	
	F _{Noise, RMS}	< 2,0 ppm _{MBE}		< 16 [digits]	
	Max. SNR	> 114,0 dB			
Temperaturkoeffizient	Tk _{Gain}	< 8 ppm/K typ.			
	Tk _{Offset}	< 5 ppm _{MBE} /K t	yp.		
Gleichtaktunterdrückung (ohne F	filter)	DC: >115 dB typ.	50 Hz typ.	z: >105 dB	1 kHz: >80 dB typ.
Gleichtaktunterdrückung (mit 50	Hz FIR Filter)	DC: >115 dB typ.	50 Hz typ.	z: >115 dB	1 kHz: >115 dB typ.
Größte kurzzeitige Abweichung festgelegten elektrischen Störprü	während einer ìfung	$\pm 0.05\%_{MBE} = \pm 3$	500 pp	om _{MBE} typ.	
Eingangsimpedanz ±Input 1		Differentiell typ	o. 4,1 N	/IΩ 11 nF	
(Innenwiderstand)		CommonMode	typ. 1	MΩ 40 nF	
		Methodik: Wide SGND	erstan	d gegen –U _∨ ,	Kapazität gegen
Eingangsimpedanz ±Input 2		Eingang wird i	n diese	em Modus nic	ht benutzt

Abb. 31: Darstellung 0...10 V Messbereich

Anmerkung: Auch in den unipolaren Messbereichen (Messung ab 0 V, 0 mA, 4 mA, 0 Ω) arbeitet der Kanal elektrisch bipolar und erfasst negative Werte. Dadurch kann der Kanal eine präzise Diagnose auch bei Signalenwerten < 0 liefern. In diesen Messbereichen liegt der Grenzwert für den "Underrange Error" im ExtendedMode bei -1 % des Messbereich Endwerts (MBE). Der Grenzwert ist im CoE-Objekt <u>0x80n0:32</u> [▶_94] einstellbar. Dadurch kommt es nicht zu irritierenden Fehlermeldungen wenn der Kanal nicht beschaltet (z.B. ohne Sensor) betrieben wird oder das elektrische Signal leicht um Null herum schwankt. Der Prozessdatenwert von 0x0000000 wird dabei nicht unterschritten.

Soll die "UnderrangeError"-Erkennung noch weniger empfindlich eingestellt werden, kann der Betrag des negativen Grenzwertes im genannten CoE-Objekt noch höher gesetzt werden.

2.2.19 Messung ±20 mA

Messung Modus		±20 mA	
Messbereich, nominell		-20+20 mA	
Messbereich, Endwert (MBE)		20 mA	
Messbereich, technisch nutzbar		-21,474+21,474 m	A, überstromgeschützt
Absicherung		Interne Überlastbegi dauerstromfest	renzung,
PDO Auflösung		24 Bit (inkl. Vorzeich	ien)
PDO LSB (Extended Range)		2,56 nA	
PDO LSB (Legacy Range)		2,384 nA	
Gleichtaktspannung U _{cm}		max. +/- 10V	
		bezogen auf –Uv (in	terne Masse)
Grundgenauigkeit: Messabweichung bei 2 Mittelwertbildung	23°C, mit	< ±0,01% _{MBE} = ±100	ppm _{MBE}
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 65 ppm _{MBE}	
Gain/Scale/Verstärkungs-Abweichung (bei 23°C)	F _{Gain}	< 50 ppm	
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 40 ppm _{MBE}	
Wiederholgenauigkeit	F _{Rep}	< 40 ppm _{MBE}	
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 100 ppm _{MBE}	< 781 [digits]
	F _{Noise, RMS}	< 18 ppm _{MBE}	< 141 [digits]
	Max. SNR	> 94,9 dB	
	Rauschdichte@1kH z	< 5,09 √Hz	
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 10 ppm _{MBE}	< 78 [digits]
	F _{Noise, RMS}	< 2,0 ppm _{MBE}	< 16 [digits]
	Max. SNR	> 114,0 dB	
Temperaturkoeffizient	Tk _{Gain}	< 15 ppm/K typ.	
	Tk _{Offset}	< 5 ppm _{MBE} /K typ.	
Gleichtaktunterdrückung (ohne Filter)	DC:	50 Hz:	1 kHz:
	< 3 nA/V typ.	< 5 nA/V typ.	< 80 nA/V typ.
Gleichtaktunterdrückung (mit 50 Hz FIR	DC:	50 Hz:	1 kHz:
	< 3 nA/v typ.	< 3 nA/v typ.	< 3 nA/V typ.
einer festgelegten elektrischen Störprüfung	±0,05% _{MBE} = ±500 pp	от _{мве} тур.	
Eingangsimpedanz ±Input 1	Differentiell typ. 200	Ω 11 nF	
(Innenwiderstand)	CommonMode typ. 1	MΩ 40 nF	
	Methodik: Widerstan	d gegen –U _v , Kapazi	tät gegen SGND
Eingangsimpedanz ±Input 2	Eingang wird in diese	em Modus nicht benu	tzt

Strommessbereich ±20 mA

tended Range Prode (Denauty).			Defined re	esolution: 2.56 nA /St	
21.474 mA -20 mA -8388608 -7812500 (0xFF800000) (0xFF88CA6C) Range Error Limit (2 I	negative Range	0 mA 0 (0x00000000)	positive Range	+20 mA +7812500 (0x00773594) I	+21.474 mA +8388607 (0x007FFFF) Range Error Limit (²
Underrange Area (1		Nominal Range		Overrange Are	ea (1
←		Technical Range			→
¹ Underrange/Overrange Limit/Area: corre	sponding bit is set when meas	surement value is out of nor	ninal range		
² Range Error: Error Bit + Error LED (detect	tion level adjustable by user, d	Jefault: technical range)			
eaacv Ranae Mode (Optional):			Calculated reso	lution: 2 384 nA /St	
5, 5 (, ,				IULION. 2.304 NA / 50	
-20 mA -8388608		0 mA			+20 mA +8388607
-20 mA -8388608 (0xFF800000) Bane Fror	negative Range	0 mA 0 (0x0000000)	positive Range		+20 mA +8388607 (0x007FFFF)
-20 mA -8388608 (0xFF800000) Range Error Limit (2	negative Range	0 mA 0 (0x0000000)	positive Range	101011, 2.30 7. , 114/30	+20 mA +8388607 (0x007FFFF) Range Error Limit (2

Abb. 33: Darstellung Strommessbereich ±20 mA

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.20 Messung 0...20 mA

Messung Modus	0-20 mA					
Messbereich, nominell	Messbereich, nominell			020 mA		
Messbereich, Endwert (MBE)		20 mA				
Messbereich, technisch nutzbar		021,474 mA				
Absicherung	Interne Überlast	begrenzung, dau	erstromfest			
PDO Auflösung		23 Bit (vorzeiche	enlos)			
PDO LSB (Extended Range)		2,56 nA				
PDO LSB (Legacy Range)		2,384 nA				
Gleichtaktspannung U _{cm}		max. +/- 10V				
		bezogen auf –U	v (interne Masse)		
Grundgenauigkeit: Messabweichu Mittelwertbildung	ng bei 23°C, mit	$< \pm 0.01\%_{MBE} = \pm$	100 ppm _{мве}			
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 65 ppm _{MBE}				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	Gain/Scale/Verstärkungs- F _{Gain}					
Nichtlinearität über den gesamten F _{Lin} Messbereich		< 40 ppm _{MBE}				
Wiederholgenauigkeit F _{Rep}		< 40 ppm _{MBE}				
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 100 ppm _{MBE}	< 781 [digits]			
	F _{Noise, RMS}	< 18 ppm _{MBE}	< 141 [digits]			
	Max. SNR	> 94,9 dB				
	Rauschdichte@1kHz	$< 5.09 \frac{nA}{\sqrt{Hz}}$				
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 10 ppm _{MBE}	< 78 [digits]			
	F _{Noise, RMS}	< 2,0 ppm _{MBE}	< 16 [digits]			
	Max. SNR	> 114,0 dB				
Temperaturkoeffizient	Tk _{Gain}	< 15 ppm/K typ.				
	Tk _{Offset}	< 5 ppm _{MBE} /K typ	D.			
Gleichtaktunterdrückung (ohne Filt	er)	DC: < 3 nA/V typ.	50 Hz: < 5 nA/V typ.	1 kHz: < 80 nA/V typ.		
Gleichtaktunterdrückung (mit 50 H	DC: < 3 nA/V typ.	50 Hz: < 3 nA/V typ.	1 kHz: < 3 nA/V typ.			
Größte kurzzeitige Abweichung wä festgelegten elektrischen Störprüfu	$\pm 0.05\%_{\text{MBE}} = \pm 500 \text{ ppm}_{\text{MBE}} \text{ typ.}$					
Eingangsimpedanz ±Input 1	Differentiell typ. 200 Ω 11 nF					
(Innenwiderstand)	CommonMode typ. 1 MΩ 40 nF					
		Methodik: Widerstand gegen –U _v , Kapazität gegen SGND				
Eingangsimpedanz ±Input 2	Eingang wird in diesem Modus nicht benutzt					

Strommessbereich 0...20 mA

Abb. 35: Darstellung Strommessbereich 0...20 mA

Abb. 36: Frequenzgang 0...20 mA Messbereich, $f_{sampling}$ = 10 kHz, integrierte Filter 1/2 deaktiviert

2.2.21 Messung 4...20 mA

Messung Modus	420 mA				
Messbereich, nominell		420 mA			
Messbereich, Endwert (MBE)		20 mA			
Messbereich, technisch nutzbar		021,179 mA			
Absicherung	Interne Überlast	begrenzung, dau	erstromfest		
PDO Auflösung		24 Bit			
PDO LSB (Extended Range)		2,048 nA			
PDO LSB (Legacy Range)		1,907 nA			
Gleichtaktspannung U _{cm}		max. +/- 10V			
		bezogen auf –U	v (interne Masse)	
Grundgenauigkeit: Messabweichu Mittelwertbildung	ng bei 23°C, mit	$< \pm 0.01\%_{MBE} = \pm$	100 ppm _{MBE}		
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 65 ррт _{мве}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 50 ppm			
Nichtlinearität über den gesamten F _{Lin} Messbereich		< 40 ppm _{MBE}			
Wiederholgenauigkeit F _{Rep}		< 40 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 100 ppm _{MBE}	<pre>< 781 [digits]</pre>		
	F _{Noise, RMS}	< 18 ppm _{MBE}	< 141 [digits]		
	Max. SNR	> 94,9 dB			
	Rauschdichte@1kHz	< 5,09 ^{nA} / _{\/Hz}			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 10 ppm _{мве}	< 78 [digits]		
	F _{Noise, RMS}	< 2,0 ppm _{MBE}	< 16 [digits]		
	Max. SNR	> 114,0 dB			
Temperaturkoeffizient	Tk _{Gain}	< 15 ppm/K typ.			
	Tk _{Offset}	< 5 ppm _{MBE} /K typ	Э.		
Gleichtaktunterdrückung (ohne Filt	er)	DC: < 3 nA/V typ.	50 Hz: < 5 nA/V typ.	1 kHz: < 80 nA/V typ.	
Gleichtaktunterdrückung (mit 50 H	z FIR Filter)	DC: < 3 nA/V typ.	50 Hz: < 3 nA/V typ.	1 kHz: < 3 nA/V typ.	
Größte kurzzeitige Abweichung wär festgelegten elektrischen Störprüfu	$\pm 0.05\%_{\rm MBE} = \pm 500 \text{ ppm}_{\rm MBE} \text{ typ.}$				
Eingangsimpedanz ±Input 1	Differentiell typ. 200 Ω 11 nF				
(Innenwiderstand)	CommonMode typ. 1 MΩ 40 nF				
	Methodik: Widerstand gegen –U _∨ , Kapazität gegen SGND				
Eingangsimpedanz ±Input 2	Eingang wird in diesem Modus nicht benutzt				

Strommessbereich 4...20 mA

Abb. 37: Darstellung Strommessbereich 4...20 mA

Anmerkung: Auch in den unipolaren Messbereichen (Messung ab 0 V, 0 mA, 4 mA, 0 Ω) arbeitet der Kanal elektrisch bipolar und erfasst negative Werte. Dadurch kann der Kanal eine präzise Diagnose auch bei Signalenwerten < 0 liefern. In diesen Messbereichen liegt der Grenzwert für den "Underrange Error" im ExtendedMode bei -1 % des Messbereich Endwerts (MBE). Der Grenzwert ist im CoE-Objekt <u>0x80n0:32</u> [▶ <u>94]</u> einstellbar. Dadurch kommt es nicht zu irritierenden Fehlermeldungen wenn der Kanal nicht beschaltet (z.B. ohne Sensor) betrieben wird oder das elektrische Signal leicht um Null herum schwankt. Der Prozessdatenwert von 0x0000000 wird dabei nicht unterschritten.

Soll die "UnderrangeError"-Erkennung noch weniger empfindlich eingestellt werden, kann der Betrag des negativen Grenzwertes im genannten CoE-Objekt noch höher gesetzt werden.

Abb. 38: Frequenzgang 4...20 mA Messbereich, $f_{sampling}$ = 10 kHz, integrierte Filter 1/2 deaktiviert

2.2.22 Messung 3,6...21 mA (NAMUR NE43)

Messung Modus	3,621 mA (NAMUR NE43)				
Messbereich, nominell		420 mA			
Messbereich, Endwert (MBE)		20 mA			
Messbereich, technisch nutzbar		3,621 mA			
Absicherung	Interne Überlast	begrenzung, dau	erstromfest		
PDO Auflösung		24 Bit			
PDO LSB (Extended Range)		2,048 nA			
PDO LSB (Legacy Range)		n.a.			
Gleichtaktspannung U _{cm}		max. +/- 10V			
		bezogen auf –U	v (interne Masse)	
Grundgenauigkeit: Messabweichur Mittelwertbildung	ng bei 23°C, mit	$< \pm 0.01\%_{MBE} = \pm$	100 ppm _{MBE}		
Offset/Nullpunkt-Abweichung (bei F _{Offset} 23°C)		< 65 ррт _{мве}			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)		< 50 ppm			
Nichtlinearität über den gesamten F _{Lin} Messbereich		< 40 ppm _{MBE}			
Wiederholgenauigkeit F _{Rep}		< 40 ppm _{MBE}			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 100 ppm _{MBE}	< 781 [digits]		
	F _{Noise, RMS}	< 18 ppm _{MBE}	< 141 [digits]		
	Max. SNR	> 94,9 dB			
	Rauschdichte@1kHz	< 5,09			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 10 ppm _{MBE}	< 78 [digits]		
	F _{Noise, RMS}	< 2,0 ppm _{MBE}	< 16 [digits]		
	Max. SNR	> 114,0 dB			
Temperaturkoeffizient	Tk _{Gain}	< 15 ppm/K typ.			
	Tk _{Offset}	< 5 ppm _{MBE} /K typ	D.		
Gleichtaktunterdrückung (ohne Filt	er)	DC: < 3 nA/V typ.	50 Hz: < 5 nA/V typ.	1 kHz: < 80 nA/V typ.	
Gleichtaktunterdrückung (mit 50 H	z FIR Filter)	DC: < 3 nA/V typ.	50 Hz: < 3 nA/V typ.	1 kHz: < 3 nA/V typ.	
Größte kurzzeitige Abweichung wär festgelegten elektrischen Störprüfu	$\pm 0.05\%_{\rm MBE} = \pm 500 \text{ ppm}_{\rm MBE} \text{ typ.}$				
Eingangsimpedanz ±Input 1	Differentiell typ. 200 Ω 11 nF				
(Innenwiderstand)	CommonMode typ. 1 MΩ 40 nF				
	Methodik: Widerstand gegen –U _v , Kapazität gegen SGND				
Eingangsimpedanz ±Input 2	Eingang wird in diesem Modus nicht benutzt				

Strommessbereich 3,6...21 mA (NAMUR)

Abb. 39: Darstellung Strommessbereich 3,6...21 mA (NAMUR)

Nur Extended Range Mode bei Messbereich 4 mA NAMUR

In diesem Messbereich ist kein Legacy Range Mode verfügbar. Eine Umstellung auf den Extended Range Mode erfolgt automatisch und ein Schreibzugriff auf das entsprechende CoE Objekt <u>0x8000:2E (Scaler) [▶ 94]</u> wird zwar nicht abgelehnt, führt aber zu keiner Änderung des Parameters.

Abb. 40: Frequenzgang 20 mA Messbereich, $f_{sampling}$ = 10 kHz, integrierte Filter 1/2 deaktiviert

2.2.23 Messung Widerstand 0...5 k Ω

Hinweis zur Messung von Widerständen bzw. Widerstandsverhältnissen

Bei der einfachen **2-Leiter-Messung** beeinflusst der Leitungswiderstand der zu dem Sensor geführten Zuleitungen den gemessenen Wert. Ist eine Reduzierung dieses systematischen Fehleranteils bei der 2-Leiter-Messung angestrebt, ist der Zuleitungswiderstand zum Messwiderstand einzurechnen, dieser Zuleitungswiderstand muss dann allerdings erst ermittelt werden.

Unter Berücksichtigung der Unsicherheit dieses Zuleitungswiderstands kann dieser dann statisch in die laufende Rechnung einbezogen werden, z.B. bei der EL3751 über das CoE-Objekt <u>0x8000:13</u> [▶ 94] und bei ELM350x/ ELM370x über das CoE-Objekt <u>0x80n0:13</u> [▶ 94].

Eine z.B. durch Alterung oder Temperatur bedingte Widerstandsänderung der Zuleitung wird jedoch nicht automatisch erfasst. Gerade die Temperaturabhängigkeit von Kupferleitungen mit ~4000ppm/K (entspricht 0,4%/K!) ist nicht unwesentlich beim 24/7-Betrieb!

Durch die **3-Leiter-Messung** ist es möglich den systematischen Anteil zu eliminieren, unter der Annahme, dass die zwei Zuleitungen identisch sind. Bei dieser Messungsart wird der Leitungswiderstand einer Zuleitung dauernd gemessen. Der ermittelte Wert wird dann zwei Mal von dem Messergebnis abgezogen und der Leitungswiderstand so eliminiert. Dies führt technisch zu einer deutlich zuverlässigeren Messung. Unter Berücksichtigung der Messunsicherheit ist der Gewinn durch den 3-Leiter-Anschluss allerdings nicht so erheblich, da diese Annahme einer hohen Ungewissheit unterliegt - die einzelne, nicht nachgemessene Leitung könnte doch beschädigt oder unbemerkt widerstandsvariant sein.

Der 3-Leiter-Anschluss ist also ein technisch bewährter Ansatz, bei einer methodisch nach Messunsicherheit bewerteten Messung wird dringend der voll-kompensierte **4-Leiter-Anschluss** empfohlen.

Sowohl bei 2-Leiter- als auch bei 3-Leiter-Anschluss beeinflussen die Übergangswiderstände der Klemmkontakte den Messvorgang. Durch einen anwenderseitigen Abgleich bei gesteckter Signalverbindung kann die Messgenauigkeit weiter erhöht werden.

HINWEIS

Messung von kleinen Widerständen

Insbesondere bei Messungen im Bereich ca. < 10 Ω wird der 4-Leiter-Anschluss durch die relativ hohen Zuleitungs- und Übergangswiderstände unbedingt erforderlich. Zu bedenken ist auch dass bei solch niedrigen Widerständen die relative Messabweichung bezogen auf den MBE hoch werden kann - für solche Messungen sind ggf. Widerstandsmessklemmen mit kleinen Widerstands-Messbereichen wie z.B. die EL3692 in 4-Leiter-Messung zu verwenden

Entsprechende Überlegungen führen auch im Brückenbetrieb zu den gängigen Anschlussmethoden:

- Vollbrücke: 4-Leiter-Anschluss ohne Leitungskompensation, 6-Leiter-Anschluss mit voller Leitungskompensation
- Halbbrücke: 3-Leiter-Anschluss ohne Leitungskompensation, 5-Leiter-Anschluss mit voller Leitungskompensation
- Viertelbrücke: 2-Leiter-Anschluss ohne Leitungskompensation, 3-Leiter-Anschluss mit theoretischer und 4-Leiter-Anschluss mit voller Leitungskompensation

Messung Modus	Elektr. Widerstand
Betriebsart	2,5 V Speisespannung fest eingestellt n +Uv
	5 k Ω Referenzwiderstand an –I2
	Speisestrom ergibt sich aus: 2,5 V / (5 kΩ + R _{Messung})
Messbereich, nominell	05 kΩ
Messbereich, Endwert (MBE)	5 kΩ
Messbereich, technisch nutzbar	0 Ω…5,368 kΩ
PDO Auflösung	23 Bit (vorzeichenlos)
PDO LSB (Extended Range)	640 μΩ
PDO LSB (Legacy Range)	596 μΩ

BECKHOFF

Messung Modus	Elektr. Widerstand				
Grundgenauigkeit: Messabweichu	ng bei 23°C, mit	2-Leiter-Anschluss: ±0,05% typ. (MBE)			
Mittelwertbildung		3-Leiter-Anschluss: ±0,03% typ. (MBE)			
	4-Leiter-Anschlu	ISS:	±0,01% typ. (MBE)	
Temperaturkoeffizient	Tk _{Terminal}	< 10 ppm/K typ.			,
· ·					
Messung Modus	1	Widerstand (2-I	Lei	ter)	
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 475 [ррт _{мве}]			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	Gain/Scale/Verstärkungs- F _{Gain}				
Nichtlinearität über den gesamten F _{Lin} Messbereich		< 25 [ppm _{MBE}]			
Wiederholgenauigkeit F _{Rep}		< 20 [ppm _{MBE}]			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 220 [ppm _{MBE}]	< 1719 [digits]		
	F _{Noise, RMS}	< 45 [ppm _{MBE}]	< 45 [ppm _{MBE}] < 352 [digits]		
	Max. SNR	> 86,9 [dB]			
	Rauschdichte@1kHz	< 3,18 √Hz			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 12 [ppm _{MBE}]		< 94 [digits]	
	F _{Noise, RMS}	< 3,0 [ppm _{MBE}]		< 23 [digits]	
	Max. SNR	> 110,5 [dB]			
Gleichtaktunterdrückung (ohne Filt	DC: < 150 Ω/V typ.	50 < (typ	Hz: 0,6 kΩ/V 0.	1 kHz: < 3,5 kΩ/V typ.	
Gleichtaktunterdrückung (mit 50 H	DC: < 150 Ω/V typ.	50 < 2 typ	Hz: 20 Ω/V o.	1 kHz: < 0,1 Ω/V typ.	
Größte kurzzeitige Abweichung wä festgelegten elektrischen Störprüfu	$\pm 0,1\%_{MBE} = \pm 100$	00 p	opm _{MBE} typ.		

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

Messung Modus	Widerstand (3-Leiter)				
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 280 [ppm _{MBE}]			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 100 [ppm]			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 25 [ppm _{MBE}]			
Wiederholgenauigkeit	F _{Rep}	< 20 [ppm _{MBE}]			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 185 [ppm _{MBE}] < 1445 [digits]		s]	
	F _{Noise, RMS}	< 35 [ppm _{мве}]	< 273 [digits]		
	Max. SNR	> 89,1 [dB]			
	Rauschdichte@1kHz	< 2,47 ^{mΩ} / _{√Hz}			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 11 [ppm _{MBE}]	< 86 [digits]		
	F _{Noise, RMS}	< 3,0 [ppm _{MBE}]	< 23 [digits]		
	Max. SNR	> 110,5 [dB]	> 110,5 [dB]		
Gleichtaktunterdrückung (ohne Filter) ³		DC: < 150 Ω/V typ.	50 Hz: < 0,6 kΩ/V typ.	1 kHz: < 3,5 kΩ/V typ.	

BECKHOFF

Messung Modus	Widerstand	Widerstand (3-Leiter)			
Gleichtaktunterdrückung (mit 50 Hz FIR Filter) ³	DC: < 150 Ω/V typ.	50 Hz: < 20 Ω/V typ.	1 kHz: < 0,1 Ω/V typ.		
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung	$\pm 0,1\%_{MBE} = \pm$	1000 ppm _{мве} typ).		

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

Messung Modus	Widerstand (4-Leiter)				
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 70 [ppm _{MBE}]			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 70 [ppm]			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 15 [ppm _{MBE}]			
Wiederholgenauigkeit	F _{Rep}	< 10 [ppm _{мве}]			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 155 [ppm _{MBE}]	< 1211 [digits]	
	F _{Noise, RMS}	< 30 [ppm _{MBE}] < 234 [digits]			
	Max. SNR	> 90,5 [dB]			
	Rauschdichte@1kHz	< 2,12 ^{mΩ} / _{√Hz}			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 9 [ppm _{MBE}] < 70 [digits]			
	F _{Noise, RMS}	< 3,0 [ppm _{MBE}]	< 23 [digits]		
	Max. SNR	> 110,5 [dB]			
Gleichtaktunterdrückung (ohne Filt	DC: < 150 Ω/V typ.	50 Hz: < 0,6 kΩ/V typ.	1 kHz: < 3,5 kΩ/V typ.		
Gleichtaktunterdrückung (mit 50 H	DC: < 150 Ω/V typ.	50 Hz: < 20 Ω/V typ.	1 kHz: < 0,1 Ω/V typ.		
Größte kurzzeitige Abweichung wä festgelegten elektrischen Störprüfu	$\pm 0, \overline{1\%_{MBE}} = \pm 100$	00 ppm _{MBE} typ.			

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

68

Widerstandsmessbereich 5 k Ω

Abb. 41: Darstellung Widerstandsmessbereich 5 kΩ

Anmerkung: Auch in den unipolaren Messbereichen (Messung ab 0 V, 0 mA, 4 mA, 0 Ω) arbeitet der Kanal elektrisch bipolar und erfasst negative Werte. Dadurch kann der Kanal eine präzise Diagnose auch bei Signalenwerten < 0 liefern. In diesen Messbereichen liegt der Grenzwert für den "Underrange Error" im ExtendedMode bei -1 % des Messbereich Endwerts (MBE). Der Grenzwert ist im CoE-Objekt <u>0x80n0:32</u> [▶ 94] einstellbar. Dadurch kommt es nicht zu irritierenden Fehlermeldungen wenn der Kanal nicht beschaltet (z.B. ohne Sensor) betrieben wird oder das elektrische Signal leicht um Null herum schwankt. Der Prozessdatenwert von 0x0000000 wird dabei nicht unterschritten.

Soll die "UnderrangeError"-Erkennung noch weniger empfindlich eingestellt werden, kann der Betrag des negativen Grenzwertes im genannten CoE-Objekt noch höher gesetzt werden.

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

2.2.24 Messung RTD

Im Messbereich RTD wird der gemessene Widerstand intern nach eingestellter Transformation in eine Temperatur umgerechnet. Da der Kanal intern auf 5 k Ω misst, ist der entsprechende Messfehler in diesem Messbereich zugrunde zu legen.

In Teilbereichen wird allerdings eine (relativ) höhere Messgenauigkeit erzielt, deshalb können in u.a. Tabelle bei einzelnen Sensortypen entsprechend bessere Temperaturgenauigkeiten angegeben werden als aus der $5k\Omega$ -Genauigkeit zu berechnen sind¹⁾.

Der Hinweis zur 2/3/4-Leiter-Messung im voranstehenden Kapitel "Widerstand" ist zu beachten!

Messung Modus	RTD
Betriebsart	2,5 V Speisespannung fest eingestellt n +Uv
	5 k Ω Referenzwiderstand an –I2
	Speisestrom ergibt sich aus:
	2,5 V / (5 k Ω + R _{Messung}) \rightarrow max. 0,5 mA
PDO Auflösung	0,01°C/digit

Die Übergangswiderstände der Klemmkontakte beeinflussen den Messvorgang. Durch einen anwenderseitigen Abgleich bei gesteckter Signalverbindung kann der Messfehler weiter reduziert werden.

Der Temperaturendwert entspricht dem nominellen Messbereichsendwert.

RTD-Messbereich

Abb. 42: Darstellung RTD-Messbereich

Angaben zu den Sensortypen in nachfolgender Tabelle

Die in der folgenden Tabelle aufgeführten Werte zu den Sensortypen werden hier lediglich zu informativen Zwecken als Orientierungshilfe dargestellt. Alle Angaben sind ohne Gewähr und müssen mit dem Datenblatt des jeweiligen verwendeten Sensors überprüft werden.

CoE Enum RTD Ele- ment	RTD Type	Tempe- ratur Start- wert [°C]	Tempe- ratur End- wert [°C]	Erzielbare Genauig- keit @ Sensortem- peratur (MBE), 3-Lei- ter-Anschluss ²⁾	Erzielbare Genau- igkeit @ Sensor- temperatur (MBE), 4-Leiter-An- schluss ²⁾	Temperaturkoeffi- zient (Klemmen- spezifischer Drift)	Mess- wert Start- wert [Ω]	Messwert Endwert [Ω]
0	None	-	-	-	-	-	-	-
1	PT100	-200	850	±1K (-200+850°C) Siehe 1)	±0,5K (-200… +850°C) Siehe 1)	ca. 0,13 K/K	18,52	390,48
2	NI100	-60	250	ca. ±2,68K @ 0°C	ca. ±0,83K @ 0°C	ca. 0,083 K/K	69,52	289,2
3	PT1000	-200	850	ca. ±0,38K @ 0°C	ca. ±0,13K @ 0°C	ca. 0,013 K/K	185,2	3904,8
4	PT500	-200	850	ca. ±1,03K @ 0°C	ca. ±0,34K @ 0°C	ca. 0,034 K/K	92,6	1952,4
5	PT200	-200	850	ca. ±1,96K @ 0°C	ca. ±0,65K @ 0°C	ca. 0,065 K/K	37,04	780,96
6	NI1000	-60	250	ca. ±0,34K @ 0°C	ca. ±0,11K @ 0°C	ca. 0,011 K/K	695,2	2892,6
7	NI1000 (TK5000, 100°C: 1500 Ω)	-30	160	ca. ±0,27K @ 100°C	ca. ±0,089K @ 100°C	ca. 0,009 K/K	871,7	1863,6
8	NI120	-60	320	-	-	-	80,94	461,04

CoE Enum RTD Ele- ment	RTD Type	Tempe- ratur Start- wert [°C]	Tempe- ratur End- wert [°C]	Erzielbare Genauig- keit @ Sensortem- peratur (MBE), 3-Lei- ter-Anschluss ²⁾	Erzielbare Genau- igkeit @ Sensor- temperatur (MBE), 4-Leiter-An- schluss ²⁾	Temperaturkoeffi- zient (Klemmen- spezifischer Drift)	Mess- wert Start- wert [Ω]	Messwert Endwert [Ω]
9	KT100/110/130/210 /230 KTY10/11/13/16/19	-50	150	ca. ±0,109K @ 0°C	ca. ±0,036K @ 0°C	ca. 0,0036 K/K	1036	4470
10	KTY81/82-110,120, 150	-50	150	ca. ±0,216K @ 0°C	ca. ±0,072K @ 0°C	ca. 0,0072 K/K	515	2211
11	KTY81-121	-50	150	ca. ±0,219K @ 0°C	ca. ±0,073K @ 0°C	ca. 0,0073 K/K	510	2189
12	KTY81-122	-50	150	ca. ±0,214K @ 0°C	ca. ±0,071K @ 0°C	ca. 0,0071 K/K	520	2233
13	KTY81-151	-50	150	ca. ±0,222K @ 0°C	ca. ±0,074K @ 0°C	ca. 0,0074 K/K	502	2156
14	KTY81-152	-50	150	ca. ±0,211K @ 0°C	ca. ±0,070K @ 0°C	ca. 0,0070 K/K	528	2266
15	KTY81/82-210,220, 250	-50	150	ca. ±0,108K @ 0°C	ca. ±0,036K @ 0°C	ca. 0,0036 K/K	1030	4280
16	KTY81-221	-50	150	ca. ±0,109K @ 0°C]		1019	4237
17	KTY81-222	-50	150	ca. ±0,107K @ 0°C	ca. ±0,036K @ 0°C	ca. 0,0036 K/K	1040	4323
18	KTY81-251	-50	150	ca. ±0,111K @ 0°C	ca. ±0,037K @ 0°C	ca. 0,0037 K/K	1004	4173
19	KTY81-252	-50	150	ca. ±0,105K @ 0°C	ca. ±0,035K @ 0°C	ca. 0,0035 K/K	1055	4387
20	KTY83-110,120,150	-50	175	ca. ±0,222K @ 0°C	ca. ±0,074K @ 0°C	ca. 0,0074 K/K	525	2535
21	KTY83-121	-50	175	ca. ±0,224K @ 0°C	ca. ±0,075K @ 0°C	ca. 0,0075 K/K	519	2509
22	KTY83-122	-50	175	ca. ±0,221K @ 0°C	ca. ±0,074K @ 0°C	ca. 0,0074 K/K	530	2560
23	KTY83-151	-50	175	ca. ±0,225K @ 0°C	ca. ±0,075K @ 0°C	ca. 0,0075 K/K	512	2471
24	KTY83-152	-50	175	ca. ±0,216K @ 0°C	ca. ±0,072K @ 0°C	ca. 0,0072 K/K	538	2598
25	KTY84-130,150	-40	300	ca. ±0,384K @ 0°C	ca. ±0,128K @ 0°C	ca. 0,013 K/K	359	2624
26	KTY84-151	-40	300	ca. ±0,396K @ 0°C	ca. ±0,132K @ 0°C	ca. 0,013 K/K	350	2558
27	KTY21/23-6	-50	150	ca. ±0,22K @ 0°C	ca. ±0,072K @ 0°C	ca. 0,0072 K/K	518	2235
28	KTY1x-5	-50	150	ca. ±0,110K @ 0°C	ca. ±0,037K @ 0°C	ca. 0,0037 K/K	1020	4403
29	KTY1x-7	-50	150	ca. ±0,107K @ 0°C	ca. ±0,036K @ 0°C	ca. 0,0036 K/K	1052	4537
30	KTY21/23-5	-50	150	ca. ±0,220K @ 0°C	ca. ±0,073K @ 0°C	ca. 0,0073 K/K	510	2202
31	KTY21/23-7	-50	150	ca. ±0.214K @ 0°C	ca. ±0.071K @ 0°C	ca. 0.0071 K/K	526	2268

¹⁾ Erzielbar bei vernachlässigbarem Offset-Anteil, z.B. durch Offset Korrektur (ELM3xxx: Zero-Offset-Funktion).

Höhere Messgenauigkeit bei einzelnen Sensortypen deren Widerstandswert nur im kleineren Teilbereich von $0...5 \text{ k}\Omega$ liegt.

²⁾ Relativer Fehler bezogen auf die Steigung der entsprechenden RTD-Kennlinie bei 23°C Umgebung der Klemme (Angaben ohne Temperaturfehler des Sensors)!

HINWEIS

Extended Range Modus nicht verfügbar

Der "Extended Range Modus" ist für RTD-Messung nicht verfügbar.

- bis FW07: Das Objekt <u>0x8000:2E (Scaler)</u> [▶ <u>94]</u> wird in dieser Einstellung ignoriert. Im Hintergrund wird der "Legacy Range Modus" angewandt.
- ab FW08: Das Objekt <u>0x8000:2E (Scaler)</u> [▶ <u>94</u>] wird dann automatisch in den "Legacy Range Modus" versetzt. Eine Umstellung ist nicht möglich solange dieser Messbereich ausgewählt ist.

2.2.25 Messung Potentiometer

Das Potentiometer ist mit dem integrierten Netzteil (max. 5V, einstellbar) zu versorgen. Die Schleiferspannung wird dann im Verhältnis zur Speisespannung gemessen und in % ausgegeben. Technisch verläuft die Messung also wie eine DMS Halbbrücke.

Es sind Potentiometer ab 1 k Ω einsetzbar.

Diagnosen

- Schleiferbruch: Vollausschlag bzw. 0-Anzeige
- Versorgungsunterbrechung: Vollausschlag bzw. 0-Anzeige

Messung Modus		Potentiometer (3/ 5-Leiter)				
Betriebsart		Die Speisespannung ist per CoE einstellbar, 0,55 V				
Messbereich, nominell		-1 1 V/V				
Messbereich, Endwert (MBE)		1 V/V				
Messbereich, technisch nutzb	ar	-11 V/V				
PDO Auflösung		24 Bit (inkl. Vorz	eichen)			
PDO LSB (Extended Range)		0,128 ppm				
PDO LSB (Legacy Range)		0,119 ppm				
Grundgenauigkeit: Messabwe Mittelwertbildung	ichung bei 23°C, mit	$< \pm 0.05\%_{MBE} = \pm 10.05\%_{MBE}$	500 ppm _{MBE}			
Temperaturkoeffizient	Tk _{Terminal}	< 15 ppm/K typ.				
Eingangsimpedanz ±Input 1		Differentiell typ.	4,1 MΩ 11 nF			
(Innenwiderstand)		CommonMode ty	yp. 1 MΩ 40 nF			
	Methodik: Wider SGND	stand gegen – U_v , I	Kapazität gegen			
Eingangsimpedanz ±Input 2		Differentiell typ.	5 MΩ 10 nF			
(Innenwiderstand)		CommonMode typ. 1,25 MΩ 40 nF				
	Methodik: Widerstand gegen –U _v (+2,5V), Kapazität gegen SGND					
Offset/Nullpunkt-Abweichung F _{Offset} (bei 23°C)		< 480 [ppm _{MBE}]				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 100 [ppm]				
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 75 [ppm _{MBE}]				
Wiederholgenauigkeit	F _{Rep}	< 50 [ppm _{MBE}]				
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 150 [ppm _{MBE}]	< 1172 [digit	ts]		
	F _{Noise, RMS}	< 22 [ppm _{MBE}]	< 172 [digits	5]		
	Max. SNR	> 93,2 [dB]				
	Rauschdichte@1kHz	< 0,31				
Rauschen (mit 50 Hz FIR	F _{Noise, PtP}	< 14 [ppm _{MBE}]	< 109 [digits	5]		
Filter)	F _{Noise, RMS}	< 2,5 [ppm _{MBE}]	< 20 [digits]			
	Max. SNR	> 112 [dB]				
Gleichtaktunterdrückung (ohne Filter) ³		DC:	50 Hz:	1 kHz:		
		$< 3 \frac{mV/V}{V}$ typ.	$< 9 \frac{mV/V}{V}$ typ.	$< 140 \frac{\text{mV/V}}{\text{V}}$ typ.		
Gleichtaktunterdrückung (mit	50 Hz FIR Filter) ³	DC:	50 Hz:	1 kHz:		
	$< 3 \frac{mV/V}{V}$ typ.	$< 0.2 \frac{mV/V}{V}$ typ.	$< 5 \frac{\mu V/V}{V}$ typ.			
Messung Modus	Potentiometer (3/ 5-Leiter)					
---	---					
Größte kurzzeitige Abweichung während einer	$\pm 0,2\%_{MBE} = \pm 2000 \text{ ppm}_{MBE} \text{ typ.}$					
festgelegten elektrischen Störprüfung						

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

Potentiometer-Messbereich

Abb. 43: Darstellung Potentiometer-Messbereich

Hinweis: Im Extended Range Mode hat die Underrange/Overrange-Anzeige im PDO Status bei Überschreitung des nominellen Messbereichs den Charakter einer Information/Warnung, das heißt, es wird dabei kein *Error* in PDO-Status und LED angezeigt. Wird dann im Weiteren auch der technische Messbereich überschritten, wird zusätzlich *Error* = *TRUE* angezeigt. Die Erkennungsgrenze für Underrange/Overrange *Error* ist im CoE einstellbar.

Im Legacy Range Mode führt ein Underrange/Overrange -Ereignis zugleich zu einem Error im PDO-Status.

2.2.26 Messung SG 1/1-Bridge (Vollbrücke) 4/6-Leiter-Anschluss

Zur Ermittlung des Messfehlers:

Der Messbereich nominell/technisch wird hier in "mV/V" angegeben, wobei eine maximale Versorgungsspannung von 5 V zulässig ist.

Maximal ist also für die Brückenspannung ein nomineller Messbereich von $\pm 32 \text{ mV/V} \cdot 5\text{V} = \pm 160 \text{ mV}$ nutzbar, entsprechend sind die internen Schaltungen ausgelegt.

Die interne Messung erfolgt ratiometrisch, d.h. die Speise- und die Brückenspannung werden nicht absolut gemessen sondern als Verhältnis erfasst.

Zur Speisung kann die integrierte Versorgung genutzt werden. Eine externe Versorgung ist zulässig wenn 5 V nicht überstiegen werden.

Die Übergangswiderstände der Klemmkontakte beeinflussen den Messvorgang. Durch einen anwenderseitigen Abgleich bei gesteckter Signalverbindung kann der Messfehler weiter reduziert werden.

Zur Berechnung der Vollbrücke:

Der Zusammenhang zur Dehnung (μ Strain, $\mu\epsilon$) ist wie folgt:

$$\begin{split} & \frac{U_{\text{Bridge}}}{U_{\text{Exc}}} = \frac{Nk\varepsilon}{4} \\ & N = 1, 2, 4, 1 - \vartheta, 1 + \vartheta, 2(1 - \vartheta), 2(1 + \vartheta) \end{split}$$

Messung Modus		SG 1/1-Bridge			
Messbereich, nominell		-32+32 mV/V			
Messbereich, Endwert (MBE)		32 mV/V			
Messbereich, technisch nutzbar		-34,359+34,359 mV/V			
PDO Auflösung		24 Bit (inkl. Vorzeichen)			
PDO LSB (Extended Range)		4,096 nV/V			
PDO LSB (Legacy Range)		3,814 nV/V			
Grundgenauigkeit: Messabweichu	ng bei	4-Leiter-Anschluss: $\pm 0,09\%_{MBE} = \pm 900 \text{ ppm}_{MBE}$ typ.			
23°C, mit Mittelwertbildung (²		6-Leiter-Anschluss: $\pm 0,05\%_{MBE} = \pm 500 \text{ ppm}_{MBE}$ typ.			
Integrierte Speisung		0,55V Einstellbar, Max. Versorgung/Excitation 21 mA (interne elektronische Überlastsicherung) somit			
		• 120R DMS: bis 2,5 V			
		• 350R DMS: bis 5,0 V			
Temperaturkoeffizient	Tk _{Terminal}	< 20 ppm/K typ.			

²) Dominierender Anteil der Grundgenauigkeit ist die Offset-Spezifikation (siehe folgende Tabellen). Durch Offset-Korrektur gemäß Kapitel Offset Korrektur kann dieser Anteil eliminiert und die Messgenauigkeit erheblich gesteigert werden.

Messung Modus		SG 1/1-Bridge (4-Leiter)					
Offset/Nullpunkt- Abweichung (bei 23°C)	F _{Offset}	< 850 [ppm _{MBE}]					
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 200 [ppm]					
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 120 [ppm _м	BE]			
Wiederholgenauigkeit	F _{Rep}	< 15 [p	рт _{мве}]			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 320 [ppm _M	BE]		< 2500 [digit	s]
	F _{Noise, RMS}	< 56 [p	рт _{мве}]		< 438 [digits]	
	Max. SNR	> 85 [d	B]				
	Rauschdichte@1kHz	< 25,34	nV/\ ↓ √Hz	<u>/</u>			
Rauschen (mit 50 Hz FIR	F _{Noise, PtP}	< 18 [ppm _{MBE}]			< 141 [digits]		
Filter)	F _{Noise, RMS}	< 3,5 [p	pm _{MB}	BE]		< 27 [digits]	
	Max. SNR	> 109,1	[dB]				
Gleichtaktunterdrückung (oh	ne Filter) ³	DC:			50 Hz	2:	1 kHz:
		< 0,15	$\frac{\mu V/V}{V}$	typ.	< 0,5	μV/V V typ.	$< 10 \frac{\mu V/V}{V}$ typ.
Gleichtaktunterdrückung (mi	t 50 Hz FIR Filter) ³	DC:			50 Hz	2:	1 kHz:
		< 100	nV/V V	typ.	< 10	nV/V V typ.	$< 1 \frac{nV/V}{V}$ typ.
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung		$\pm 0,1\%_{MBE} = \pm 1000 \text{ ppm}_{MBE} \text{ typ.}$					
Eingangsimpedanz ±Input 1		Differentiell typ. 4,1 MΩ 11 nF					
(Innenwiderstand)		Commo	onMo	de typ.	. 1 MΩ	2 40 nF	
		Methoo SGND	lik: W	idersta	and ge	gen –U _∨ , Kap	oazität gegen
Eingangsimpedanz ±Input 2		Eingang wird in diesem Modus nicht benutzt					

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

BECKHOFF

Messung Modus		SG 1/1-Bridge (6-Leiter)							
Offset/Nullpunkt- Abweichung (bei 23°C)	F _{Offset}	< 470 [ppm _{MBE}]						
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 120 [ppm]						
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 120 [ppm _{MBE}]						
Wiederholgenauigkeit	F _{Rep}	< 15 [ppm _{MBE}]							
Rauschen (ohne Filterung) ⁴	F _{Noise, PtP}	< 230 [ppm _{MBE}] < 1797 [digits]		5]					
	F _{Noise, RMS}	< 38 [p	pm _{MBE}]		< 297	[digits]			
	Max. SNR	> 88,4	[dB]						
	Rauschdichte@1kHz	< 17,2	nV/V √Hz						
Rauschen (mit 50 Hz FIR	F _{Noise, PtP}	< 18 [p	pm _{MBE}]		< 141	[digits]			
Filter) ⁴	F _{Noise, RMS}	< 3,5 [ppm _{MBE}] < 27 [digits]							
	Max. SNR	> 109,1 [dB]							
Gleichtaktunterdrückung (oh	ine Filter) ³	DC:		50 Hz	Z:		1 kHz:		
		< 0.15	$\frac{\mu V/V}{V}$ typ	< 0.5	<u>μV/V</u> V	tvp	<u>ب</u> < 10	ι <u>V/V</u> V	tvp
Gleichtaktunterdrückung (mi	t 50 Hz FIR Filter) ³	DC:	.,,,,,	50 Hz	Z:	.,	1 kHz:		-76-
······································			n\//\/		n\//\/		n\/		
		< 100	V typ.	< 10	V t	yp.	< 1	/• / tv	√p.
Größte kurzzeitige Abweicht festgelegten elektrischen Ste	ung während einer örprüfung	$\pm 0.1\%_{MBE} = \pm 1000 \text{ ppm}_{MBE} \text{ typ.}$							
Eingangsimpedanz ±Input 1		Differentiell typ. 4,1 MΩ 11 nF							
(Innenwiderstand)		CommonMode typ. 1 MΩ 40 nF							
		Methodik: Widerstand gegen –U _v , Kapazität gegen SGND					۱		
Eingangsimpedanz ±Input 2		Differer	ntiell typ. 5 I	MΩ [·]	10 nF				
(Innenwiderstand)		Commo	onMode typ	. 1,25	ΜΩ 4	40 nF			
		Methoo gegen	lik: Widersta SGND	and ge	gen –l	J _v (+2,5	5V), Ka	pazit	ät

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

⁴) Angaben gelten nur für HW-Stand ≥ 10! Folgende Angaben gelten bis HW-Stand 10:

Messung Modus		SG 1/1-Bridge (6-Leiter), < HW10			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 960 [ppm _{MBE}]	< 7500 [digits]		
	F _{Noise, RMS}	< 170 [ppm _{MBE}]	< 1328 [digits]		
	Max. SNR	> 75,4 [dB]			
	Rauschdichte@1kHz				
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 77 [ppm _{MBE}]	< 602 [digits]		
	F _{Noise, RMS}	< 15 [ppm _{MBE}]	< 117 [digits]		
	Max. SNR	> 96,5 [dB]			

Die Interpretation des Kanalwerts (PDO) ist direkt [mV/V]:

Extended Rang	e Mode (Default):			Defined resolut	ion: 4.096 nV/V per S	Step
44.359 mV/V -8388608 (0xFF800000) Range Error Limit (2	-32 mV/V -7812500 (0xFF88CA6C)	negative Range	0 mV/V 0 (0x00000000)	positive Range	+32 mV/V +7812500 (0x00773594) I	+34.359 mV/V +8388607 (0x007FFFFF) Range Error Limit (²
Un	derrange Area (1		Nominal Range		Overrange Are	ea (1
						→
1-			Technical Range			-
¹ Underrange// ² Range Error: egacy Range M	Overrange Limit/Area: corre Error Bit + Error LED (detec Ode (Optional):	isponding bit is set when meas tion level adjustable by user, o	Technical Range surement value is out of no default: technical range)	minal range Calculated resolut	ion: 3.81 nV/V per \$	Step
¹ Underrange// ² Range Error: egacy Range M -32 mV/V -8388608 (0xFF800000)	Overrange Limit/Area: corre Error Bit + Error LED (detec ode (Optional):	esponding bit is set when mean tion level adjustable by user, o	Technical Range surement value is out of no default: technical range) 0 mV/V 0 (0x00000000)	minal range Calculated resolut	ion: 3.81 nV/V per 5	Step → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
¹ Underrange// ² Range Error: egacy Range M -32 mV/V -8388608 (0xFF800000) Range Error Limit (2	Overrange Limit/Area: corre Error Bit + Error LED (detec ode (Optional):	sponding bit is set when meas tion level adjustable by user, o negative Range	Technical Range surement value is out of no default: technical range) 0 mV/V 0 (0x00000000)	minal range Calculated resolut positive Range	ion: 3.81 nV/V per \$	Step

Abb. 44: Darstellung Messbereich SG 1/1-Bridge

2.2.27 Messung SG 1/2-Bridge (Halbbrücke) 3/5-Leiter-Anschluss

Zur Ermittlung des Messfehlers:

Der Messbereich nominell/technisch wird hier in "mV/V" angegeben, wobei eine maximale Versorgungsspannung von 5 V zulässig ist.

Maximal ist also für die Brückenspannung ein nomineller Messbereich von $\pm 16 \text{ mV/V} \cdot 5\text{V} = \pm 80 \text{ mV}$ nutzbar, die internen Schaltungen sind auf die 160 mV der Vollbrückenmessung ausgelegt.

Die interne Messung erfolgt ratiometrisch, d.h. die Speise- und die Brückenspannung werden nicht absolut gemessen sondern als Verhältnis erfasst.

Zur Speisung kann die integrierte Versorgung genutzt werden. Eine externe Versorgung ist zulässig wenn 5 V nicht überstiegen werden.

Die Übergangswiderstände der Klemmkontakte beeinflussen den Messvorgang. Durch einen anwenderseitigen Abgleich bei gesteckter Signalverbindung kann der Messfehler weiter reduziert werden.

Gültigkeit der Eigenschaftswerte

1

Der Brückenwiderstand liegt parallel zum o.a. Innenwiderstand der Klemme und führt zu entsprechender Offset-Verschiebung. Der Beckhoff-Werksabgleich erfolgt mit Halbbrücke 350 Ω , die o.a. Werte sind deshalb direkt nur für eine 350 Ω -Halbbrücke gültig. Bei Anschluss einer anders dimensionierten Halbbrücke ist:

- anwenderseitig ein Abgleich (Offsetkorrektur) in der Klemme oder Steuerung/PLC durchzuführen
- oder der theoretische Offsetfehler im Abgleichparameter S0 der Klemme einzutragen. Beispiel: Bei einer 350 Ω-Brücke entspricht der beim Werksabgleich kompensierte Einfluss des Eingangswiderstandes (2 MΩ) 0,26545 %MBE (16 mV/V), das entspricht 20738 Digits.

Zur Berechnung der R_{1/2}-Halbbrücke:

 $R_{_{3/4}}$ sind die klemmeninternen schaltbaren Ergänzungswiderstände. Andere Halbbrückenkonfigurationen (z.B. $R_{_{1/4}}$ oder $R_{_{1/3}}$ veränderlich) sind nicht anschließbar.

Der Zusammenhang zur Dehnung (μ Strain, $\mu\epsilon$) ist wie folgt:

$$\begin{split} \frac{U_{\text{Bridge}}}{U_{\text{Exc}}} &= \frac{Nk\varepsilon}{4} \\ N &= 1, 2, 4, 1 - \vartheta, 1 + \vartheta \end{split}$$

Die Wahl von N ist nach der mechanischen Anordnung der variablen Widerstände zu wählen (Poisson, 2 aktive uniaxial, ...).

Hinweis: Angaben gelten für 2,5 V DMS Erregung.

Messung Modus		SG 1/2-Bridge		
Messbereich, nominell		-16+16 mV/V		
		[entspricht ±16.000 με bei K=2, N=2]		
Messbereich, Endwert (MBE)		16 mV/V		
Messbereich, technisch nutzbar		-17,179+17,179 mV/V		
PDO Auflösung		24 Bit (inkl. Vorzeichen)		
PDO LSB (Extended Range)		2,048 nV/V		
PDO LSB (Legacy Range)		1,907 nV/V		
Grundgenauigkeit: Messabweichu Mittelwertbildung (²	ng bei 23°C, mit	3-Leiter-Anschluss: ±0,27% typ. (bez. auf MBE, siehe auch <u>Hinweis [▶ 79]</u>)		
		5-Leiter-Anschluss: ±0,09% typ. (bez. auf MBE, siehe auch <u>Hinweis [▶ 79]</u>)		
Integrierte Speisung		0,55V Einstellbar, Max. Versorgung/Excitation 21 mA (interne elektronische Überlastsicherung) somit		
		• 120R DMS: bis 2,5V		
		• 350R DMS: bis 5,0V		
Temperaturkoeffizient	Tk _{Terminal}	<75 ppm/K typ. (bez. auf MBE, ab Produktion 2016 KW10; vgl. Seriennummer)		
		<250 ppm/K typ. (bez. auf MBE, bis Produktion 2016 KW09; vgl. Seriennummer)		
Eingangsimpedanz ±Input 1		Differentiell typ. 4,1 MΩ 11 nF		
(Innenwiderstand)		CommonMode typ. 1 MΩ 40 nF		
		Methodik: Widerstand gegen –U _v , Kapazität gegen SGND		
Eingangsimpedanz ±Input 2		Differentiell typ. 5 MΩ 10 nF		
(Innenwiderstand)		CommonMode typ. 1,25 MΩ 40 nF		
		Methodik: Widerstand gegen –U _v (+2,5V), Kapazität gegen SGND		

²) Dominierender Anteil der Grundgenauigkeit ist die Offset-Spezifikation (siehe folgende Tabellen). Durch Offset-Korrektur gemäß Kapitel Offset Korrektur kann dieser Anteil eliminiert und die Messgenauigkeit erheblich gesteigert werden.

Messung Modus		SG 1/2-Bridge (3-Leiter)			
Offset/Nullpunkt- Abweichung (bei 23°C)	F _{Offset}	< 2650 ppm _{MBE} (gilt ab KW01/2018, Wert vor KW01/2018: < 3600 ppm _{MBE})			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 290 ppm			
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 390 ppm _{MBE}			
Wiederholgenauigkeit	F _{Rep}	< 50 ppm _{MBE}			
Rauschen (ohne Filterung) ⁴	F _{Noise, PtP}	< 950 ррт _{мве}	< 7422 [digits]		
	F _{Noise, RMS}	< 145 ppm _{мве}	< 1133 [digits]		
	Max. SNR	> 76,8 dB			
	Rauschdichte@1kHz	< 32,81 ^{nV/V} √Hz			
Rauschen (mit 50 Hz FIR	F _{Noise, PtP}	< 70 ppm _{MBE}	< 547 [digits]		
Filter)⁴	F _{Noise, RMS}	< 15 ppm _{MBE}	< 117 [digits]		

Messung Modus		SG 1/2-Bridge (3-Leiter)				
	Max. SNR	> 96,5 dB				
Gleichtaktunterdrückung (oh	Gleichtaktunterdrückung (ohne Filter) ³		50 Hz:	1 kHz:		
		< 150 ^{µV/V} typ.	$< 600 \frac{\mu V/V}{V}$ typ.	$< 10 \frac{mV/V}{V}$ typ.		
Gleichtaktunterdrückung (mit 50 Hz FIR Filter) ³		DC:	50 Hz:	1 kHz:		
		$< 100 \frac{\mu V/V}{V}$ typ.	$< 20 \frac{\mu V/V}{V}$ typ.	$< 0,1 \frac{\mu V/V}{V}$ typ.		
Größte kurzzeitige Abweichu festgelegten elektrischen Stö	ing während einer prprüfung	$\pm 0,2\%_{\rm MBE} = \pm 2000$	ppm _{мве} typ.			

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

⁴) Angaben gelten nur für HW-Stand ≥ 10! Folgende Angaben gelten bis HW-Stand 10:

Messung Modus		SG 1/2-Bridge (3-Leiter), < HW10		
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 1100 ppm _{MBE}	< 8594 [digits]	
	F _{Noise, RMS}	< 160 ppm _{MBE}	< 1250 [digits]	
	Max. SNR	> 75,9 dB		
	Rauschdichte@1kHz	< 36,2 ^{nV/V} / _{VHz}		
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 120 ppm _{MBE}	< 938 [digits]	
	F _{Noise, RMS}	< 19 ppm _{MBE}	< 148 [digits]	
	Max. SNR	> 94,4 dB		

Messung Modus		SG 1/2-Bridge (5-Leiter)					
Offset/Nullpunkt- Abweichung (bei 23°C)	F _{Offset}	< 750 ppm _{мве} (gilt ab KW01/2018, Wert vor KW01/2018: < 1100 ppm _{мве})					
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 290 ppm					
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 390 ppm _{MBE}					
Wiederholgenauigkeit	F _{Rep}	< 50 ppm _{MBE}					
Rauschen (ohne Filterung) ⁴	F _{Noise, PtP}	< 1200 ppm _{MBE}	< 9375 [digits	s]			
	F _{Noise, RMS}	< 175 ppm _{MBE}	< 1367 [digits	s]			
	Max. SNR	> 75,1 dB					
	Rauschdichte@1kHz	$< 39.6 \frac{\text{nV/V}}{\sqrt{\text{Hz}}}$					
Rauschen (mit 50 Hz FIR	F _{Noise, PtP}	< 70 ppm _{мве}	< 547 [digits]				
Filter) ^₄	F _{Noise, RMS}	< 14 ppm _{MBE}	< 109 [digits]				
	Max. SNR	> 97,1 dB	·				
Gleichtaktunterdrückung (oh	ne Filter) ³	DC:	50 Hz:	1 kHz:			
		< 150 ^{µV/V} typ.	< 600 ^{µV/V} / _V typ.	$< 10 \frac{mV/V}{V}$ typ.			
Gleichtaktunterdrückung (mi	t 50 Hz FIR Filter) ³	DC:	50 Hz:	1 kHz:			
		< 100 ^{µV/V} / _V typ.	$< 20 \frac{\mu V/V}{V}$ typ.	$< 0,1 \frac{\mu V/V}{V}$ typ.			
Größte kurzzeitige Abweichu festgelegten elektrischen Stö	ung während einer örprüfung	$\pm 0,2\%_{\rm MBE} = \pm 2000$	ррт _{мве} typ.				

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

⁴) Angaben gelten nur für HW-Stand ≥ 10! Folgende Angaben gelten bis HW-Stand 10:

Messung Modus		SG 1/2-Bridge (5-Leiter), < HW10			
Rauschen (ohne Filterung)	F _{Noise, PtP}	< 1600 ppm _{MBE}	< 12500 [digits]		
	F _{Noise, RMS}	< 240 ppm _{MBE}	< 1875 [digits]		
	Max. SNR	> 72,4 dB			
	Rauschdichte@1kHz	nV/V			
		< 54,31 √Hz			
Rauschen (mit 50 Hz FIR Filter)	F _{Noise, PtP}	< 96 ppm _{MBE}	< 750 [digits]		
	F _{Noise, RMS}	< 16 ppm _{MBE}	< 125 [digits]		
	Max. SNR	> 95,9 dB			

Die Interpretation des Kanalwerts (PDO) ist direkt [mV/V].

Extended Range	e Mode (Default):			Defined resolut	ion: 2.048 nV/V per 9	
-17.179 mV/V -8388608 (0xFF800000) Range Error Limit (2	-16 mV/V -7812500 (0xFF88CA6C) I	negative Range	0 mV/V 0 (0x00000000)	positive Range	+16 mV/V +7812500 (0x00773594) I	+17.179 mV/V +8388607 (0x007FFFFF) Range Error Limit (²
Unc	derrange Area (1		- Nominal Range		Overrange Are	ea (1
			Technical Range			-1
¹ Underrange/C ² Range Error: I	Overrange Limit/Area: corr Error Bit + Error LED (dete	esponding bit is set when meas ction level adjustable by user, o	surement value is out of noi default: technical range)	minal range		
Legacy Range Mo	ode (Optional):			Calculated resolution	n: 1.907 nV/V per St	ep
-16 mV/V -8388608 (0xFF800000) Range Error Limit (²		negative Range	0 mV/V 0 (0x00000000)	positive Range		+16 mV/V +8388607 (0x007FFFFF) Range Error Limit (²
Underrange Limit (1		No	ominal / Technical Ran	ge		Overrange Limit (1

Abb. 45: Darstellung Messbereich SG 1/2-Bridge

2.2.28 Messung SG 1/4-Bridge (Viertelbrücke) 120 Ω 2/3-Leiter-Anschluss

Zur Ermittlung des Messfehlers:

Die Übergangswiderstände der Klemmkontakte beeinflussen den Messvorgang. Durch einen anwenderseitigen Abgleich bei gesteckter Signalverbindung kann der Messfehler weiter reduziert werden.

Der Temperaturkoeffizient (Klemme) kann durch einen externen, temperaturstabileren Ergänzungswiderstand und Klemmenbetrieb in Halb/Vollbrücke verbessert werden.

Zur Berechnung der Viertelbrücke:

R_{2/3/4} sind die klemmeninternen schaltbaren Ergänzungswiderstände.

Der Zusammenhang zur Dehnung (μ Strain, $\mu\epsilon$) ist wie folgt:

 $\frac{U_{\text{Bridge}}}{U_{\text{Exc}}} = \frac{N \Delta R_1}{4R_1} = \frac{Nk\varepsilon}{4}$ N = 1

Bei der Viertelbrücke ist immer N=1.

Hinweis: Angaben gelten für 2,5 V DMS Erregung.

Messung Modus		SG 1/4-Bridge 120 Ω				
Messbereich, nominell		120 ± 12 Ω bzw. ±25 mV/V				
		[entspricht 108 Ω…132 Ω]				
		[entspricht ±50.000 με bei K=2]				
Messbereich, Endwert (MBE)		132 Ω				
Messbereich, technisch nutzbar		120 ± 12,88 Ω				
PDO Auflösung		24 Bit (inkl. Vorzeichen)				
PDO LSB (Extended Range)		1,536 μΩ/Schritt				
PDO LSB (Legacy Range)		1,430 μΩ/Schritt				
Grundgenauigkeit: Messabweichu	ıng bei 23°C, mit	2-Leiter-Anschluss: 0,05% typ. (bez. auf MBE)				
Mittelwertbildung (²		3-Leiter-Anschluss: 0,04% typ. (bez. auf MBE)				
		4-Leiter-Anschluss: nicht möglich				
Integrierte Speisung		0,52,5V Einstellbar, Max. Versorgung/ Excitation 21 mA (interne elektronische Überlastsicherung)				
Temperaturkoeffizient (<u>1</u> [▶ <u>86]</u>	Tk _{Terminal}	<8 ppm/K typ. (bez. auf MBE, ab HW-Stand 06; vgl. Seriennummer)				
		<12 ppm/K typ. (bez. auf MBE, HW-Stand 04 ab Produktion 2016 KW10; vgl. Seriennummer)				
		<60 ppm/K typ. (bez. auf MBE, HW-Stand 01-04, Produktion bis 2016 KW09; vgl. Seriennummer)				

¹) Die Ausführungen zur 2/3/4-Leiter-Messung im <u>Kapitel zur Widerstandsmessung</u> [<u>66]</u> des Kapitels "technischen Daten" ist zu beachten!

²) Dominierender Anteil der Grundgenauigkeit ist die Offset-Spezifikation (siehe folgende Tabellen). Durch Offset-Korrektur gemäß Kapitel Offset Korrektur kann dieser Anteil eliminiert und die Messgenauigkeit erheblich gesteigert werden.

Messung Modus		SG 1/4-Bridge 120 Ω (2-Leiter)				
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 420 [ppm _{MBE}]				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 250 [ppm]				
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 50 [ppm _{MBE}]				
Wiederholgenauigkeit (bei 23°C)	F _{Rep}	< 15 [ppm _{MBE}]				
Rauschen (ohne Filterung, bei	F _{Noise, PtP}	< 160 [ppm _{MBE}]		< 13750 [digi	ts]	
23°C)	F _{Noise, RMS}	< 20 [ppm _{MBE}] < 1720 [< 1720 [digits	20 [digits]	
	Max. SNR	> 73,1 [dB]				
	Rauschdichte@1kHz	$< 37,36 \frac{m\Omega}{\sqrt{Hz}}$				
Rauschen (mit 50 Hz FIR Filter,	F _{Noise, PtP}	< 6 [ppm _{MBE}]	< 6 [ppm _{MBE}] < 52		520 [digits]	
bei 23°C)	F _{Noise, RMS}	< 1 [ppm _{MBE}]		< 86 [digits]	\$]	
	Max. SNR	> 99,2 [dB]	> 99,2 [dB]			
Gleichtaktunterdrückung (ohne Filter) ³		DC: < 0,3 Ω/V typ.	50 < 1 typ	Hz: Ω/V	1 kHz: < 20 Ω/V typ.	
Gleichtaktunterdrückung (mit 50 Hz FIR Filter) ³		DC: < 300 mΩ/V typ.	50 Hz: < 40 mΩ/V typ.		1 kHz: < 0,5 mΩ/V typ.	

Messung Modus	SG 1/4-Bridge 120 Ω (2-Leiter)
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung	±1% _{MBE} typ.

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

Messung Modus		SG 1/4-Bridge 120 Ω (3-Leiter)				
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 360 [ppm _{MBE}]				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 150 [ppm]				
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 50 [ppm _{MBE}]				
Wiederholgenauigkeit (bei 23°C)	F _{Rep}	< 15 [ppm _{MBE}]				
Rauschen (ohne Filterung, bei	F _{Noise, PtP}	< 160 [ppm _{MBE}]		< 13750 [digi	ts]	
23°C)	F _{Noise, RMS}	< 20 [ppm _{MBE}]		< 1720 [digits	s]	
	Max. SNR	> 73,1 [dB]				
	Rauschdichte@1kHz	$< 37.36 \frac{m\Omega}{\sqrt{Hz}}$				
Rauschen (mit 50 Hz FIR Filter,	F _{Noise, PtP}	< 6 [ppm _{MBE}]		< 520 [digits]		
bei 23°C)	F _{Noise, RMS}	< 1 [ppm _{MBE}]		< 86 [digits]	s]	
	Max. SNR	> 99,2 [dB]				
Gleichtaktunterdrückung (ohne Filter) ³		DC: < 0,3 Ω/V typ.	50 < 1 typ	Hz: Ω/V	1 kHz: < 20 Ω/V typ.	
Gleichtaktunterdrückung (mit 50 Hz FIR Filter) ³		DC: < 300 mΩ/V typ.	50 Hz: < 40 mΩ/V typ.		1 kHz: < 0,5 mΩ/V typ.	
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung		±1% _{MBE} typ.				

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

Die Interpretation des Kanalwerts (PDO) kann in ±12 Ω bzw. ±25 mV/V erfolgen:

Abb. 46: Darstellung Messbereich SG 1/4-Bridge 120 Ω

2.2.29 Messung SG 1/4-Bridge (Viertelbrücke) 350 Ω 2/3-Leiter-Anschluss

Zur Ermittlung des Messfehlers:

Die Übergangswiderstände der Klemmkontakte beeinflussen den Messvorgang. Durch einen anwenderseitigen Abgleich bei gesteckter Signalverbindung kann der Messfehler weiter reduziert werden.

Der Temperaturkoeffizient (Klemme) kann durch einen externen, temperaturstabileren Ergänzungswiderstand und Klemmenbetrieb in Halb/Vollbrücke verbessert werden.

Zur Berechnung der Viertelbrücke:

R_{2/3/4} sind die klemmeninternen schaltbaren Ergänzungswiderstände.

Der Zusammenhang zur Dehnung (μ Strain, $\mu\epsilon$) ist wie folgt:

 $\frac{U_{\text{Bridge}}}{U_{\text{Exc}}} = \frac{N\Delta R_1}{4R_1} = \frac{Nk\varepsilon}{4}$ N = 1

Bei der Viertelbrücke ist immer N=1.

Hinweis: Angaben gelten für 2,5 V DMS Erregung.

Messung Modus	SG 1/4-Bridge 350 Ω		
Messbereich, nominell	350 ± 12 Ω bzw. ±8,571 mV/V		
	[entspricht 338 Ω362 Ω]		
	[entspricht ±17.142 με bei K=2]		
Messbereich, Endwert (MBE)	362 Ω		
Messbereich, technisch nutzbar	350 ± 12,88 Ω		
PDO Auflösung	24 Bit (inkl. Vorzeichen)		
PDO LSB (Extended Range)	1,536 μΩ/Schritt		
PDO LSB (Legacy Range)	1,430 μΩ/Schritt		
Grundgenauigkeit: Messabweichung bei 23°C, mit	2-Leiter-Anschluss: 0,03% typ. (bez. auf MBE)		
Mittelwertbildung (²	3-Leiter-Anschluss: 0,02% typ. (bez. auf MBE)		
	4-Leiter-Anschluss: nicht möglich		
Integrierte Speisung	0,55V Einstellbar, Max. Versorgung/Excitation 21 mA (interne elektronische Überlastsicherung)		
Temperaturkoeffizient (1 [\blacktriangleright <u>90</u>] Tk _{Terminal}	<8 ppm/K typ. (bez. auf MBE, ab Produktion 2016 KW10; vgl. Seriennummer)		
	<40 ppm/K typ. (bez. auf MBE, bis Produktion 2016 KW09; vgl. Seriennummer)		

¹) Die Ausführungen zur 2/3/4-Leiter-Messung im <u>Kapitel zur Widerstandsmessung</u> [<u>66]</u> des Kapitels "technischen Daten" ist zu beachten!

²) Dominierender Anteil der Grundgenauigkeit ist die Offset-Spezifikation (siehe folgende Tabellen). Durch Offset-Korrektur gemäß Kapitel Offset Korrektur kann dieser Anteil eliminiert und die Messgenauigkeit erheblich gesteigert werden.

Messung Modus		SG 1/4-Bridge 350 Ω (2-Leiter)				
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	< 250 [ppm _{MBE}]]			
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 150 [ppm]				
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 40 [ppm _{MBE}]				
Wiederholgenauigkeit (bei 23°C)	F _{Rep}	< 10 [ppm _{MBE}]				
Rauschen (ohne Filterung, bei	F _{Noise, PtP}	< 105 [ppm _{MBE}]] <	24750 [digit	s]	
23°C)	F _{Noise, RMS}	< 18 [ppm _{MBE}]	<	4240 [digits]	
	Max. SNR	> 65,3 [dB]				
	Rauschdichte@1kHz	$< 92.1 \frac{m\Omega}{\sqrt{Hz}}$				
Rauschen (mit 50 Hz FIR Filter,	F _{Noise, PtP}	< 6 [ppm _{MBE}] < 1		1400 [digits]	
bei 23°C)	F _{Noise, RMS}	< 1 [ppm _{MBE}]	<	236 [digits]	ts]	
	Max. SNR	> 90,4 [dB]				
Gleichtaktunterdrückung (ohne Filter) ³		DC: < 2 Ω/V typ.	50 Hz < 8 Ω typ.	<u>::</u> /V	1 kHz: < 150 Ω/V typ.	
Gleichtaktunterdrückung (mit 50 Hz FIR Filter) ³		DC: < 700 mΩ/V typ.	50 Hz < 90 r typ.	<u>:</u> : mΩ/V	1 kHz: < 0,5 mΩ/V typ.	
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung		±1% _{MBE} typ.				

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

Messung Modus	SG 1/4-Bridge 350 Ω (3-Leiter)					
Offset/Nullpunkt-Abweichung (bei 23°C)	F _{Offset}	<140 [ppm _{MBE}]				
Gain/Scale/Verstärkungs- Abweichung (bei 23°C)	F _{Gain}	< 130 [ppm]				
Nichtlinearität über den gesamten Messbereich	F _{Lin}	< 40 [ppm _{MBE}]				
Wiederholgenauigkeit (bei 23°C)	F _{Rep}	< 10 [ppm _{MBE}]				
Rauschen (ohne Filterung, bei	F _{Noise, PtP}	< 105 [ppm _{MBE}]		< 24750 [digi	ts]	
23°C)	F _{Noise, RMS}	< 18 [ppm _{MBE}]		< 4240 [digits	: 4240 [digits]	
	Max. SNR	> 65,3 [dB]				
	Rauschdichte@1kHz	< 92,1 ^{mΩ} / _{√Hz}				
Rauschen (mit 50 Hz FIR Filter,	F _{Noise, PtP}	< 6 [ppm _{MBE}]	< 6 [ppm _{MBE}]		\$]	
bei 23°C)	F _{Noise, RMS}	< 1 [ppm _{MBE}]		< 236 [digits]		
	Max. SNR	> 90,4 [dB]				
Gleichtaktunterdrückung (ohne Filter) ³		DC: < 2 Ω/V typ.	50 Hz: < 8 Ω/V typ.		1 kHz: < 150 Ω/V typ.	
Gleichtaktunterdrückung (mit 50 Hz FIR Filter) ³		DC: < 700 mΩ/V typ.	50 Hz: < 90 mΩ/V typ.		1 kHz: < 0,5 mΩ/V typ.	
Größte kurzzeitige Abweichung wä festgelegten elektrischen Störprüfu	±1% _{MBE} typ.					

³) Werte beziehen sich auf eine Gleichtaktstörung zwischen SGND und internem GND.

Die Interpretation des Kanalwerts (PDO) kann in ±12 Ω bzw. ±8,571 mV/V erfolgen:

Abb. 47: Darstellung Messbereich SG 1/4-Bridge 350 Ω

3 Inbetriebnahme

3.1 Hinweis zur Kurzdokumentation

HINWEIS

In dieser Kurzdokumentation sind in diesem Kapitel keine weiteren Informationen enthalten. Bitte wenden Sie sich an den für Sie zuständigen Beckhoff Vertrieb um die vollständige Dokumentation zu erhalten.

3.2 CoE Übersicht

3.2.1 0x6000 PAI Status Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6000:0	PAI Status Ch.1		UINT8	RO	0x0F (15 _{dez})
6000:01	No of Samples	Anzahl gültiger Samples innerhalb der PDO-Samples	UINT8	RO	0x00 (0 _{dez})
6000:09	Error	TRUE: allgemeiner Fehler	BOOLEAN	RO	0x00 (0 _{dez})
6000:0A	Underrange	TRUE: Unterlauf der Messung Ereignis	BOOLEAN	RO	0x00 (0 _{dez})
6000:0B	Overrange	TRUE: Überlauf der Messung Ereignis	BOOLEAN	RO	0x00 (0 _{dez})
6000:0D	Diag	TRUE: neue Diagnose Nachricht vorhanden	BOOLEAN	RO	0x00 (0 _{dez})
6000:0E	TxPDO State	TRUE: Daten sind ungültig	BOOLEAN	RO	0x00 (0 _{dez})
6000:0F	Input cycle counter	Erhöht um eins wenn sich Werte geändert haben	BIT2	RO	0x00 (0 _{dez})

3.2.2 0x6001 PAI Samples Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6001:0	PAI Samples Ch.1		UINT8	RO	0x64 (100 _{dez})
6001:01	Sample	Samples	INT32	RO	0x0000000 (0 _{dez})
6001:64	Sample	Samples	INT32	RO	0x0000000 (0 _{dez})

3.2.3 0x6002 PAI Synchronous Oversampling Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6002:0	PAI Synchronous Oversampling Ch.1		UINT8	RO	0x01 (1 _{dez})
6002:01	Internal Buffer		UINT16	RO	0x0000 (0 _{dez})

3.2.4 0x7000 PAI Control Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7000:0	PAI Control Ch.1		UINT8	RO	0x02 (2 _{dez})
7000:01	Integrator Reset	Neustart der Integration bei ansteigender Flanke	BOOLEAN	RO	0x00 (0 _{dez})
7000:02	Peak Hold Reset	Beginn neuer Spitzenwert-Erfassung bei ansteigender Flanke	BOOLEAN	RO	0x00 (0 _{dez})

3.2.5 0x8000 PAI Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:0	PAI Settings Ch.1		UINT8	RO	0x34 (52 _{dez})
					0x41 (65 _{dez}) ²⁾
8000:01	Interface	Auswahl der Messkonfiguration: 0 - None $1 - V \pm 30V$ $2 - V \pm 10V$ $3 - V \pm 5V$ $4 - V \pm 2.5V$ $5 - V \pm 1.25V$ $6 - V \pm 640mV$ $7 - V \pm 320mV$ $8 - V \pm 160mV$ $9 - V \pm 80mV$ $10 - V \pm 40mV$ $11 - V \pm 20mV$ $12 - V \pm 10mV$ $13 - V \pm 5mV$ 14 - V 010V 15 - V 05V $17 - I \pm 20mA$ 18 - I 0-20mA 19 - I 4-20mA 20 - I 4-20mA NAMUR 33 - RTD/R 2Wire 34 - RTD/R 3Wire 35 - RTD/R 4Wire 49 - SG 1/4 2Wire 350R 50 - SG 1/4 2Wire 350R 51 - SG 1/4 3Wire 120R 53 - SG 1/2 3Wire 54 - SG 1/2 3Wire 55 - SG 1/1 4Wire 55 - SG 1/1 4Wire 56 - Poti 3Wire 66 - Poti 5Wire	UINT16	RW	0x0000 (0 _{dez})
8000:02	SG Voltage	Auswahl SG Spannung: 0 - 0 V 1 - 0.5 V 2 - 1.0 V 3 - 1.5 V 4 - 2.0 V 5 - 2.5 V 6 - 3.0 V 7 - 3.5 V 8 - 4.0 V 9 - 4.5 V 10 - 5.0 V	UINT16	RW	0x0000 (0 _{dez})
8000:04	Wire Break Detection	Drahtbrucherkennung: TRUE = Ein FALSE = Aus (siehe Kapitel "Drahtbrucherkennung/ schaltbare Anschlussdiagnose")	BOOLEAN	RW	0x00 (FALSE)
8000:13	Wire Resistance Compensation 640 μΩ/ Step	Kompensation des Leitungswiderstandes mit Auflösung 640 $\mu\Omega$ / Step (nur im 2-Leiter Modus, "R/RTD 2 Wire" möglich)	UINT16	RW	0x0000 (0 _{dez})
8000:14	RTD Element	Auswahl des RTD Elements: 0 - None 1 - PT100 (-200850°C) 2 - NI100 (-60250°C) 3 - PT1000 (-200850°C) 4 - PT500 (-200850°C) 5 - PT200 (-200850°C) 6 - NI1000 (-60250°C) 7 - NI1000 TK5000 bzw. 100°C: 1500Ohm (-30160°C) 8 - NI120 (-60320°C) 9 - KT100/110/130/210/230 KTY10/11/13/16/19 (-50150°C) 10 - KTY81/82-110,120,150 (-50150°C) 11 - KTY81-121 (-50150°C)	UINT16	RW	0x0000 (0 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
		12 - KTY81-122 (-50150°C) 13 - KTY81-151 (-50150°C) 14 - KTY81-152 (-50150°C) 15 - KTY81/82-210,220,250 (-50150°C) 16 - KTY81-221 (-50150°C) 17 - KTY81-222 (-50150°C) 18 - KTY81-251 (-50150°C) 19 - KTY83-125 (-50150°C) 20 - KTY83-110,120,150 (-50175°C) 21 - KTY83-121 (-50175°C) 22 - KTY83-151 (-50175°C) 23 - KTY83-152 (-50175°C) 24 - KTY83-152 (-50175°C) 25 - KTY84-130,150 (-40300°C) 26 - KTY84-151 (-40300°C) 27 - KTY21/23-6 (-50150°C) 29 - KTY1x-7 (-50150°C) 30 - KTY21/23-5 (-50150°C) 31 - KTY21/23-7 (-50150°C)			
8000:16	Filter 1	Optionen für Filter 1: 0 - None 1 - FIR Notch 50 Hz 2 - FIR Notch 60 Hz 3 - FIR LP 100 Hz 4 - FIR LP 1000 Hz 5 - FIR HP 1500 Hz 6 - FIR HP 1500 Hz 16 - IIR Notch 50 Hz 17 - IIR Notch 60 Hz 18 - IIR Butterw. LP 5th Ord. 1 Hz 19 - IIR Butterw. LP 5th Ord. 25 Hz 20 - IIR Butterw. LP 5th Ord. 250 Hz 21 - IIR Butterw. LP 5th Ord. 250 Hz 22 - IIR Butterw. LP 5th Ord. 1000 Hz 32 - User defined FIR Filter 33 - User defined IIR Filter 34 - User defined Average Filter	UINT16	RW	0x0000 (0 _{dez})
8000:17	Average Filter 1 No of Samples	Anzahl von Samples für den Anwenderdefinierten Mittelwertfilter 1	UINT16	RW	0x0001 (1 _{dez})
8000:18	Decimation Factor	Faktor der individuellen Sampling-Rate (min. 1)	UINT16	RW	0x0001 (1 _{dez})
8000:19	Filter 2	Optionen für Filter 2: 0 - None 1 - IIR 1 2 - IIR 2 3 - IIR 3 4 - IIR 4 5 - IIR 5 6 - IIR 6 7 - IIR 7 8 - IIR 8 16 - User defined FIR Filter 17 - User defined IIR Filter 18 - User defined Average Filter	UINT16	RW	0x0000 (0 _{dez})
8000:1A	Average Filter 2 No of Samples	Anzahl von Samples für den Anwenderdefinierten Mittelwertfilter 2	UINT16	RW	0x0001 (1 _{dez})
8000:1B	True RMS No. of Samples	Anzahl von Samples für "True RMS" Berechnung (min. 1, max. 1000); siehe auch Kapitel TrueRMS	UINT16	RW	0x00C2 (200 _{dez})
8000:1C	Enable True RMS	Aktivierung der "True RMS" Berechnung	BOOLEAN	RW	0x00 (FALSE)
8000:2B	Extended Functions	Optionen für spätere Funktionen /Einstellungen	UINT16	RW	0x0000 (0 _{dez})
8000:2C	Integrator/ Differentiator	Optionen: 0 – Off 1 - Integrator 1x 2 - Integrator 2x ¹⁾ 3 - Differentiator 1x 4 - Differentiator 2x ¹⁾	UINT16	RW	0x0000 (0 _{dez})
8000:2D	Differentiator Samples Delta	Abstand der Abtastwerte für die Differentiation	UINT16	RW	0x0001 (1 _{dez})
8000:2E	Scaler	Skalierung (ENUM): 0 - Extended Range 1 - Linear	UINT16	RW	0x0000 (0 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
		2 - Lookup Table 3 - Legacy Range 4 - Lookup Table (additive)			
8000:30	Low Limiter	Kleinster PDO Ausgabewert	INT32	RW	0x80000000 (-2147483648 _{dez})
8000:31	High Limiter	Größter PDO Ausgabewert	INT32	RW	0x7FFFFFF (2147483647 _{dez})
8000:32	Low Range Error	Niedrigste Grenze bei der das Error-Bit und Error-LED gesetzt wird	INT32	RW	0xFF800000 (-8388608 _{dez})
8000:33	High Range Error	Höchste Grenze bei der das Error-Bit und Error-LED gesetzt wird	INT32	RW	0x007FFFFF (8388607 _{dez})
8000:34	Timestamp Correction	Wert zur Korrektur von StartNextLatchTime (Zeitstempel des ersten Samples)	INT32	RW	0xFFFB6C20 (-300000 _{dez})
8000:40	Filter 1 Type Info	Typ-Information Filter 1 ²⁾	STRING	RW	N/A
8000:41	Filter 2 Type Info	Typ-Information Filter 2 ²⁾	STRING	RW	N/A

¹) Funktion steht erst ab FW03 zur Verfügung

²) Funktion steht erst ab ab FW11, Revision -0022 zur Verfügung

3.2.6 0x8001 PAI Filter 1 Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8001:0	PAI Filter 1 Settings Ch.1		UINT8	RO	0x28 (40 _{dez})
8001:01	Filter Coefficient 1	Koeffizienten für Filter 1	INT32	RO	0x0000000 (0 _{dez})
8001:28	Filter Coefficient 40	Koeffizienten für Filter 1	INT32	RO	0x0000000 (0 _{dez})

3.2.7 0x8003 PAI Filter 2 Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8003:0	PAI Filter 2 Settings Ch.1		UINT8	RO	0x28 (40 _{dez})
8003:01	Filter Coefficient 1	Koeffizienten für Filter 2	INT32	RO	0x0000000 (0 _{dez})
8003:28	Filter Coefficient 40	Koeffizienten für Filter 2	INT32	RO	0x0000000 (0 _{dez})

3.2.8 0x8005 Scaler Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8005:0	PAI Scaler Settings Ch.1	Scalierungswerte Offset/ Verstärkung oder LookUp-Tabelle mit 50 x/y Wertepaaren	UINT8	RO	0x64 (100 _{dez})
8005:01	Scaler Offset/ Scaler Value 1	Skalierungs-Offset oder LookUp x-Wert 1	INT32	RW	0x0000000 (0 _{dez})
8005:02	Scaler-Gain/ Scaler Value 2	Skalierungs-Verstärkung oder LookUp y-Wert 1	INT32	RW	0x0000000 (0 _{dez})
8005:03	Scaler Value 3	LookUp x-Wert 2	INT32	RW	0x0000000 (0 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8005:04	Scaler Value 4	LookUp y-Wert 2	INT32	RW	0x0000000 (0 _{dez})
8005:63	Scaler Value 99	LookUp x-Wert 50	INT32	RW	0x0000000 (0 _{dez})
8005:64	Scaler Value 100	LookUp y-Wert 50	INT32	RW	0x0000000 (0 _{dez})

3.2.9 0x800E PAI User Calibration Data Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
800E:0	PAI User Calibration Data Ch.1		UINT8	RO	0x0C (12 _{dez})
800E:01	Calibration Date	Tag der Kalibrierung	OCTET- STRING[4]	RW	-
800E:02	Signature	Signatur der Kalibrierungswerte	OCTET- STRING[256]	RW	-
800E:03	S0	Offset	REAL32	RW	0x0000000 (0.0 _{dez})
800E:04	S1	Koeffizient der Samples 1. Ordnung (S1 * Sample)	REAL32	RW	0x3F800000 (1.0 _{dez})
800E:05	S2	Koeffizient der Samples 2. Ordnung (S2 * Sample ²)	REAL32	RW	0x0000000 (0.0 _{dez})
800E:06	S3	Koeffizient der Samples 3. Ordnung (S3 * Sample ³)	REAL32	RW	0x0000000 (0.0 _{dez})
800E:07	T1	Temperaturkoeffizient des Temperaturwertes 1. Ordnung (T1 * Temp)	REAL32	RW	0x0000000 (0.0 _{dez})
800E:08	T1S1	Kombinierter Koeffizient der Verstärkung und Temperaturwertes 1. Ordnung (T1S1 * Temp * Sample)	REAL32	RW	0x0000000 (0.0 _{dez})
800E:09	T2	Temperaturkoeffizient des Temperaturwertes 2. Ordnung (T2 * Temp ²)	REAL32	RW	0x0000000 (0.0 _{dez})
800E:0A	T2S1	Kombinierter Koeffizient der Verstärkung und Temperaturwertes 2. Ordnung (T2S1 * Temp ² * Sample)	REAL32	RW	0x0000000 (0.0 _{dez})
800E:0B	Т3	Temperaturkoeffizient des Temperaturwertes 3. Ordnung (T3 * Temp ³)	REAL32	RW	0x0000000 (0.0 _{dez})
800E:0C	T3S1	Kombinierter Koeffizient der Verstärkung und Temperaturwertes 3. Ordnung (T3S1 * Temp ³ * Sample)	REAL32	RW	0x0000000 (0.0 _{dez})

3.2.10 0x800F PAI Vendor Calibration Data Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
800F:0	PAI Vendor Calibration Data Ch.1		UINT8	RO	0x0C (12 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
800F:01	Calibration Date	Tag der Kalibrierung	OCTET- STRING[4]	RW	-
800F:02	Signature	Signatur der Kalibrierungswerte	OCTET- STRING[256]	RW	-
800F:03	S0	Offset	REAL32	RW	0x0000000 (0.0 _{dez})
800F:04	S1	Koeffizient der Samples 1. Ordnung (S1 * Sample)	REAL32	RW	0x3F800000 (1.0 _{dez})
800F:05	S2	Koeffizient der Samples 2. Ordnung (S2 * Sample ²)	REAL32	RW	0x0000000 (0.0 _{dez})
800F:06	S3	Koeffizient der Samples 3. Ordnung (S3 * Sample ³)	REAL32	RW	0x0000000 (0.0 _{dez})
800F:07	T1	Temperaturkoeffizient des Temperaturwertes 1. Ordnung (T1 * Temp)	REAL32	RW	0x0000000 (0.0 _{dez})
800F:08	T1S1	Kombinierter Koeffizient der Verstärkung und Temperaturwertes 1. Ordnung (T1S1 * Temp * Sample)	REAL32	RW	0x0000000 (0.0 _{dez})
800F:09	T2	Temperaturkoeffizient des Temperaturwertes 2. Ordnung (T2 * Temp ²)	REAL32	RW	0x0000000 (0.0 _{dez})
800F:0A	T2S1	Kombinierter Koeffizient der Verstärkung und Temperaturwertes 2. Ordnung (T2S1 * Temp ² * Sample)	REAL32	RW	0x0000000 (0.0 _{dez})
800F:0B	Т3	Temperaturkoeffizient des Temperaturwertes 3. Ordnung (T3 * Temp ³)	REAL32	RW	0x0000000 (0.0 _{dez})
800F:0C	T3S1	Kombinierter Koeffizient der Verstärkung und Temperaturwertes 3. Ordnung (T3S1 * Temp ³ * Sample)	REAL32	RW	0x0000000 (0.0 _{dez})

3.2.11 0x9000 PAI Internal Data Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9000:0	PAI Internal Data Ch.1		UINT8	RO	0x12 (18 _{dez}) 0x13 (19 _{dez}) ¹⁾ 0x15 (21 _{dez}) ²⁾
9000:01	Temperature Value	Temperaturwert des Kanals	INT16	RO	0x0000 (0 _{dez})
9000:02	ADC Raw Value	Rohwert des ADC	INT32	RO	0x0000000 (0 _{dez})
9000:03	Calibration Value	Wert nach Kalibrierung	INT32	RO	0x0000000 (0 _{dez})
9000:04	Resistor Value	Wert nach Widerstands-Berechnung	INT32	RO	0x0000000 (0 _{dez})
9000:05	RTD Element Value	Wert nach RTD Element-Berechnung	INT32	RO	0x0000000 (0 _{dez})
9000:06	Actual Negative Peak Hold	Aktueller absoluter Minimalwert	INT32	RO	0x0000000 (0 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9000:07	Actual Positive Peak Hold	Aktueller absoluter Maximalwert	INT32	RO	0x0000000 (0 _{dez})
9000:08	Previous Negative Peak Hold	Absoluter Minimalwert bis zur letzten steigenden Flanke des "Peak Hold Reset"	INT32	RO	0x0000000 (0 _{dez})
9000:09	Previous Positive Peak Hold	Absoluter Maximalwert bis zur letzten steigenden Flanke des "Peak Hold Reset"	INT32	RO	0x0000000 (0 _{dez})
9000:0A	Filter 1 Value	Wert nach Filter 1	INT32	RO	0x0000000 (0 _{dez})
9000:0B	Filter 2 Value	Wert nach Filter 2	INT32	RO	0x0000000 (0 _{dez})
9000:0C	True RMS Value	Wert nach "True RMS" Berechnung	INT32	RO	0x0000000 (0 _{dez})
9000:0D	Extended Functions Value	Wert nach erweiterter (optionaler) Funktion	INT32	RO	0x0000000 (0 _{dez})
9000:0E	Integrator/ Differentiator Value	Wert nach Integration oder Differentiation	INT32	RO	0x0000000 (0 _{dez})
9000:0F	Scaler Value	Wert nach Skalierung	INT32	RO	0x0000000 (0 _{dez})
9000:10	Limiter Value	Wert nach Begrenzung	INT32	RO	0x00000000 (0 _{dez})
9000:11	Overload Time	Absolutzeit während Uberlast "Überlast" bedeutet, dass der Kanal elektrisch überlastet ist. Das ist ein nicht empfehlenswerter Zustand der auf Dauer zu atypischer Alterung oder sogar Beschädigung führen kann. Dieser Zustand sollte vermieden werden. Seine kumulierte Anliegedauer wird hier	UINT32	RO	0x0000000 (0 _{dez})
9000:12	Saturation Time	Absolutzeit während Saturation "Saturation" (deutsch: Sättigung) bedeutet, dass der Messbereich des ADC des Kanals voll ausgenutzt wird, der ADC also seinen Maximalwert ausgibt und der Messwert nicht weiter benutzbar ist. "Saturation" ist somit eine Vorabmeldung, bei weiterer Signalsteigerung kommt es zur "Überlast". Der Sättigungszustand ist nicht grundsätzlich schädigend, da er aber auf eine ungenügende Dimensionierung des Messkanals hindeutet wird seine kumulierte Anliegedauer hier informativ angezeigt.	UINT32	RO	0x0000000 (0 _{dez})
9000:13	Effective Sample Rate	Effektive Abtastfrequenz ¹⁾	UINT32	RO	Online calculated
9000:14	Vendor Calibration Counter	Zähler des Schreibens von Hersteller Abgleichdaten ²⁾	UINT16	RO	0x0000 (0 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9000:15	User Calibration Counter	Zähler des Schreibens von Anwender Abgleichdaten ²⁾	UINT16	RO	0x0000 (0 _{dez})

¹) Verfügbar ab Revision -0019

²) Verfügbar ab Revision -0020

3.2.12 0x900F PAI Calibration Dates Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
900F:0	PAI Calibration Dates		UINT8	RO	0xC2 (194 _{dez})
900F:01	Vendor ±30V		OCTET- STRING[4]	RO	{0}
900F:02	Vendor ±10V		OCTET- STRING[4]	RO	{0}
900F:03	Vendor ±5V		OCTET- STRING[4]	RO	{0}
900F:04	Vendor ±2.5V		OCTET- STRING[4]	RO	{0}
900F:05	Vendor ±1.25V		OCTET- STRING[4]	RO	{0}
900F:06	Vendor ±640mV		OCTET- STRING[4]	RO	{0}
900F:07	Vendor ±320mV		OCTET- STRING[4]	RO	{0}
900F:08	Vendor ±160mV		OCTET- STRING[4]	RO	{0}
900F:09	Vendor ±80mV		OCTET- STRING[4]	RO	{0}
900F:0A	Vendor ±40mV		OCTET- STRING[4]	RO	{0}
900F:0B	Vendor ±20mV		OCTET- STRING[4]	RO	{0}
900F:0C	Vendor ±10mV		OCTET- STRING[4]	RO	{0}
900F:0D	Vendor ±5mV		OCTET- STRING[4]	RO	{0}
900F:11	Vendor ±20mA		OCTET- STRING[4]	RO	{0}
900F:21	Vendor RTD/R 2Wire		OCTET- STRING[4]	RO	{0}
900F:22	Vendor RTD/R 3Wire		OCTET- STRING[4]	RO	{0}
900F:23	Vendor RTD/R 4Wire		OCTET- STRING[4]	RO	{0}
900F:31	Vendor SG 1/4 2Wire 350R		OCTET- STRING[4]	RO	{0}
900F:32	Vendor SG 1/4 2Wire 120R		OCTET- STRING[4]	RO	{0}
900F:33	Vendor SG 1/4 3Wire 350R		OCTET- STRING[4]	RO	{0}

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
900F:34	Vendor SG 1/4 3Wire 120R		OCTET- STRING[4]	RO	{0}
900F:35	Vendor SG 1/2 3Wire		OCTET- STRING[4]	RO	{0}
900F:36	Vendor SG 1/2 5Wire		OCTET- STRING[4]	RO	{0}
900F:37	Vendor SG 1/1 4Wire		OCTET- STRING[4]	RO	{0}
900F:38	Vendor SG 1/1 6Wire		OCTET- STRING[4]	RO	{0}
900F:41	Vendor Poti 3Wire		OCTET- STRING[4]	RO	{0}
900F:42	Vendor Poti 5Wire		OCTET- STRING[4]	RO	{0}
900F:81	User ±30V		OCTET- STRING[4]	RO	{0}
900F:82	User ±10V		OCTET- STRING[4]	RO	{0}
900F:83	User ±5V		OCTET- STRING[4]	RO	{0}
900F:84	User ±2.5V		OCTET- STRING[4]	RO	{0}
900F:85	User ±1.25V		OCTET- STRING[4]	RO	{0}
900F:86	User ±640mV		OCTET- STRING[4]	RO	{0}
900F:87	User ±320mV		OCTET- STRING[4]	RO	{0}
900F:88	User ±160mV		OCTET- STRING[4]	RO	{0}
900F:89	User ±80mV		OCTET- STRING[4]	RO	{0}
900F:8A	User ±40mV		OCTET- STRING[4]	RO	{0}
900F:8B	User ±20mV		OCTET- STRING[4]	RO	{0}
900F:8C	User ±10mV		OCTET- STRING[4]	RO	{0}
900F:8D	User ±5mV		OCTET- STRING[4]	RO	{0}
900F:91	User ±20mA		OCTET- STRING[4]	RO	{0}
900F:A1	User RTD/R 2Wire		OCTET- STRING[4]	RO	{0}
900F:A2	User RTD/R 3Wire		OCTET- STRING[4]	RO	{0}
900F:A3	User RTD/R 4Wire		OCTET- STRING[4]	RO	{0}
900F:B1	User SG 1/4 2Wire 350R		OCTET- STRING[4]	RO	{0}
900F:B2	User SG 1/4 2Wire 120R		OCTET- STRING[4]	RO	{0}

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
900F:B3	User SG 1/4 3Wire 350R		OCTET- STRING[4]	RO	{0}
900F:B4	User SG 1/4 3Wire 120R		OCTET- STRING[4]	RO	{0}
900F:B5	User SG 1/2 3Wire		OCTET- STRING[4]	RO	{0}
900F:B6	User SG 1/2 5Wire		OCTET- STRING[4]	RO	{0}
900F:B7	User SG 1/1 4Wire		OCTET- STRING[4]	RO	{0}
900F:B8	User SG 1/1 6Wire		OCTET- STRING[4]	RO	{0}
900F:C1	User Poti 3Wire		OCTET- STRING[4]	RO	{0}
900F:C2	User Poti 5Wire		OCTET- STRING[4]	RO	{0}

3.2.13 0xF000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0001 (1 _{dez})

3.2.14 0xF008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word		UINT32	RW	0x0000000 (0 _{dez})

3.2.15 0xF009 Password Protection

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F009:0	Password protection		UINT32	RW	0x0000000 (0 _{dez})

3.2.16 0xF010 Module list

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module list		UINT8	RW	0x01 (1 _{dez})
F010:01	Subindex 001		UINT32	RW	0x0000015E (350 _{dez})

3.2.17 0xF600 PAI Timestamp

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F600:0	PAI Timestamp		UINT8	RO	0x02 (2 _{dez})
F600:01	Low	Zeitstempel (Low)	UINT32	RO	0x0000000 (0 _{dez})
F600:02	Hi	Zeitstempel (Hi)	UINT32	RO	0x0000000 (0 _{dez})

3.2.18 0xF900 PAI Info Data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F900:0	PAI Info Data		UINT8	RO	0x22 (34 _{dez})
F900:01	CPU Usage	CPU Auslastung in [%] 1)	UINT16	RO	0x0000 (0 _{dez})
F900:02	Operating Time	Betriebszeit in [min]	UINT32	RO	0x0000000 (0 _{dez})
F900:03	Overtemperature Time	Zeit der überschrittenen Temperatur des Gerätes ²⁾	UINT32	RO	0x0000000 (0 _{dez})
F900:11	Device Temperature Sensor 1	Gemessene Temperatur in der Klemme	INT16	RO	0x0000 (0 _{dez})
F900:21	Min. Temperature Sensor 1	Niedrigste gemessene Temperatur in der Klemme	INT16	RO	0x0000 (0 _{dez})
F900:22	Max. Temperature Sensor 1	Höchste gemessene Temperatur in der Klemme	INT16	RO	0x0000 (0 _{dez})

¹) Dieser Wert hängt von zugeschalteten Features (Filter, True RMS, …) ab; je mehr Funktionen der Klemme im Einsatz sind, desto grösser ist der Wert. Zu beachten ist hierbei u.a. der "Input cycle counter" (<u>PAI Status</u> <u>Ch1. [▶ 93]</u>). Die CPU-Auslastung ist ein informativer Wert zu dem insbesondere die "Gerätespezifische DiagMessages" in Betracht zu ziehen sind.

²) Verfügbar ab Revision -0021

3.2.19 0xF912 Filter info

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F912:0	Filter info		UINT8	RO	0x03 (3 _{dez})
F912:01	Info header	Basisinformationen für den Filterdesigner	OCTET-STRING[8]	RO	{0}
F912:02	Filter 1	Informationen für den Filterdesigner	OCTET-STRING[30]	RO	{0}
F912:03	Filter 2	Informationen für den Filterdesigner	OCTET-STRING[30]	RO	{0}

Hinweis: Das CoE Objekt "0xF912 Filter info" ist verfügbar ab FW11, Revision -0022

3.2.20 0xFB00 PAI Command

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
FB00:0	PAI Command		UINT8	RO	0x03 (3 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
FB00:01	Request	Kommandoanfrage	OCTET-	RW	{0}
		In den betreffenden Funktions-Kapiteln wird erklärt welcher Wert hier einzutragen ist.	STRING[2]		
FB00:02	Status	Kommandostatus	UINT8	RO	0x00 (0 _{dez})
		Hier wird angezeigt, dass das Kommando noch ausgeführt wird bzw. wurde. Funktionsabhängig, siehe entsprechende Kapitel. Ansonsten:			
		0: Kommando nicht vorhanden			
		1: ohne Fehler ausgeführt			
		2,3: nicht erfolgreich ausgeführt			
		100200: zeigt Ausführungsfortschritt an (100 = 0% usw.)			
FB00:03	Response	Kommandoantwort	OCTET-	RO	{0}
		Falls das abgesetzte Kommando eine Antwort liefert, wird diese hier angezeigt. Funktionsabhängig, siehe entsprechende Kapitel.	STRING[4]		

3.3 Beispielprogramme

Verwendung der Beispielprogramme

Dieses Dokument enthält exemplarische Anwendungen unserer Produkte für bestimmte Einsatzbereiche. Die hier dargestellten Anwendungshinweise beruhen auf den typischen Eigenschaften unserer Produkte und haben ausschließlich Beispielcharakter. Die mit diesem Dokument vermittelten Hinweise beziehen sich ausdrücklich nicht auf spezifische Anwendungsfälle, daher liegt es in der Verantwortung des Anwenders zu prüfen und zu entscheiden, ob das Produkt für den Einsatz in einem bestimmten Anwendungsbereich geeignet ist. Wir übernehmen keine Gewährleistung, dass der in diesem Dokument enthaltene Quellcode vollständig und richtig ist. Wir behalten uns jederzeit eine Änderung der Inhalte dieses Dokuments vor und übernehmen keine Haftung für Irrtümer und fehlenden Angaben.

Vorbereitungen zum Starten des Beispielprogramms (tnzip-Datei/TwinCAT 3)

• Nach Klick auf den Download-Button speichern Sie das Zip-Archiv lokal auf ihrer Festplatte und entpacken die *.tnzip-Archivdatei in einem temporären Ordner.

DAT	EI BEARBEITEN	ANSICHT	DEBUGGEN	TWINCAT	TWINSAFE	PLC	EXTRAS	SCOPE	FENSTER	HILFE
	Neu				•	en +			-	Ŧ
	Öffnen				•	۲ ۲	Projekt/Proje	ktmappe		Strg+Umschalt+O
	Schließen					۱ 🗳	Vebsite			Umschalt+Alt+O
×	Projektmappe schli	ießen				<u></u>	Datei	Target		Strg+O
	Ausgewählte Elemente speichern Strg+S Ausgewählte Elemente speichern unter		Strg+S		12 F	Projekt vom Zielsystem öffnen		n öffnen		
			nente speichern unter		er Projektmappe von	e vom Arch	Archiv öffnen 🙀			
- 1	Alles speichern			Strg+Un	nschalt+S					ų.
						_				

Abb. 48: Öffnen des *. tnzip-Archives

- Wählen Sie die zuvor entpackte .tnzip-Datei (Beispielprogramm) aus.
- Ein weiteres Auswahlfenster öffnet sich: wählen nun Sie das Zielverzeichnis, wo das Projekt gespeichert werden soll.

- Die generelle Vorgehensweise für die Inbetriebnahme der PLC bzw. dem Start des Programms kann u. a. den Klemmen-Dokumentationen oder der EtherCAT-Systemdokumentation entnommen werden.
- Das EtherCAT-Gerät im Beispiel ist in der Regel. zuvor ihrem vorliegenden System bekannt zu machen. Verwenden Sie nach Auswahl des EtherCAT-Gerätes im "Projektmappen-Explorer" rechtsseitig den Karteireiter "Adapter" und Klicken "Suchen…":

Allgemein Adapter	EtherCAT Online (CoE - Online		
Network Adapt	er			
	OS (NDIS)	PCI	OPRAM	
Beschreibung:				
Gerätename:				
PCI Bus/Slot:			Suchen	
MAC-Adresse:			Kompatible Geräte	
IP-Adresse:				
Adapter Reference	Promiscuous M Virtuelle Geräte	ode (nur mit Wire namen	ishark)	
Adapter:			▼	
Freerun Zyklus (ms):	4			

Abb. 49: Suche der bestehenden HW-Konfiguration zur bestehenden EtherCAT-Konfiguration

• Überprüfen der Netld: der Karteireiter "EtherCAT" des EtherCAT-Gerätes zeigt die konfigurierte Netld:

Allgemein Adapter		EtherCAT	Online	CoE - Or	nline		
	_	-		_			
NetId:	12	127.0.0.1.4.1				Erweiterte Einstellungen	

Diese muss mit den ersten vier Zahlenwerten mit der Projekt-Netld des Zielsystems übereinstimmen. Die Netld des Projektes kann oben in einem Textfeld der TwinCAT-Umgebung eingesehen werden. Ein pull-down Menü kann durch einen Klick rechts im Textfeld geöffnet werden; dort ist zu jedem Rechnernamen eines Zielsystems die Netld in Klammern angegeben.

- Ändern der Netld: mit einem Rechtsklick auf "Gerät EtherCAT" im Projektmappen-Explorer öffnet sich das Kontextmenü, in dem "Ändern der Netld" auszuwählen ist. Die ersten vier Zahlen der Netld des Projektes sind einzutragen. die beiden letzten Werte sind in der Regel 4.1. Beispiel:
 - NetId des Projektes: myComputer (123.45.67.89.1.1)
 - Eintrag per "Change NetId...": 123.45.67.89.4.1

Vorbereitungen zum Starten des Beispielprogramms (tpzip - Datei/ TwinCAT 3)

- Nach Klick auf den Download-Button speichern Sie das Zip-Archiv lokal auf ihrer Festplatte und entpacken die *.tpzip -Archivdatei in einem temporären Arbeitsordner.
- Erstellen Sie ein neues TwinCAT Projekt wie im Kapitel <u>TwinCAT Quickstart, TwinCAT 3, Startup</u> [▶ <u>154</u>] beschrieben.
- Öffnen Sie das Kontextmenü von "SPS" im "Projektmappen-Explorer" und wählen "Vorhandenes Element hinzufügen...":

Projektmappen-Explorer 🔹 🗖							
○ ○ 益 ○ · 司 ▶							
Projektmappen-Explorer (Strg+ü) durchsuchen							
Image: Projektmappe "TC_Times" (1 Projekt) Image: Projektmappe "TC_Times" (1 Proj							
	SPS SAFETY See C++	°o *o	 Neues Element hinzufügen Einfg Vorhandenes Element hinzufügen Vmschalt+Alt+A 				
► Image: A Strg+V Paste with Links Image: Hide PLC Configuration							

• Wählen Sie die zuvor entpackte .tpzip Datei (Beispielprogramm) aus.

3.3.1 Beispielprogramm 1 und 2 (Offset/Gain)

Download TwinCAT 3 Projekt:

https://infosys.beckhoff.com/content/1031/el3751/Resources/2152667403.zip

Programmbeschreibung/ Funktion:

- Berechnung eines Offsets (Korrekturwertes) anhand der Amplituden einer Eingangswechselspannung (Gleichspannungsanteil ≠ 0), bis eine Abweichung des Offsets kleiner "wOFFSET_MIN_VAL_REF" (in Digits) erreicht ist.
- Berechnung eines Gain-Korrekturwertes durch Vorgabe über "nPRESET_MAX_VAL" (in Digits).

Es lässt sich in diesem Beispielprogramm die Konfiguration von minimal zulässiger Eingangsfrequenz, Reihenfolge der Berechnungen Gain und Offset sowie das direkte Schreiben in das CoE-Verzeichnis (Objekt "PAI Scaler Settings") vornehmen (siehe Variablendeklaration).

Vorgesehen ist die folgende Vorgehensweise:

- 1. Konfiguration "*bWriteToCoEEnable*" = TRUE, d.h. nach Abschluss der Berechnung der Korrekturwerte werden diese in das CoE Objekt "PAI Scaler Settings" geschrieben.
- Klemme über das CoE-Verzeichnis im Objekt "PAI Settings Ch. 1" 0x8000:2E auf "Extended Range" (0) einstellen.
- 3. Aufschaltung eines periodischen Signals (Dreieck, Sinus, Rechteck, ...) an die Klemme innerhalb des ausgewählten Spannungs-/ Strombereichs (MBE) über PAI-Settings Objekt 0x8000:01 (Interface).
- 4. Start des Programms durch das Setzen von "bEnable" auf "TRUE".
- 5. Das Ausführungsende ist anhand der Variablen "bScaleGainDone" und "bScaleOffsetDone" erkennbar, sobald beide TRUE sind.
- Ist das Schreiben in das CoE aktiviert ("bWriteToCoEEnable" = TRUE), sollten die ermittelten Werte in das CoE Verzeichnis, Objekt "PAI Scaler Settings", geschrieben worden sein (siehe Variable "bError").
- Falls 6. ausgeführt wurde, kann die Klemme über das CoE-Verzeichnis im Objekt "PAI Settings Ch. 1" 0x8000:2E auf "Linear" (1) eingestellt werden. Dadurch führt die Klemme die Korrekturberechnung intern aus (siehe: "nScaledSampleVal").

Anmerkungen:

DDOODAM MATH

Alternativ kann anstelle des Funktionsblocks "FB_GET_MIN_MAX" auch von der TC3 Analytics Library (TF3510) Gebrauch gemacht werden. Der Funktionsblock "FB_ALY_MinMaxAvg_1Ch" kann ebenfalls für die Ermittlung der Min./Max. Werte herangezogen werden. Es kann dann auch die gesamte Berechnung in diesem Programm durch Verwendung des von diesem Funktionsblock zur Verfügung gestellten Mittelwertes modifiziert werden.

Bei den Klemmen ELM350x/ ELM370x ist das "PAI Scaler Settings" – Objekt 0x80n6 und zudem können die Variablen *nOffset* und *nGain* auch direkt ohne die Typ-Konvertierung (REAL zu DINT) geschrieben werden; eine Skalierung des Amplituden-Korrekturwertes mit 65536 ist ebenfalls nicht mehr nötig.

Variablendeklaration Beispielprogramme 1 und 2

PR	JGRAM MAIN	
VA	R_INPUT	
	bEnable	:BOOL; // Start the code (Offset / Gain adjust)
	nPAI_Sample AT%I*	:DINT; // Input samples of the measurement value
ΕN	D_VAR	
VA	R	
	// Enter your Net-Id h	nere:
	userNetId	:T_AmsNetId := 'a.b.c.d.x.y';
	// Enter EtherCAT dev	ice address here:
	nUserSlaveAddr	:UINT := 1002; // Check, if correct
	<pre>// Configurations:</pre>	
	fMinFrequencyIn	:REAL:=1.5; // Hz
	bScalingOrder	:BOOL:=FALSE; // TRUE: Start scale offset first
	bWriteToCoEEnable	:BOOL:=FALSE; // TRUE: Enable writing to CoE
	// ====================================	
	// "Main" State contro	olling Offset/Gain adjusting:
	nMainCal_State	:BYTE:=0;
	// For CoE Object 0x80	005 access:
	fb_coe_write	:FB_EcCoESdoWrite; // FB for writing to CoE
	nSTATE_WRITE_COE	:BYTE := 0;
	nSubIndex	:BYTE;
	nCoEIndexScaler	:WORD := 16#8005; // Use channel 1
	// For ELM3xxx this is	s 0x8006
	nSubIndScalGain	:BYTE := 16#02;
	nSubIndScalOffs	:BYTE := 16#01;
	nADSErrId	:UDINT; // Copy of ADS-Error ID
	// ====================================	
	fb_get_min_max	:FB_GET_MIN_MAX; // Min/Max values needed
	// Note: you may also	use "FB_ALY_MinMaxAvg_1Ch" of TwinCAT analytics)
	<pre>// instead; there avg</pre>	(average values can also be determinated
	// Variables used for	offset scaling:
	nSTATE_SCALE_OFFSET	:INT := 0;
	bScaleOffsetStart	:BOOL := FALSE;
	bScaleOffsetDone	:BOOL := FALSE;
	fOffsetDeviationVal	:REAL;
	nOFFSET_MIN_VAL_REF	:WORD := 200; // Max. limit value for offset
	// Variables used for	gain scaling:
	nSTATE_SCALE_GAIN	:INT := 0;
	bScaleGainStart	:BOOL := FALSE;
	bScaleGainDone	:BOOL := FALSE;
	nPRESET_MAX_VAL	:REAL := 3000000; // Target amplitude value
	// ==================	

// Variables for evaluating of gain and offset:

Inbetriebnahme

BECKHOFF

	nOffset	:REAL := 0; // Offset value
	nGain	:REAL := 1; // Gain value
	nScaledSampleVal	:REAL;
	nDINT_Value	:DINT;
	fb_trig_bEnable	:R_TRIG; // Trigger FB for Enable
	bError	:BOOL := FALSE; // Evaluate
ENI	D VAR	

Ausführungsteil:

```
// THIS CODE IS ONLY AN EXAMPLE - YOU HAVE TO CHECK APTITUDE FOR YOUR APPLICATION
// Example program 1 and 2 program code:
// 1. PAI setting of 0x80n0:2E must be "Extended Range" at first
// 2. When writing of scaling values were done, switch to "Linear"
// Calculation of the temporary value (..and use for ScopeView to check)
nScaledSampleVal := nOffset + nGain * DINT_TO_REAL(nPAI_Sample);
// Main-State Procedure:
CASE nMainCal_State OF
0:
fb trig bEnable(CLK:=(bEnable AND NOT bError));
  IF fb trig bEnable.Q THEN // Poll switch or button
// Initialize temporary offset and gain values:
      nOffset:= 0;
       nGain := 1;
       bScaleOffsetStart := bScalingOrder;
       bScaleGainStart := NOT bScalingOrder;
       fb get min max.nMinFreqInput := fMinFrequencyIn;
nMainCal_State := 10; // Start
END_IF
10:
IF (bScaleGainDone AND NOT bScalingOrder)
OR (bScaleOffsetDone AND bScalingOrder) THEN
bScaleOffsetStart := NOT bScalingOrder;
bScaleGainStart := bScalingOrder;
   nMainCal State := nMainCal State + 10;
END IF
20:
IF bScaleGainDone AND bScaleOffsetDone THEN
nMainCal State :=0; // All done, initalization for next start
END IF
END CASE
// ----- Offset scaling (program 1)
IF bScaleOffsetStart THEN
CASE NSTATE SCALE OFFSET OF
0:
bScaleOffsetDone := FALSE; // Initialization of confirmation flag
// Get min/max values within a period of the signal:
fb get min max(nInputValue:=nScaledSampleVal);
IF fb get min max.bRESULT THEN // Wait if Limit-Values are valid
   // Min/Max Values valid, continue..
// calculate current offset deviation:
```
```
fOffsetDeviationVal :=
         (fb get min max.nMaxVal - ABS((fb get min max.nMaxVal-fb get min max.nMinVal)/2));
         // Offset deviation check:
         IF ABS(fOffsetDeviationVal) < nOFFSET MIN VAL REF THEN
           // Deviation in acceptable range - offset scaling done,
            // now write correction value into CoE Object:
            nDINT Value := REAL TO DINT(nOffset);
            // Initiate writing to CoE:
           nSubIndex := nSubIndScalOffs;
            nSTATE WRITE COE := 10;
            nSTATE SCALE OFFSET := nSTATE SCALE OFFSET
                                                       10
         ELSE
            // Calculate new offset value (new by old with deviation)
            nOffset := nOffset - fOffsetDeviationVal;
        END IF
END IF
10:
IF (nSTATE WRITE COE = 0) THEN
       // Scaling offset done within CoE for the device
        bScaleOffsetDone := TRUE;
        bScaleOffsetStart := FALSE;
        nSTATE SCALE OFFSET := 0;
END IF
END CASE
END IF
// ----- Gain scaling (program 2)
IF bScaleGainStart THEN
CASE NSTATE SCALE GAIN OF
0:
bScaleGainDone := FALSE; // Initialization of confirmation flag
     // Get min/max values within a period of the signal:
      fb get min max(nInputValue:=DINT TO REAL(nPAI Sample));
      IF fb get min max.bRESULT THEN // Wait if Limit-Values are valid
       // Calculate Gain
        nGain := nPRESET MAX VAL/ABS((fb get min max.nMaxVal-fb get min max.nMinVal)/2);
         // ...shift gain value by 16 Bit left and convert to DINT:
        nDINT_Value := REAL_TO_DINT(65536 * nGain);
        //Due to 'output = gain * input + offset', the offset have to be adapted
        nOffset := nOffset * nGain;
         // Initiate writing to CoE:
        nSubIndex := nSubIndScalGain;
        nSTATE WRITE COE := 10;
        nSTATE_SCALE_GAIN := nSTATE_SCALE_GAIN + 10;
END IF
10:
IF (nSTATE WRITE COE = 0) THEN
        IF NOT (nOffset = 0) THEN
          // (bScalingOrder is TRUE)
           nDINT Value := REAL TO DINT(nOffset);
```

```
// Initiate writing to CoE (again):
         nSubIndex := nSubIndScalOffs;
         nSTATE WRITE COE := 10;
END IF
nSTATE SCALE GAIN := nSTATE SCALE GAIN + 10;
END IF
20:
IF(nSTATE_WRITE_COE = 0) THEN
// Scaling gain done within CoE for the device
bScaleGainStart := FALSE;
       bScaleGainDone := TRUE;
nSTATE_SCALE_GAIN := 0; // Set initial stat
END IF
END CASE
END IF
IF (nSTATE WRITE COE > 0) THEN
IF bWriteToCoEEnable THEN
CASE nSTATE_WRITE COE OF
10:
// Prepare CoE write access
fb coe write(
       sNetId:= userNetId,
      nSlaveAddr:= nUserSlaveAddr,
         nIndex:= nCoEIndexScaler,
         bExecute:= FALSE,
       tTimeout:= T#1S
     );
nSTATE WRITE COE := nSTATE WRITE COE + 10;
20:
      // Write nDINT_Value to CoE Index "Scaler":
     fb_coe_write(
       nSubIndex:= nSubIndex,
       pSrcBuf:= ADR(nDINT Value),
       cbBufLen:= SIZEOF(nDINT Value),
       bExecute:= TRUE
     );
nSTATE WRITE COE := nSTATE WRITE COE + 10;
30:
fb_coe_write();
IF NOT fb_coe_write.bBusy THEN
nSTATE WRITE COE := 0;
END_IF
END_CASE
ELSE
nSTATE WRITE COE := 0;
END IF
END IF
IF(fb coe write.bError) AND NOT bError THEN
bError := TRUE;
nADSErrId := fb_coe_write.nErrId;
// CoE write acccess error occured: reset all
nSTATE WRITE COE := nMainCal State := 0;
```

```
bScaleOffsetDone := bScaleOffsetStart := FALSE;
bScaleGainDone := bScaleGainStart := FALSE;
END IF
```

3.3.1.1 Funktionsblock FB_GET_MIN_MAX

Deklarationsteil:

```
FUNCTION_BLOCK FB_GET_MIN_MAX
```

```
VAR CONSTANT
CMAXinit
             :REAL := -3.402823E+38;
CMINinit
                :REAL := 3.402823E+38;
END_VAR
VAR INPUT
               :BOOL := TRUE;
bInit
nInputValue :REAL;
nMinFreqInput :REAL;
END VAR
VAR OUTPUT
bresult
               :BOOL;
nMaxVal
               :REAL;
nMinVal
               :REAL;
END VAR
VAR
CMMcnt
               :UINT;
nMaxValCnt :UINT;
nMinValCnt :UINT;
bValidMinVal :BOOL;
bValidMaxVal :BOOL;
fbGetCurTaskIdx : GETCURTASKINDEX;
END VAR
```

Ausführungsteil:

```
IF bInit THEN
// Counter initialization:
// [counter value] > [1/(<input frequency> * TaskCycleTime)]
fbGetCurTaskIdx();
CMMcnt := REAL TO UINT(
1.1E7/(nMinFreqInput*UDINT TO REAL(
TaskInfo[fbGetCurTaskIdx.index].CycleTime)));
// At least an entire period have to be sampled for min/max determination
// Initialization, go on:
nMaxValCnt :=CMMcnt;
nMinValCnt :=CMMcnt;
nMaxVal :=CMAXinit;
nMinVal :=CMINinit;
bInit := FALSE;
END IF
// Assertions: new min/max values exists:
bValidMaxVal := TRUE;
bValidMinVal := TRUE;
// Filter min/max values
IF (nMaxVal < nInputValue) THEN
bValidMaxVal := FALSE;
nMaxVal := nInputValue; // Max value was found
```

END IF IF (nMinVal > nInputValue) THEN bValidMinVal := FALSE; nMinVal := nInputValue; // Min value was found END IF // Count down, if no new value come in: IF (bValidMaxVal AND (nMaxValCnt > 0)) THEN nMaxValCnt := nMaxValCnt - 1; END IF // Count down, if no new value come in: IF (bValidMinVal AND (nMinValCnt > 0)) THEN nMinValCnt := nMinValCnt - 1; END IF IF ((nMaxValCnt = 0) AND (nMinValCnt = 0)) THEN // Consequence: min/max determined bInit := TRUE; // Prepare next call bRESULT := NOT (nMaxVal = nMinVal); // Sign valid results ELSE bRESULT := FALSE; // Sign still invalid results END IF

3.3.2 Beispielprogramm 3 (LookUp-Tabelle schreiben)

Download TwinCAT 3 Projekt: https://infosys.beckhoff.com/content/1031/el3751/Resources/2152669707.zip

Programmbeschreibung/ Funktion:

Übertragung von LookUp-Tabellenstützwerten per CoE-Zugiff in die Klemme für die Abbildung einer Funktion $f(x) = x^3$.

Variablendeklaration Beispielprogramm 3

```
PROGRAM MAIN
VAR
//LookUp-Table (LUT) generated by: MBE
aLUT:ARRAY[0..99] OF DINT :=
[
-7812500,-7812500,-7493593,-6894382,
-7174765,-6051169,-6855859,-5279674,-6536953,-4576709,
    -6218125, -3939087, -5899218, -3363620, -5580390, -2847120,
-5261484,-2386402,-4942578,-1978275,-4623750,-1619555,
     -4304843,-1307052,-3985937,-1037580,-3667109,-807951,
     -3348203,-614978,-3029375,-455472,-2710468,-326248,
-2391562,-224117,-2072734,-145892,-1753828,-88385,
   -1434921,-48409,-1116093,-22776,-797187,-8300,
   -478281,-1792,-159453,-66,159453,66,
   478281,1792,797187,8300,1116093,22776,
    1434921,48409,1753828,88385,2072734,145892,
  2391562,224117,2710468,326248,3029375,455472,
    3348203,614978,3667109,807951,3985937,1037580,
     4304843,1307052,4623750,1619555,4942578,1978275,
     5261484,2386402,5580390,2847120,5899218,3363620,
     6218125,3939087,6536953,4576709,6855859,5279674,
7174765,6051169,7493593,6894382,7812500,7812500
1;
// For CoE 0x8000 and 0x8005 - write values:
```

END_VAR

Anmerkungen:

- Die Variable "startWrite" (BOOL) wird bereits in Beispielprogramm 4 ebenfalls deklariert.
- Die Variable ,userNetld' muss die Geräte-EtherCAT-Netz ID enthalten. Diese ist über den Karteireiter "EtherCAT" bei Auswahl von "Device (EtherCAT)" einsehbar.
- Die Variable "userSlaveAddr" muss die EtherCAT-Adresse der Klemme enthalten.

Beispielprogramm zur Übertragung der LookUp-Tabelle:

Ausführungsteil:

```
// Example program 3:
// ###### Write Lookup-Table in CoE Objekt 0x8005: #######
IF bWriteLUT2CoE THEN
CASE wState OF
0:
fb coe writeEx(bExecute := FALSE);// Prepare CoE-Access
wState := wState + 1;// Next state
1:
// Write 100 X/Y LookUp-Table entrie
fb coe writeEx(
        sNetId:= userNetId,
        nSlaveAddr:= userSlaveAddr,
        nSubIndex:= 1,
        nIndex:= wCoEIndexScaler,
        pSrcBuf:= ADR(aLUT),
        cbBufLen:= SIZEOF(aLUT),
        bCompleteAccess:= TRUE,
        bExecute:= TRUE
    );
   wState := wState + 1; // Next stat
2:
// Proceed with writing to CoE
     fb_coe_writeEx();
IF NOT fb coe writeEx.bBusy THEN
    wState := 0;// Done
bWriteLUT2CoE := FALSE;
bError := fb coe writeEx.bError; // See nErrId
END IF
END CASE
```

```
END IF
```

Durch eine einfache Variablen-Abfrage z.B. von einem Taster, der mit bEnable verknüpft ist kann die Übertragung in Gang gesetzt werden. Dafür ist die Variablendeklaration:

```
VAR_INPUT
bEnable AT%I* :BOOL;
END VAR
```

sowie die folgenden Programmzeilen erforderlich:

```
IF bEnable AND NOT startWrite THEN
    bWriteLUT2CoE := TRUE;
END IF
```

END_IF.

3.3.3 Beispielprogramm 4 (LookUp-Tabelle erzeugen)

Download TwinCAT 3 Projekt: https://infosys.beckhoff.com/content/1031/el3751/Resources/2152669707.zip

Programmbeschreibung/ Funktion:

Aufnahme von LookUp-Tabellenstützwerten aus einem Eingangssignal der Klemme in eine Feldvariable (und wahlweise anschließender Übertragung der LookUp-Tabellenstützwerte per CoE-Zugiff in die Klemme mittels Beispielprogramm 3).

Vorgesehen ist die Verwendung eines Rampengenerators mit Trigger-Eingang, dessen Pegel zusammen mit einem Eingang einer digitalen Eingangsklemme (z.B. EL1002) über eine Verknüpfung die Variable *"bStartRecord"* auf TRUE setzt (z.B. Taster an +24V verschaltet). Dadurch kann die Aufnahme der Werte mit der Rampeneingangsspannung synchronisiert werden. Alternativ kann auch eine Ausgangsklemme verwendet werden (z.B. EL2002), dessen Ausgang den Trigger-Eingang ansteuert und dann über die Entwicklungsumgebung TwinCAT auf TRUE gesetzt wird (*"bStartRecord"* müsste dann entsprechend als AT%Q* deklariert werden und mit einem Ausgang der Klemme verknüpft sein).

Variablendeklaration Beispielprogramm 4

// Variablendeklaration for example program 4							
PROGRAM MAIN							
VAR CONSTANT							
nEndX	: BYTE := 50; // Anzahl Stützwerte						
END_VAR							
VAR							
nPAISampleIn AT%I*	: DINT; // PDO PAISamples						
bStartRecord AT%I*	: BOOL; // Elektrische Verbindung zum Trigger für Rampe						
bGetMinMax	: BOOL := FALSE;						
bRecordLUT	: BOOL := FALSE;						
r_trigStartRecord	: R_TRIG;						
nX	: BYTE := 0;						
aValues	: ARRAY[0nEndX-1] OF DINT;						
nYstepValue	: DINT;						
tp_timer	: TP;						
ton_timer	: TON;						
nMinValue	: DINT := 7812500;						
nMaxValue	: DINT := -7812500;						
nYvalue	: DINT;						
tRepeatTimerValue	: TIME := T#51MS;						
aLUT	: ARRAY[099] OF DINT;						
END VAR							

Ausführungsteil:

```
// b) Aufnahme der Werte: Start
r trigStartRecord(CLK:=bStartRecord);
IF r trigStartRecord.Q THEN
nX := 0;
memset(ADR(aLUT), 0 , 100);
bRecordLUT := TRUE;
END IF
ton timer();
IF bRecordLUT OR ton timer.Q THEN
bRecordLUT := FALSE;
ton timer(IN:=FALSE);
IF(nX < nEndX) THEN
// b.1) Aufnahme der Werte:
aValues[nX] := nPAISampleIn;
nX := nX + 1;
ton timer(IN:=TRUE, PT:=tRepeatTimerValue);
ELSE
// b.2) Speicherung abgeschlossen:
// Erzeuge Linearisierte Werte:
nYstepValue := (nMaxValue - nMinValue) / nEndX; // Y-Schritte
   nYvalue := aValues[0]; // Gemeinsamer Startwert der LUT
FOR nX:=0 TO nEndX DO
    // Erstelle LUT (X = IST-Werte, Y = SOLL-Werte):
        aLUT[nX*2] := aValues[nX]; // X-Wert
aLUT[nX*2+1] := nYvalue; // Y-Wert
      // Nächster Y-Wert der LUT (erzeuge "Gerade"):
nYvalue := nYvalue + nYstepValue; // f(x) = b+x
END FOR
END IF
END IF
```

3.3.4 Beispielprogramm 5 (Filterkoeffizienten schreiben)

Download TwinCAT 3 Projekt: https://infosys.beckhoff.com/content/1031/el3751/Resources/2152672011.zip

Programmbeschreibung/ Funktion

Übertragung von exemplarischen Filterkoeffizienten per CoE-Zugriff in die Klemme.

Allgemeine Einstellungen

- Der Funktionsblock "FB_EcCoESdoWrite" benötigt die "Tc2_EtherCAT" Bibliothek
- <AmsNetId> muss die Lokale Device EtherCAT NetId in Hochkomma eingetragen haben (z.B. '168.57.1.1.5.1')
- <DeviceEtherCATAddress> muss die Lokale Device EtherCAT Adresse der EL3751/ ELM3xxx Klemme eingetragen haben (z.B. 1007_{dez})

Variablendeklaration Beispielprogramm 5

```
PROGRAM MAIN

// Variable declaration example program 5

VAR CONSTANT

NumOfFilterCoeff :BYTE:=40;

END_VAR

VAR

VAR

// Function block of library "Tc2_EtherCAT" for CoE Object access:

fb_coe_write :FB_EcCoESdoWrite;
```

Inbetriebnahme

BECKHOFF

```
:T_AmsNetId := '???';
userNetId
                           :UINT := ???;
userSlaveAddr
// Writing PLC state for coefficients transfer (Set to 0 for start)
                           :BYTE:=255;
wState
index
                           :BYTE:=1; // Index for coefficients transfer
wCoEIndexUserFilterCoeffizents :WORD:=16#8001;
aFilterCoeffs:ARRAY[0..NumOfFilterCoeff] OF LREAL :=
[
// Example filter coefficients FIR band pass: 3600..3900 Hz
// Usage: "User defined FIR Filter" (32)
0.03663651655662163,
0.04299467480848277,
-0.007880289104928245,
0.0664029021294729,
-0.0729038234874446,
-0.00005849791174519834,
0.05628409460964408,
-0.0525134329294473,
0.026329003448584205,
0.00027114381194760643,
-0.03677629552114248,
0.06743018479714939,
   -0.0560894442193289,
0.0009722394088121363,
0.05676876756757213,
    -0.07775650809213645,
0.05330627422911416,
0.0009941073749156226,
-0.055674804078696793,
0.07874009379691002,
    -0.055674804078696793,
0.0009941073749156226,
0.05330627422911416,
    -0.07775650809213645,
0.05676876756757213,
    0.0009722394088121363,
    -0.0560894442193289,
0.06743018479714939,
    -0.03677629552114248,
0.00027114381194760643,
0.026329003448584205,
    -0.0525134329294473,
0.05628409460964408,
-0.00005849791174519834,
-0.0729038234874446,
0.0664029021294729,
    -0.007880289104928245,
0.04299467480848277,
0.03663651655662163,
0
];
nValue :DINT; // Temporary variable
END VAR
```

Ausführungsteil:

```
// Example program 5:
// writes filter coefficients of
// "User defined FIR Filter" (32)
// incl. example coefficients for band pass
// Note: writing possible, if CoE Object
// PAI Settings Ch.1 (0x8000:16) has value 32 or 33 set, only!
// (32 = User defined FIR Filter / 33 = User defined IIR Filter)
CASE wState OF
0:
fb coe write(bExecute := FALSE);// Prepare CoE access
wState := wState + 1;// Go to next state
1:
//nValue := REAL TO DINT(DINT TO REAL(aFilterCoeffs[index]) *16384);
nValue := LREAL_TO_DINT(aFilterCoeffs[index] * 1073741824); // Bit-shift factor: 2^30
// Write filter coefficients (max. 40 entries)
   fb coe write(
  sNetId:= userNetId,
       nSlaveAddr:= userSlaveAddr,
   nSubIndex:= index,
       nIndex:= wCoEIndexUserFilterCoeffizents,
       pSrcBuf:= ADR(nValue),
       cbBufLen:= SIZEOF(nValue),
       bExecute:= TRUE,
       tTimeout:= T#1S
);
wState := wState + 1; // Go to next stat
2:
// Execute writing to CoE
fb coe write();
IF fb coe write.bError THEN
   wState := 100; // Error case
ELSE
IF NOT fb coe write.bBusy THEN
   index := index + 1;
IF index <= (NumOfFilterCoeff) THEN
    fb coe write(bExecute := FALSE);// Prepare the next CoE access
          wState := 1;// Write next value
ELSE
           wState := 255;// Done
   END IF
END IF
END IF
100:
; // Error handling
255:
; // Go on..
END CASE
```

3.3.5 Beispielprogramm 6 (Verschränken von Messwerten)

Programmbeschreibung/ Funktion

Anmerkung zu diesem Kapitel: Der Einsatz von EL3751/ELM3xxx-Klemmen gilt entsprechend auch für EPP35xx.

In manchen Anwendungsfällen wird eine zeitlich besonders feine Auflösung des Signals gewünscht, z.B. damit für eine FFT viele Messpunkte zur Verfügung stehen. Im Folgenden werden zwei Möglichkeiten hierfür dargestellt:

- Einsatz einer analogen Eingangsklemme mit der entsprechend hohen Abtastrate z.B. 20 kSps.
- Einsatz von zwei analogen Eingangsklemmen mit der halben Abtastrate von 10 kSps und sogenannter *Verschränkung der Messwerte*, Resultat sind ebenfalls 20 kSps Abtastung des Signals.

In diesem Beispiel wird der zweite Weg beschrieben: Einsatz von EtherCAT-Klemmen 2 x EL3751 mit je 10 kSps max. Samplerate (hier somit 100 µs Wandlungszeit, vgl. <u>Weiterführende Dokumentation zu I/O-</u> <u>Komponenten mit analogen Ein- und Ausgängen [▶ 261]</u>, Kapitel "Zeitliche Aspekte der analog/digital bzw. digital/analog Wandlung"). Beide Klemmen erhalten durch deren Parallelschaltung das gleiche Signal simultan zugeführt und sind per DistributedClocks derartig konfiguriert, dass sie nicht gleichzeitig, sondern um die halbe Wandlungszeit versetzt sampeln (hier: 50 µs). Werden nun die beiden Messdatenströme in der Steuerung abwechseln zusammengesetzt, d.h. "verschränkt", ergibt sich ein netto Messdatenstrom von 20 kSps.

Abb. 50: Vorgang der Verschränkung der Eingangsdaten

Hierfür wird folgender Aufbau verwendet:

118

Abb. 51: Konfiguration und Aufbau zum Beispielprogramm 6: Verdopplung der Samplingrate mit 2 x EL3751

Das Beispiel ist mit entsprechenden Anpassungen für andere EL3xxx/ELM3xxx Klemmen bzw. Box-Modulen ebenfalls anwendbar. Es liegen dann ggf. andere Oversamplingfaktoren, Shiftzeiten etc. vor. Auch die optional vorhandene Task mit 50 µs im Beispiel 6a kann u.U. nicht zum Einsatz kommen.

Damit die Eingangswerte nacheinander zu einem Gesamtwert zusammengesetzt werden können, ist für jeden Kanal/klemme eine entsprechende Verschiebungszeit "Shift time" notwendig; in diesem Beispiel für die zweite Klemme 50 µs. Diese wird in den "Erweiterten Einstellungen" zu DistributedClocks (Karteireiter "DC") der zweiten Klemme vorgenommen:

Erweiterte Einstellungen	[83
⊕- Distributed Clock	Distributed Clock Zyklischer Modus Betriebsart: DC-Synchron	
	✓ Enable Sync Unit Zyklus (µs) 100 SYNC 0 Zykluszeit (µs): Shift Zeit (µs): ⓐ Sync Unit Zyklus x 1 • User Defined 50 △ Anwenderdefiniert 100 × 0 • 0	
	Based on Input Reference + Enable SYNC 0 = 50	

Abb. 52: Einstellung der DC-Verschiebungszeit für Klemme 2

Einige Hinweise und Einschränkungen

- Dieses Prinzip kann mit zwei (wie oben beschrieben) oder auch mehreren Klemmen umgesetzt werden; es findet seine Grenze in der Shifttime-Feinheit von 1 µs.
- Die verwendeten Klemmen müssen DistributedClocks unterstützen. Oversampling ist hilfreich, aber nicht notwendig. Zu beachten ist die Samplingmethode Simultan vs. Multiplex; siehe entsprechende Dokumentation mit der Fragestellung: "wann die Kanäle bezogen auf DistribuedClocks ihre Werte sampeln".
- Dieser Ansatz verdoppelt zwar die Abtastrate des unter Beobachtung stehenden Signals, der in den technischen Daten der Klemme gegebene Frequenzgang, die Dämpfung gilt aber weiterhin! Es ist durch die zweifache Abtastung also nicht möglich dann auch doppelt so schnelle Signale einzulesen. Beispiel: die EL3751 mit 10 kSps Abtastrate kann Signale bis halber Abtastrate = 5 kHz sinnvoll (Aliasfrei) einlesen. Diese Grenze bleibt auch durch mehrfach parallele Abtastung bestehen! Die z.B. angegebene Dämpfung von -3 dB bei 3 kHz gilt auch für das verschränkte Summensignal.
- Es kann per DistributedClocks Shifttime nur eine EtherCAT-Klemme funktional als Ganzes zeitlich verschoben werden, nicht der einzelne Kanal einer Klemme. Die Verschiebung wirkt dann auf alle Kanäle einer Klemme. Für das angegebene Prinzip müssen also immer zwei oder mehr Klemmen/ Box-Modulen verwendet werden, eine Verschränkung von zwei Kanälen einer Klemme/Box ist nicht möglich.
- Es ist die angegebene spezifizierte Messunsicherheit zu beachten: die unvermeidbar unterschiedliche reale Messunsicherheit und damit Amplitudenunterschiedlichkeit der beiden verwendeten Klemmen bzw. ihrer Kanäle am selben Signal kann nach dem Verschränken als Rauschanteil sichtbar werden. Deshalb sollten für dieses Prinzip Klemmen verwendet werden, die deutlich geringere Messunsicherheit aufweisen als für die Anwendung erforderlich ist. Es wird ausdrücklich empfohlen, einen expliziten Anwender-Abaleich zumindest des Offsets der beiden elektrisch zusammengeschalteten Kanäle durchzuführen, um diesen Einfluss zu minimieren.
- Es sollten Klemmen mit gleichem HW/FW-Stand verwendet werden.

Beispielprogramm

Diese genannte Einstellung, wie auch die Basiszeit und die Taskzykluszeit ist bereits in dem Beispielprogramm konfiguriert:

Download TwinCAT 3 Projekt/ Beispielprogramm 6a: https://infosys.beckhoff.com/content/1031/el3751/ Resources/4867888523.zip

Im Folgenden ist zunächst mit Oversampling = 1 für jeden Eingangswert die einfachste Variante der Verschränkung der Eingangswerte in "strukturierten Text" gezeigt: eine Feldvariable mit zwei Elementen erhält je einen Wert von einer Klemme. Diese kann zur Weiterverarbeitung verwendet werden und wird hier im TwinCAT ScopeView dargestellt. Die Programmanweisungen sind bei der EL3751 einer 100 µs Task zugeordnet:

Variablendeklaration Beispielprogramm 6a

```
PROGRAM MAIN
VAR
                               :DINT; // EL3751 input with no added shift time
nSamples 1
                    AT%I*
                              :DINT; // EL3751 input with -50 µs added shift time
nSamples 2
                    AT%T*
                               :ARRAY[0..1] OF DINT;
aCollectedResult
END VAR
Ausführungsteil:
```

```
// Example program 6a:
// 100 µs task
aCollectedResult[0] := nSamples 1; // Put 1st Value of sequence into
// Pattern: 1.1.1.1...
aCollectedResult[1] := nSamples 2; // Put n-th Value of sequence into array (2nd here)
// Pattern: .2.2.2.2...
// ______
```

// Result pattern: 12121212... (--> see scope view dots)

Bei einem Eingangssignal z.B. Sinus 5 kHz und 2,5 V Amplitude liefert das TwinCAT-ScopeView folgende Ergebnisse:

Abb. 53: Oversampling 20 KSps mit 2 x EL3751 mit Eingangssignalen (unten) und Ergebnissignal (oben)

Die obere Abbildung zeigt das Gesamtsignal und die beiden Eingangssignale (nSample_1, nSample_2), um 50 µs zueinander Zeitversetzt innerhalb von 18 s in gestauchter Form. Das Gesamteingangssignal (nCollectedResult) zeigt hier im groben die Verschränkung der beiden Eingangssignale.

Nachfolgend ist dargestellt (mit Markierungen grafisch nachbearbeitet), wie die Eingangssignale (nSample_1, nSample_2) an der Konstruktion des Gesamteingangssignals beteiligt sind:

Abb. 54: Oversampling 20 KSps mit 2 x EL3751 zeigt abwechselnd den Eingangswert 1 und Eingangswert 2 für je einen Ergebniswert

Unter bestimmten Voraussetzungen können zudem in einer entsprechend schnellen Task beide Eingänge auf eine einzelne Variable zusammengefasst werden. Das Beispielprogramm enthält hierfür noch eine zusätzliche Task mit 50 µs Zykluszeit, die zum einen für die Darstellung der Eingangssignale im SopeView benötigt wird und zum anderen auch eine Variable (nCollected) enthält, die beide Eingänge abwechselnd zugewiesen bekommt:

//	50 µs task	
//		
//	Junction of the two inputs	
nCo	<pre>bllected := SEL(nToggle, MAIN.nSamples_1_, MAIN.nSamples_2_);</pre>	
nTo	oggle := NOT nToggle;	

Die für das ScopeView erforderlichen Variablen der Eingänge werden in dieser Task aus der 100 µs Task ausgelesen, um die einzelnen Werte im 50 µs Abstand darstellen zu lassen.

Variante mit 2 x Oversampling 10 = Oversampling 20

Wird beispielsweise ein Oversampling-Faktor von 10 für beide Eingangsklemmen verwendet, wird für den Gesamtmesswert eine Feldvariable das so kann die Verschränkung der Eingangswerte durch eine einfache Programmschleife erfolgen, die die Werte nacheinander in eine Feldvariable für die resultierende Ergebnisvariable einliest:

Variablendeklaration Beispielprogramm 6b

PR)GRAM MAIN		
VAI	२ २		
	aSamples_1	AT%I*	:ARRAY[09] OF DINT; // EL3751 input with no added shift time
	aSamples_2	AT%I*	:ARRAY[09] OF DINT; // EL3751 input with -50 µs added shift time
	aCollectedResult		:ARRAY[019] OF DINT;
//			
	nPos		:BYTE;
ENI) VAR		

Ausführungsteil:

Download TwinCAT 3 Projekt/ Beispielprogramm 6b: https://infosys.beckhoff.com/content/1031/el3751/ Resources/4867891467.zip

Das Beispielprogramm 6b liefert das gleiche Ergebnis, nur liegt hier das Gesamteingangssignal lediglich in Form einer Feldvariablen mit 20 Elementen vor.

3.3.6 Beispielprogramm 7 (Allgemeine Dezimierung in der PLC)

Die EL3751/ ELM3xxx Klemmen können eine Dezimierung ihrer Basisabtastrate f_{max} nur durch ganzzahlige Vielfache durchführen, siehe dazu das Kapitel "Dezimierung". Um auch beliebige andere Abtastraten $f_{Ziel} < f_{max}$ für einen Kanal zu realisieren, kann beispielsweise wie folgt vorgegangen werden:

- Klemme/ Kanal mit maximaler Abtastrate betreiben und die Daten über EtherCAT/Oversampling in die Steuerung (PLC) übertragen
- Dort in der PLC/ C++ auf der Zeitachse in die gewünschte Abtastrate umrechnen, z.B. mittels linearer Interpolation auf Basis der Zeitstempel je Eingangswert (Sample). Da die EL3751/ ELM3xxx auf DistributedClocks-basierend zeit-äquidistante Samples liefern, ist das einfach möglich.

Folgende Abbildung zeigt einen Ausschnitt eines mit 50/44,1 = 1/0,882 dezimierten sinusförmigen Signals:

- · Grün: entspricht Original- Eingangssignal analog, ca. 432 Hz
- $\circ~$ Blau (O): entspricht Abtastung der EL3751/ ELM3xxx mit f_{max} = 10.000 Sps bzw. einem Abtastintervall von 100 μs
- Rot (X): entspricht in PLC umgerechnetes Signal auf 8820 Sps (Faktor 0,882) und damit ein Zeitintervall von ca. 113,37.. μs
- Hinweis: Der Begriff "Dezimierung" wird hier sowohl angewendet auf die Rechnung in der Klemme (siehe dazu das Kapitel "Dezimierung") als auch auf die Umrechnung im PLC-Programm. Im Folgenden ist dabei die Umrechnung in der PLC gemeint.
- Da hierbei das Zeitintervall der angestrebten Abtastung nach der Dezimierung in PLC i.d.R. keine ganze (endliche) Zahl mehr ist, wird für die Darstellung im PLC/Scope Wert/Zeit-Paare verwendet, d.h. jedem Y-Wert ist ein X-Zeitwert zugeordnet. Solche Wert/Zeit-Paare lassen sich mit dem TwinCAT ScopeView im XY-Modus einfach darstellen. Siehe hierzu auch unter infosys.beckhoff.com: TwinCAT3 → TExxxx | TC3 Engineering → TE13xx | TC3 ScopeView → Konfiguration → XY-Graph
- Außerdem hat die Umrechnung Folgen für die Weiterverarbeitung in PLC/C/ADS:
 - Üblicherweise ist ein PLC/EtherCAT/TwinCAT-System so eingestellt dass je Zyklus eine konstante Anzahl Samples verarbeitet wird – das ist nun i.d.R. nicht mehr der Fall: es kommt von Zyklus zu Zyklus zu einer unterschiedlicher Anzahl Samples die zu verarbeiten sind (Angabe durch die Programmvariable *nResultNoOfSamples*).
 - Blieb ein Zeitstempel pro Signalwert bisher relativ bedeutungslos, so führt jedoch die hier angewandte Art der Umsetzung des Dezimierungsvorgangs dazu, dass der jeweilige Zeitstempel pro Signalwert elementar zu beachten ist.
- Die nicht konstante Anzahl von Samples wird vom TwinCAT XY-Scope nicht sichtbar, weil hier einige Werte sporadisch doppelt gezeichnet werden, ist jedoch zu bedenken; ggf. wäre für die programmatische Weiterverarbeitung die Verwendung eines Zwischenpuffers zu empfehlen.
- Zur Orientierung der aktuell gültigen Sample-Zahl pro Taskzyklus stellt das Programm die Variable *nResultNoOfSamples* zur Verfügung, die angibt, welche Werte in der Arrayvariable gültige Werte in einem Taskzyklus enthalten (gibt die Feldnummer - 1 an).

Im Folgenden dient das **Beispielprogramm** als Orientierungshilfe, das auch die XY-Darstellung im TwinCAT Scope enthält. Wegen der o.a. Problematik der nicht konstant vorhandenen Anzahl gültiger Abtastwerte liefert das Programm für das Scope das Array-Paar *aVarDecResult_TS* und *aVarDecResult* mit der gleichen Anzahl von Elementen wie für den Eingangswert *aSamples_1*(Wert = *nOVS*). Kommt es in einem Taskdurchlauf zu weniger Werten, wird der letzte Wert einfach wiederholt eingetragen (entspricht etwa "sample & hold"). Für die Aufzeichnung wurde das ScopeView wie folgt konfiguriert:

Eigenschaft	Wert			
ScopeNodeProperties	ViewDetauilLevel	ExtendedXYOnly		
	Record time	00:00:00:05		
ChartXYNodeProperties	Default Display Width	0,00:00:00,050:000		
	Max Data Points	200000		
XYChannelNodeProperties	Marks	On		
	Mark Size	5		
	Mark Color	(andere Farbe als "Line Color")		

Für eine veranschaulichende Darstellung wurde zunächst die Aufzeichnung des ScopeView gestartet und dann das Programm, das auf eine Sekunde begrenzt die Dezimierten Werte lieferte:

```
IF nOVS_CycleCount = 100000000 THEN
  ;
  bEnable := FALSE;// Stop after 1s just for recording
  ELSE
```

Diese Zeile kann selbstverständlich für weitere Anpassungen auskommentiert werden:

```
//bEnable := FALSE;// Stop after 1s just for recording
```

Hinweise:

- die Zielabtastrate f_{Ziel} sollte in der Nähe der Samplerate f_{max} liegen, so dass es über die Implementierung möglich ist, ein Zeitintervall zwischen zwei dezimierten Werten auch auszuwerten. Die gewünschte Dezimierung erfordert u.U. eine Anpassung weiterer Parameter wie Taskzykluszeit, Oversamplingfaktor, etc. sowohl in der Konfiguration als auch als Variableninitialisierung im Beispielprogramm (siehe Abbildung "Vorgang der variablen Dezimierung des Beispielprogramms" zur Funktionsweise des Programcodes).
- Grundsätzlich werden durch den Konvertierungsvorgang in diesem Beispielprogramm bei einer Dezimierung mit gebrochenen rationalen Faktoren Verzerrungen im Ergebnis in Bezug zur ursprünglichen Signalform verursacht (siehe Signalverlauf). Konkret entstehen Abweichungen vom originalen Signalverlauf nur in den Abschnitten, wo der zeitliche Ableitungswert (die Steigung) nicht konstant ist. Z.B. werden Eingangswerte eines Sinussignals in den nichtlinearen Bereichen durch die im Programm vorgenommene Interpolation verzerrt:

Im Frequenzspektrum wird dies z.B. durch eine Berechnung mit 20 Hz Sinussignal, abgetastet mit 500 Sps und dezimiert auf 441 Sps wie folgt anschaulich:

 Wenn auf dem Datenstrom keine der f_{ziel} entsprechenden Tiefpassfilterung vorgenommen wird, wird es zu Aliasing-Effekten kommen! Es ist deshalb ratsam z.B. mit der TC3 Controller Toolbox oder der TC3 Filter Lib in der PLC eine Tiefpassfilterung vorzunehmen, bevor die Umrechung/Dezimierung vorgenommen wird. Entsprechende Filter können einfach mit dem TE1310 FilterDesigner erstellt werden. Siehe hierzu unter www.beckhoff.de:

Automation \rightarrow TwinCAT 3 \rightarrow TE1xxx | TC3 Engineering \rightarrow TE1310 | TC3 Filter Designer Alternativ können natürlich auch die in den EL3751/ ELM3xxx verfügbaren Filter schon auf die passende Tiefpass-Frequenz gesetzt werden, auch dazu ist der TwinCAT Filter Designer hilfreich.

• Einträge des Dezimierungsfaktors im Programm (*nDecimationValue*) sollten einen Wert > 1 haben. Der Programmcode unterstützt lediglich das "downsampling".

Beispiel: Stellt eine Klemme wie ELM3602-0002 (2-Kanal-IEPE-Auswertung) einen Datenstrom mit Oversampling von 50 kSps bei 100µs Zykluszeit zur Verfügung, so kann dieser Beispielcode eine Dezimierung auf 44,1 kSps vornehmen. Im Beispielprogramm wären dazu die Zyklusticks in der Taskkonfiguration von 5 auf 1 sowie die entsprechende Programmvariable nTaskCycle_ns von 500000 auf 100000 zu ändern. Siehe folgenden Bildausschnitt des ScopeView XY:

Abb. 55: Dezimierung von 20 µs (links) auf 22,675.. µs (rechts) mit ELM3602

Der Dezimierungsfaktor ist durch Eintrag des Wertes "50/44.1" für *nDecimationValue im Beispiel* vorgegeben. Wird dieses Beispiel für die EL3751 mit 500 µs Zykluszeit und 5x Oversampling verwendet, wird das Abtastintervall von 100 µs, das von der EL3751 kommt, zu ca. 113,378.. µs umgerechnet. Dementsprechend ist dieses Beispiel ausgelegt.

Die Dezimierung im Programm ist frei wählbar und muss mit Oversamplingfaktor und Taskzykluszeit abgestimmt konfiguriert sein. Die Variable nOVS muss den gleichen Oversamplingfaktor enthalten, wie dieser über die Prozessdatenkonfiguration eingestellt ist.

Download Beispielprogramm 7:

- Konfiguration: IPC + EK1100 + EL3751 + EL9011: https://infosys.beckhoff.com/content/1031/el3751/Resources/5090848011.zip
- Konfiguration: IPC + EK1100 + ELM3602-0002 + EL9011: https://infosys.beckhoff.com/content/1031/el3751/Resources/5117137291.zip

Hinweis: Bei Verwendung einer EtherCAT-Box wie EPP35xx entfällt der EtherCAT-Koppler EK1100.

Allgemeiner Hinweis

Der Zeitpunkt der Passage der EtherCAT Frames an der Klemme unterliegt Schwankungen, dem EtherCAT-Frame-Jitter. Falls diese Schwankungen groß im Verhältnis zur Zykluszeit sind, werden u.U. Daten verspätet von der Klemme abgeholt, es kommt in der Scope-Darstellung zu Aussetzern/ Dopplungen. Mit der TwinCAT EtherCAT Diagnose können solche Effekte diagnostiziert werden. In dem Beispielprogramm zur ELM3602 steht zu dieser Kontrolle die Variable *nEqualTimeStampsCnt* zur Verfügung, die inkrementiert wird, falls ein solcher Ausfall auftritt. Abhilfe schafft die Veränderung der DC ShiftTime der Klemme, siehe dazu die EtherCAT Systemdokumentation.

Deklarationsteil

// THIS CODE IS ONLY AN EXAMPLE - YOU HAVE TO CHECK APTITUDE FOR YOUR APPLICATION
PROGRAM MAIN

```
VAR CONSTANT
// User decimation factor e.g. 50 to 44.1 kSps:
nDecimationValue
                         :LREAL := 50/44.1; // 50/20;
                          :BYTE := 5; // Oversampling factor
nOVS
                          :UDINT := 500000; // PlcTask configured cycle time in ns
nTaskCycle ns
nOVSTimeInterval ns
                         :UDINT := LREAL TO UDINT(nTaskCycle ns/nOVS); // OVS interval
nDecTimeInterval ns
                          :LREAL := nDecimationValue * nOVSTimeInterval ns; // Decimation inter
END VAR
VAR
                          :ARRAY[0..nOVS-1] OF DINT; // Link to the terminal PDO
aSamples 1 AT%I*
aOVS SampleSets
                          :ARRAY[0..(2*nOVS)-1] OF DINT; // 2 OVS sample sets
nVarDecResult
                          :DINT; // The calculated interpolated value
tVarDecResult
                          :LREAL; // Decimation timestamp
                          :ARRAY[0...nOVS-1] OF DINT; // Decimation result values
aVarDecResult
                          :ARRAY[0..nOVS-1] OF LREAL; // Decimation result timestamps
aVarDecResult TS
nResultNoOfSamples
                          :BYTE; // This is for the user for further processing
nDivVar
                          :INT; // Value for selection of the target input element
tDecVar InTaskCycle
                          :LREAL:=0; // Time span for all decimation timestamps within a task cycle
i
                          :BYTE:=0; // Common loop counter
                          :LREAL; // X-Difference: target input element to decimation element
nDX
nDY
                          :DINT; // Y-Difference: two values for interpolation
sVal
                          :LREAL; // Slope for calculation of new value
bEnable
                          :BOOL:=FALSE; // Start/Stop conversion to decimation values
nOVS CycleCount
                          :ULINT := 0; // Time value for every OVS sample
// Values for testing
btest values enabled
                         :BOOL := FALSE; // No input value needed, if TRUE
nPhi
                          :LREAL := 1.4; // Start angle for sinus simulation
// For visualization only:
aOVS Samples
                         :ARRAY[0..nOVS-1] OF DINT; // 2 OVS sample sets (value)
aOVS Samples TS
                         :ARRAY[0..nOVS-1] OF ULINT; // 2 OVS sample sets (timestamp)
END VAR
Ausführungsteil
// 500 us Task
```

```
FOR i:= 0 TO nOVS-1 DO
// Shift OVS set to left and update on right:
aOVS_SampleSets[i] := aOVS_SampleSets[i+nOVS]; // Transfer "samples set" to the left side
IF bTEST_VALUES_ENABLED THEN
// Simulate values:
aOVS_SampleSets[i+nOVS] := LREAL_TO_DINT(1000000 * SIN(nPhi));
nPhi := nPhi + 0.01;//0.003141592653;
ELSE
// Fill current new samples set on right:
aOVS_SampleSets[i+nOVS] := aSamples_1[i];
END_IF
END_FOR
```

```
IF bEnable THEN
nResultNoOfSamples := 0; // Use for further processing
FOR i := 0 TO nOVS-1 DO
nDivVar := TRUNC INT(tDecVar InTaskCycle/nOVSTimeInterval ns);
// Check, if new value is in grid
     IF (nDivVar = i) THEN
nResultNoOfSamples := nResultNoOfSamples + 1;
       // Calc slope by the left and right element values (dy/dx):
        nDY := aOVS SampleSets[i+1] - aOVS SampleSets[i];
        sVal := DINT TO LREAL(nDY)/nOVSTimeInterval ns;
        // Get the time (difference) from the left side element start to the desired time point:
        nDX := tDecVar InTaskCycle
        - TRUNC INT(tDecVar InTaskCycle/nOVSTimeInterval ns)
        * UDINT TO LREAL(nOVSTimeInterval ns);
       // Calc timestamp
        tVarDecResult := nDX + ULINT TO LREAL(nOVS CycleCount);
        // Calc new value:
        nVarDecResult :=
           LREAL TO DINT(DINT TO LREAL(aOVS SampleSets[i]) + sVal * nDX);
       // next decimation time step
        tDecVar InTaskCycle := tDecVar InTaskCycle + nDecTimeInterval ns;
        tDecVar InTaskCycle := tDecVar InTaskCycle

    INT_TO_UDINT(TRUNC_INT(tDecVar_InTaskCycle/nTaskCycle_ns))

          * nTaskCycle ns;
     END IF
     // Fill timestamp and new value allocated to the field element of its timestamp
    aVarDecResult_TS[i] := tVarDecResult;
     aVarDecResult[i] := nVarDecResult;
// For visualization of the original input:
    aOVS_Samples[i] := aOVS_SampleSets[i];
aOVS Samples TS[i] := nOVS CycleCount;
  // Count the task cycle timestamp
nOVS_CycleCount := nOVS_CycleCount + nOVSTimeInterval_ns;
END FOR
END IF
IF nOVS CycleCount = 1000000000 THEN
bEnable := FALSE;// Stop after 1s just for recording
IF NOT bEnable THEN
bEnable := TRUE; // OVS-Samples transferred complete into both
                                                                array
END_IF
END IF
```

3.3.7 Beispielprogramm 8 (FB zur Echtzeit Diagnose)

Folgender Funktionsblock kann als Vorlage zur Anwendung der Echtzeit Diagnose einer EtherCAT Klemme Analog-Eingang in TwinCAT SPS verwendet werden. Er wird in der SPS zwischen die Klemme und der Applikation gesetzt und wertet in Echtzeit die von der Klemme kommenden Diagnosevariablen aus, die Messwerte werden unverändert durchgeleitet.

Der Funktionsblock ist für eine ELM3602-0002 mit Oversampling = 5 geschrieben und ist als funktionales Beispiel zu verstehen und muss ggf. angepasst werden an

- andere Klemmen oder Box-Module, ggf. andere Value-Datentypen und andere Diagnosedaten
- andere Oversamplingwerte

Ebenso kann er um datenbearbeitenden Code oder weitere eigenen Diagnosen erweitert werden oder auf einen ganz anderen Typ einer Klemme (Analogausgang EL4xxx, Encoder EL5xxx, ...) umgeschrieben werden.

Der Funktionsblock zwischen der Klemme und der SPS stellt sich schematisch wie folgt dar:

Abb. 56: Funktionsblock als Beispiel zur Auswertung von Diagnoseinformationen der Klemme

Vereinfachte Verknüpfung per Struktur-Variable

Es wird in diesem Beispielprogramm die Gelegenheit genutzt, eine TwinCAT-Funktion zu beschreiben, die das Verlinken von komplexen PDO-Strukturen vereinfacht.

Der o.a. Funktionsblock müsste mit allen Echtzeit-Variablen der Klemme verknüpft werden: Eingänge und Ausgänge, hier im Beispiel die ELM3602.

128

- Term 5 (ELM3602-0000)
 - 😐 PAI Status Channel 1
 - 📌 Status
 - 🔁 No of Samples
 - 🔁 Error
 - 🔁 Underrange
 - 🕫 Overrange
 - 🔁 Diag
 - 🔁 🛛 Tx PDO State
 - 🕫 Input cycle counter
 - 🔹 🛄 PAI Samples 1 Channel 1
 - 👂 🏓 Samples
 - PAI Timestamp Channel 1
 - PAI Status Channel 2
 - PAI Samples 1 Channel 2

Dieser zeitintensive Vorgang kann durch Struktur-Verknüpfung in TwinCAT 3 vereinfacht und beschleunigt werden. Es werden nun zwei alternative Varianten in TwinCAT 3.1 dargelegt, wie mit wenigen Klicks eine Struktur in der SPS definiert werden kann, die dem **Prozessabbild** der Klemme entspricht.

Die entsprechende Variante des Funktionsblocks FB_REALTIME_DIAGNOSIS ist in den beiden Beispielprogrammen enthalten. Er enthält PDO-Variablen mit einem anwendungsspezifischen Datentyp. Dabei handelt es sich um eine von TwinCAT 3 erzeugte Struktur. Dadurch, dass durch die von TwinCAT generierte Struktur direkt die PDO Struktur der Klemme abbildet, ist es nicht nötig, dass eine passende Struktur aufwendig erstellt werden muss oder einzelne Variablen mit einzelnen Datentypen verknüpft werden müssen. Lediglich eine Verknüpfung auf höherer Ebene (Status, Samples, Control, ...) ist erforderlich.

Dies sowie sämtliche Konfigurationen sind bereits in dem jeweiligen Beispielprogramm enthalten.

- Beispielprogramm (Variante A Verwendung des Karteireiters "SPS" der Klemme): https://infosys.beckhoff.com/content/1031/el3751/Resources/7161530379.zip
- Beispielprogramm (Variante B Verwendung des "Create SM/PDO Variables" in den erweiterten Einstellungen der Klemme): https://infosys.beckhoff.com/content/1031/el3751/Resources/7161533067.zip

Variante A, Reiter "SPS":

Allgemein wird die Erzeugung dieses besonderen PDO-Datentyps über die SPS-Einstellungen der Klemme aktiviert (Karteireiter "SPS"): dort wird das Kontrollkästchen "Create SPS Data Type" gesetzt ("Copy" überträgt diese Zeichenkette dann in die Ablage):

A	VIgemein	EtherCAT	Settings	Filter	DC	Prozessdar <mark>e</mark> n	SPS	Startup	Diag Historie
	- 🗹 Erze	euge SPS D	atentyp						
	🗹 Per	Channel:							\sim
'	Datenty	/p:		MDF	25001_3	350_10554178		Ко	pieren
	Verkni	ipft mit SPS.							

Abb. 57: Erstellung der PDO Variablen (TwinCAT-Version >= V3.1.4024.0)

Die Einstellung "Per Channel" kann aktiviert werden, wenn nicht für alle, sondern nur für ein Kanal die Struktur erzeugt werden soll.

Die Adresszuweisungen für die Eingänge (%ATI*) und Ausgänge (%ATQ*) befinden sich bereits innerhalb dieser generierten Struktur. Eingänge und Ausgänge sind demnach in dieser Struktur zusammengefasst.

Die Variablendeklaration des Funktionsblocks FB_REALTIME_DIAGNOSIS enthält somit:

stELM3602Special

: MDP5001_350_EB559ACD;

Vorgesehen ist der Lesezugriff auf die Eingänge der Klemme über die Substruktur *MDP5001_350_Input* und der Schreibzugriff auf die Ausgänge über die Substruktur *MDP5001_350_Output* der Struktur *stELM3602Special.*

Variante B, "Create SM/PDO Variables":

Allgemein wird die Erzeugung dieser besonderen PDO-Datentypen inkl. des PDO-Elementes über die EtherCAT Einstellungen der Klemme aktiviert: in den Erweiterten Einstellungen ist unter "Allgemein"/ "Verhalten" bei "Prozessdaten" das Kontrollkästchen "Create SM/PDO Variables" zu setzen:

Erweiterte Einstellungen		X	
Allgemein Verhalten Timeout Einstellunge FMMU / SM Init Kommandos General Mailbox Distributed Clock ESC Zugriff ESC Access	Verhalten Startup Überprüfungen Ø Überprüfe Vendor Ids Ø Prüfe Produktcodes Ø Überprüfe Revision Nummer LW == Ü Überprüfe Seriennummer Check Identification Prozessdaten Nutze RD/WR statt RW WC State Bit(s) einfügen Frame Repeat Support Clear Invalid Input Data Ø Create SM/PDO Variables Algemein No AutoInc - Use 2. Address AutoInc only - No Fixed Address	Status Maschine Image: Auto Status Wiederherstellung Image: Wait for WcState is Ok Image: Relnt nach Kommunikationsfehler Image: Relnt nach Kommunikation Changes Final State Image: Relnt nach Kommunikation Changes Final State Image: Relnt nach Kommunikation Changes SAFEOP PREOP Image: Relnt nach Kommunikation SAFEOP PREOP Image: Relnt nach Kommunikation SAFEOP PREOP Info Daten Image: Relnt nach Kommunikation Image: Relnt nach Kommunikation Image: Relnt nach Kommunikation <	 WcState WcState InputToggle InfoData State AdsAddr DcOutputShift DcOutputShift DcInputShift SmPdoVariables FAI_Control_Channel_1 PAI_Control_Channel_1 PAI_Status_Channel_1 PAI_Status_Channel_1 PAI_Status_Channel_1 PAI_Status_Channel_1 PAI_Status_Channel_2 PAI_Status_Channel_2 PAI_Status_Channel_2 PAI_Status_Channel_2 PAI_Status_Channel_2 PAI_Status_Channel_2 PAI_Status_Channel_2
< Þ	Watchdog Setze Multiplier (Reg. 400h): Setze PDI Watchdog (Reg. 410h): Setze SM Watchdog (Reg. 420h):	2498 ms: 100.000 1000 ms: 100.000 1000 ms: 100.000	PAI_Timestamp_Channel_2

Abb. 58: Erstellung der SmPdoVariables (TwinCAT-Version >= V3.1.4022.30)

Der Datentyp wird durch Auswahl des PDO sichtbar und kann dort in die Zwischenablage kopiert werden:

▲ SmPdoVariables ▶ ELM3602_0002_SM_2	Variable Flags	Online		
ELM3602_0002_SM_3 PAI_Status_Channel_1	Name:	ELM3602_0002_SM_3		
PAI_Samples_1_Channel_1	Typ:	ECAT_ELM3602_0002_SM	M_87A01A51	
₱AL_Timestamp_Channel_1 ₱ PAL Status Channel 2	Gruppe:	SmPdoVariables	Größe	24.0
PAI_Samples_1_Channel_2	Adresse:	71 (0x47)	User ID:	0

Abb. 59: Ermitteln des generierten Datentyps von SmPdoVariables

Die Variablendeklaration des Funktionsblocks FB_REALTIME_DIAGNOSIS enthält somit:

st_SM2	AT%Q*	:	ECAT	_ELM3602_	_0002_	SM	3412CB6A;
st_SM3	AT%I*	:	ECAT	ELM3602	0002	SM	87A01A51;

Vorgesehen ist der Lesezugriff auf die Eingänge der Klemme über die Struktur *st_SM3* und der Schreibzugriff auf die Ausgänge über die Struktur *st_SM2*. Diese Datenstruktur entspricht dem automatisch ergänzten neuen PDO-Element "SmPdoVariables".

3.3.8 Beispielprogramm 9 (R/W Signatur der Kalibrierung)

Die Klemme verfügt über einen weiterentwickelten Abgleichmechanismus um u.a. eine individuelle Signatur mit 256 Bytes abzulegen, die aus den Abgleichdaten resultiert. Kundenseitig könnte so eine Kalibrierung mit einer solchen spezifischen Signatur versehen werden, um z.B. eine unbefugte innerbetriebliche Manipulation der Abgleichdaten festzustellen; siehe hierzu auch Kapitel "Kalibrierung/Justage/Abgleich (Hersteller und Anwender)".

Der im Folgenden beschriebene Funktionsblock kann für eine Umsetzung in TwinCAT auf einer SPS als Basis verwendet werden. Vereinfachend wurde in diesem Beispiel lediglich ein CRC16 verwendet um eine "Signatur" auf zwei Byte begrenzt zu bedienen. An einer kommentierten Stelle der FB-Implementierung kann ein anderer Signatur-Algorithmus implementiert werden, der bis zu 256 Byte umfasst.

Der Beispiel-Funktionsblock steht in dem zum Download erhältlichen TwinCAT 3-Archiv zusammen mit einer Visualisierung zur Verfügung:

https://infosys.beckhoff.com/content/1031/el3751/Resources/8823639307.zip

Erläuterungen zur Visu "Kalibrierungs_Signatur_RW"

Die Eingangsvariablen der ADS-Adresse und des "InputToggle" müssen erneut verknüpft werden, falls eine andere Klemme oder Box (als ELM3602) für das Beispiel verwendet wird. Diese ist nach dem Starten des Beispielprogramms in das Feld einzutragen. Alternativ kann sie auch vor dem Start als Initialisierung der Eingangsvariablen "sTerminalTypeln" des Funktionsblocks "FB_VisuUpdate" eingetragen werden:

sTerminalTypeIn : T_MaxString := 'ELM3602';

Nach dem Programmstart

Von der Visu wird der Funktionsblock "FB_CalibrationSignature" dann (lesend) aufgerufen, wenn Kanal +/oder Interface +/- oder "Lese" betätigt wird und nur dann Schreibend, wenn "Schreibe" betätigt wird. Falls nach dem Lesen die berechnete und die ausgelesene Signatur übereinstimmen, wird *bCmpResult* = TRUE (keine Ungleichheit). Nach einem Schreibvorgang bleibt der Eintrag in dem gelesenen CoE erhalten und kann mit dem Lesen überprüft werden (Ein Schreibzugriff verändert den Zustand von *bCmpResult* nicht).

Klemme:	Kanal:	CRC16 Signat	ur:	
EL M3602	2	Lese	Schreibe	Berechnet (hex): 1C B2
	+ -	Kalibrier-Zähle	er: 3	Gespeichert (hex): A0 59
Interface:		R/W Fehle	r: 🔴	Ungleichheit: 🥥
103 + - IEPE ±160 r	nV			

Abb. 60: Visu zur Beispiel-Implementierung: Kalibrierungs-Signatur

Die Variable *bError* (Visualisierungs-Darstellung: "R/W Fehler") gibt Auskunft über einen allgemeinen aufgetretenen Fehler beim Zugriff auf die Klemme sowie das nicht-Auffinden einer gespeicherten Information der Klemme (entweder fehlt der Eintrag in den GVL oder die Klemme ist nicht vorhanden).

Erläuterungen zum FB_CalibrationSignature

Das Interface des Funktionsblocks ist wie folgt aufgebaut:

VAR_INPUI		
bInitialize	: BOOL := FALSE; // Ist Initialisiert	
bEnable	: BOOL := FALSE; // Aktiviere Baustein	
tAmsNetIdArr	: AMSADDR; // Ads-Adresse der Klemme/ Box	
nIfSlectCoE	: WORD; // Interface Nummer für das CoE	
nChSelectCoE	: WORD := 1; // Kanalnummer	
eOption	: E_CALSIG_OPTIONS; // Zugriff get/set (lese/schreibe)	
stCoEPAIInfoDataCalCnt	: ST_CoE; // KalZähler Objekt (EL3751/ ELM3xxx)	
END_VAR		
VAR_OUTPUT		
bDone	: BOOL; // Prozedur abgeschlossen	
bCmpResult	: BOOL; // Signatur-Vergleich: TRUE = Gleich	

TAD TNDIIM

	nInterfaceUserCalCnt	:	WORD; // Wert des Kalibirungszählers	
	bError	:	BOOL; // Fehlerfall	
	bCancel	:	BOOL; // Abbruch (Fehlerfall)	
	nErrorId	:	UDINT;// Fehlernummer (alle Quellen)	
	anSigDataOutCoE	:	ARRAY[0(GVL_CoE.nSigLen-1)] OF BYTE; // Signatur gespeichert	
	anSigDataOutCalc	:	ARRAY[0(GVL_CoE.nSigLen-1)] OF BYTE; // Signatur berechnet	
τN	D VAR			

Zur Initialisierung ist der Variablen "tAmsNetIdArr" der Instanz des FB die "Net-Id" und "Port-Nr." zu übergeben. Zusätzlich ist das CoE Objekt für das Auslesen des Kalibrierzählers per 'stCoEPAIInfoDataCalCnt' zu übergeben, da dieses bei den EL3751/ ELM3xxx Klemmen unterschiedlich ist.

Ein Aufruf erfolgt mit "bEnable := TRUE" zum Aktivieren und mit Angabe des (für die anzusprechende Klemme gültigen) Interface-Nummer (nlfSlectCoE), des Kanals (nChSelectCoE) sowie für das Lesen der gespeicherten Signatur "eOption := E_CALSIG_OPTIONS.get" oder zum Schreiben "eOption := E_CALSIG_OPTIONS.set".

Dannach wird der Funktionsbaustein so lange aufgerufen, bis die Ausgangsvariable "bDone" = TRUE ist.

Entsprechend der gewählten Option und den berechneten/ gespeicherten Daten der Klemme werden die Ausgänge anSigDataOutCalc, anSigDataOutCoE, nInterfaceUserCalCnt und bCmpResult die entsprechenden Inhalte liefern.

Zum Versuch einen aufgetretenen Fehler im Falle von "bError" = TRUE zu löschen kann der FB mit "blnit := FALSE" aufgerufen werden (z.B., wenn die Kanalnummer oder die Interface-Nummer gemäß der angesprochenen Klemme korrigiert wurden. Die "nErrorld" kann zur Auswertung verwendet werden.

In dem Funktionsblock kann die Signaturberechnung an der folgenden Stelle geändert/ erweitert werden:

4 EL3751 Features

HINWEIS

In dieser Kurzdokumentation sind in diesem Kapitel keine weiteren Informationen enthalten. Bitte wenden Sie sich an den für Sie zuständigen Beckhoff Vertrieb um die vollständige Dokumentation zu erhalten.

5 Inbetriebnahme am EtherCAT Master

5.1 Allgemeine Inbetriebnahmehinweise für einen EtherCAT Slave

In dieser Übersicht werden in Kurzform einige Aspekte des EtherCAT Slave Betriebs unter TwinCAT behandelt. Ausführliche Informationen dazu sind entsprechenden Fachkapiteln z.B. in der <u>EtherCAT-Systemdokumentation</u> zu entnehmen.

Diagnose in Echtzeit: WorkingCounter, EtherCAT State und Status

Im Allgemeinen bietet ein EtherCAT Slave mehrere Diagnoseinformationen zur Verarbeitung in der ansteuernden Task an.

Diese Diagnoseinformationen erfassen unterschiedliche Kommunikationsebenen und damit Quellorte und werden deshalb auch unterschiedlich aktualisiert.

Eine Applikation, die auf die Korrektheit und Aktualität von IO-Daten aus einem Feldbus angewiesen ist, muss die entsprechend ihr unterlagerten Ebenen diagnostisch erfassen.

EtherCAT und der TwinCAT System Manager bieten entsprechend umfassende Diagnoseelemente an. Die Diagnoseelemente, die im laufenden Betrieb (nicht zur Inbetriebnahme) für eine zyklusaktuelle Diagnose aus der steuernden Task hilfreich sind, werden im Folgenden erläutert.

Abb. 61: Auswahl an Diagnoseinformationen eines EtherCAT Slave

Im Allgemeinen verfügt ein EtherCAT Slave über

 slave-typische Kommunikationsdiagnose (Diagnose der erfolgreichen Teilnahme am Prozessdatenaustausch und richtige Betriebsart) Diese Diagnose ist für alle Slaves gleich.

als auch über

• kanal-typische Funktionsdiagnose (geräteabhängig) Siehe entsprechende Gerätedokumentation

Die Farbgebung in Abb. *Auswahl an Diagnoseinformationen eines EtherCAT Slave* entspricht auch den Variablenfarben im System Manager, siehe Abb. *Grundlegende EtherCAT Slave Diagnose in der PLC*.

Farbe	Bedeutung
gelb	Eingangsvariablen vom Slave zum EtherCAT Master, die in jedem Zyklus aktualisiert werden

Farbe	Bedeutung
rot	Ausgangsvariablen vom Slave zum EtherCAT Master, die in jedem Zyklus aktualisiert werden
grün	Informationsvariabeln des EtherCAT Masters, die azyklisch aktualisiert werden d. h. in einem Zyklus eventuell nicht den letztmöglichen Stand abbilden. Deshalb ist ein Auslesen solcher Variablen über ADS sinnvoll.

In Abb. *Grundlegende EtherCAT Slave Diagnose in der PLC* ist eine Beispielimplementation einer grundlegenden EtherCAT Slave Diagnose zu sehen. Dabei wird eine Beckhoff EL3102 (2 kanalige analoge Eingangsklemme) verwendet, da sie sowohl über slave-typische Kommunikationsdiagnose als auch über kanal-spezifische Funktionsdiagnose verfügt. In der PLC sind Strukturen als Eingangsvariablen angelegt, die jeweils dem Prozessabbild entsprechen.

Abb. 62: Grundlegende EtherCAT Slave Diagnose in der PLC

Dabei werden folgende Aspekte abgedeckt:

Kennzeichen	Funktion	Ausprägung	Anwendung/Auswertung
A	Diagnoseinformationen des EtherCAT Master		Zumindest der DevState ist in der PLC zyklusaktuell auszuwerten.
	zyklisch aktualisiert (gelb) oder azyklisch bereitgestellt (grün).		Die Diagnoseinformationen des EtherCAT Master bieten noch weitaus mehr Möglichkeiten, die in der EtherCAT-Systemdokumentation behandelt werden. Einige Stichworte:
			 CoE im Master zur Kommunikation mit/über die Slaves

Kennzeichen	Funktion	Ausprägung	Anwendung/Auswertung		
			• Funktionen aus TcEtherCAT.lib		
			OnlineScan durchführen		
В	Im gewählten Beispiel (EL3102) umfasst die EL3102 zwei analoge Eingangskanäle, die einen eigenen Funktionsstatus zyklusaktuell übermitteln.	 Status die Bitdeutungen sind der Gerätedokumentation zu entnehmen andere Geräte können mehr oder keine slave-typischen Angaben liefern 	Damit sich die übergeordnete PLC- Task (oder entsprechende Steueranwendungen) auf korrekte Daten verlassen kann, muss dort der Funktionsstatus ausgewertet werden. Deshalb werden solche Informationen zyklusaktuell mit den Prozessdaten bereitgestellt.		
C	 Für jeden EtherCAT Slave mit zyklischen Prozessdaten zeigt der Master durch einen so genannten WorkingCounter an, ob der Slave erfolgreich und störungsfrei am zyklischen Prozessdatenverkehr teilnimmt. Diese elementar wichtige Information wird deshalb im System Manager zyklusaktuell 1. am EtherCAT Slave als auch inhaltsidentisch 2. als Sammelvariable am EtherCAT Master (siehe Punkt A) zur Verlinkung bereitgestellt. 	WcState (Working Counter) 0: gültige Echtzeitkommunikation im letzten Zyklus 1: ungültige Echtzeitkommunikation ggf. Auswirkung auf die Prozessdaten anderer Slaves, die in der gleichen SyncUnit liegen	Damit sich die übergeordnete PLC- Task (oder entsprechende Steueranwendungen) auf korrekte Daten verlassen kann, muss dort der Kommunikationsstatus des EtherCAT Slaves ausgewertet werden. Deshalb werden solche Informationen zyklusaktuell mit den Prozessdaten bereitgestellt.		
D	Diagnoseinformationen des EtherCAT Masters, die zwar am Slave zur Verlinkung dargestellt werden, aber tatsächlich vom Master für den jeweiligen Slave ermittelt und dort dargestellt werden. Diese Informationen haben keinen Echtzeit- Charakter weil sie • nur selten/nie verändert werden, außer beim Systemstart • selbst auf azyklischem Weg ermittelt werden (z.B. EtherCAT Status)	State aktueller Status (INITOP) des Slaves. Im normalen Betriebszustand muss der Slave im OP (=8) sein. <i>AdsAddr</i> Die ADS-Adresse ist nützlich, um aus der PLC/Task über ADS mit dem EtherCAT Slave zu kommunizieren, z.B. zum Lesen/Schreiben auf das CoE. Die AMS-NetID eines Slaves entspricht der AMS-NetID des EtherCAT Masters, über den <i>port</i> (= EtherCAT Adresse) ist der einzelne Slave ansprechbar.	Informationsvariabeln des EtherCAT Masters, die azyklisch aktualisiert werden, d.h. in einem Zyklus eventuell nicht den letztmöglichen Stand abbilden. Deshalb ist ein Auslesen solcher Variablen über ADS möglich.		

HINWEIS

Diagnoseinformationen

Es wird dringend empfohlen, die angebotenen Diagnoseinformationen auszuwerten um in der Applikation entsprechend reagieren zu können.

CoE-Parameterverzeichnis

Das CoE-Parameterverzeichnis (CanOpen-over-EtherCAT) dient der Verwaltung von Einstellwerten des jeweiligen Slaves. Bei der Inbetriebnahme eines komplexeren EtherCAT Slaves sind unter Umständen hier Veränderungen vorzunehmen. Zugänglich ist es über den TwinCAT System Manager, s. Abb. *EL3102, CoE-Verzeichnis*:

General EtherCAT DC Process Data Startup CoE - Online Online						
	Update	List 📃 Auto Upo	ilate 🔽 🤇	Single Update 🔽		
	Advance	ed				
	Add to Sta	rtup Offline Data		Module OD (Aol		
	Index	Name	Flags	Value		
	⊕ 6010:0	Al Inputs Ch.2	RO	> 17 <		
	⊞ 6401:0	Channels	RO	>2<		
	Ė 8000:0	Al Settings Ch.1	RW	> 24 <		
	8000:01	Enable user scale	RW	FALSE		
	8000:02	Presentation	RW	Signed (0)		
	8000:05	Siemens bits	RW	FALSE		
	8000:06	Enable filter	RW	FALSE		
	8000:07	Enable limit 1	RW	FALSE		
	8000:08	Enable limit 2	RW	FALSE		
	A0:008	Enable user calibration	RW	FALSE		
	8000:0B	Enable vendor calibration	RW	TRUE		

Abb. 63: EL3102, CoE-Verzeichnis

EtherCAT-Systemdokumentation

Es ist die ausführliche Beschreibung in der <u>EtherCAT-Systemdokumentation</u> (EtherCAT Grundlagen --> CoE Interface) zu beachten!

Einige Hinweise daraus in Kürze:

- Es ist geräteabhängig, ob Veränderungen im Online-Verzeichnis slave-lokal gespeichert werden. EL-Klemmen (außer den EL66xx) verfügen über diese Speichermöglichkeit.
- Es ist vom Anwender die StartUp-Liste mit den Änderungen zu pflegen.

Inbetriebnahmehilfe im TwinCAT System Manager

In einem fortschreitenden Prozess werden für EL/EP-EtherCAT-Geräte Inbetriebnahmeoberflächen eingeführt. Diese sind in TwinCAT System Managern ab TwinCAT 2.11R2 verfügbar. Sie werden über entsprechend erweiterte ESI-Konfigurationsdateien in den System Manager integriert.

Abb. 64: Beispiel Inbetriebnahmehilfe für eine EL3204

Diese Inbetriebnahme verwaltet zugleich

- CoE-Parameterverzeichnis
- DC/FreeRun-Modus
- die verfügbaren Prozessdatensätze (PDO)

Die dafür bisher nötigen Karteireiter "Process Data", "DC", "Startup" und "CoE-Online" werden zwar noch angezeigt, es wird aber empfohlen die automatisch generierten Einstellungen durch die Inbetriebnahmehilfe nicht zu verändern, wenn diese verwendet wird.

Das Inbetriebnahme-Tool deckt nicht alle möglichen Einsatzfälle eines EL/EP-Gerätes ab. Sind die Einstellmöglichkeiten nicht ausreichend, können vom Anwender wie bisher DC-, PDO- und CoE-Einstellungen manuell vorgenommen werden.

EtherCAT State: automatisches Default-Verhalten des TwinCAT System Managers und manuelle Ansteuerung

Ein EtherCAT Slave hat für den ordnungsgemäßen Betrieb nach der Versorgung mit Betriebsspannung die Stati

- INIT
- PREOP
- SAFEOP
- OP

zu durchlaufen. Der EtherCAT Master ordnet diese Zustände an in Abhängigkeit der Initialisierungsroutinen, die zur Inbetriebnahme des Gerätes durch die ES/XML und Anwendereinstellungen (Distributed Clocks (DC), PDO, CoE) definiert sind. Siehe dazu auch Kapitel "Grundlagen der <u>Kommunikation, EtherCAT State</u> <u>Machine [▶ 209]</u>. Der Hochlauf kann je nach Konfigurationsaufwand und Gesamtkonfiguration bis zu einigen Sekunden dauern.

Auch der EtherCAT Master selbst muss beim Start diese Routinen durchlaufen, bis er in jedem Fall den Zielzustand OP erreicht.

Der vom Anwender beabsichtigte, von TwinCAT beim Start automatisch herbeigeführte Ziel-State kann im System Manager eingestellt werden. Sobald TwinCAT in RUN versetzt wird, wird dann der TwinCAT EtherCAT Master die Zielzustände anfahren.

Standardeinstellung

Standardmäßig ist in den erweiterten Einstellungen des EtherCAT Masters gesetzt:

- EtherCAT Master: OP
- Slaves: OP

Diese Einstellung gilt für alle Slaves zugleich.

Abb. 65: Default Verhalten System Manager

Zusätzlich kann im Dialog "Erweiterte Einstellung" beim jeweiligen Slave der Zielzustand eingestellt werden, auch dieser ist standardmäßig OP.

Abb. 66: Default Zielzustand im Slave

Manuelle Führung

Aus bestimmten Gründen kann es angebracht sein, aus der Anwendung/Task/PLc die States kontrolliert zu fahren, z. B.

- aus Diagnosegründen
- kontrolliertes Wiederanfahren von Achsen
- ein zeitlich verändertes Startverhalten ist gewünscht

Dann ist es in der PLC-Anwendung sinnvoll, die PLC-Funktionsblöcke aus der standardmäßig vorhandenen *TcEtherCAT.lib* zu nutzen und z. B. mit *FB_EcSetMasterState* die States kontrolliert anzufahren.

Die Einstellungen im EtherCAT Master sind dann sinnvollerweise für Master und Slave auf INIT zu setzen.

Abb. 67: PLC-Bausteine

Hinweis E-Bus-Strom

EL/ES-Klemmen werden im Klemmenstrang auf der Hutschiene an einen Koppler gesetzt. Ein Buskoppler kann die an ihm angefügten EL-Klemmen mit der E-Bus-Systemspannung von 5 V versorgen, i.d.R. ist ein Koppler dabei bis zu 2 A belastbar. Zu jeder EL-Klemme ist die Information, wie viel Strom sie aus der E-Bus-Versorgung benötigt, online und im Katalog verfügbar. Benötigen die angefügten Klemmen mehr Strom als der Koppler liefern kann, sind an entsprechenden Positionen im Klemmenstrang Einspeiseklemmen (z. B. EL9410) zu setzen.

Im TwinCAT System Manager wird der vorberechnete theoretische maximale E-Bus-Strom als Spaltenwert angezeigt. Eine Unterschreitung wird durch negativen Summenbetrag und Ausrufezeichen markiert, vor einer solchen Stelle ist eine Einspeiseklemme zu setzen.

	General Ada	apter EtherCAT Online	CoE - On	line			
	Netld:	10.43.2.149.2.1		A	dvanced S	ettings	
		,					
I	Number	Box Name	Address	Туре	In Size	Out S	E-Bus (
	1	Term 1 (EK1100)	1001	EK1100			
	2	Term 2 (EL3102)	1002	EL3102	8.0		1830
	3	Term 4 (EL2004)	1003	EL2004		0.4	1730
	4	Term 5 (EL2004)	1004	EL2004		0.4	1630
	5	Term 6 (EL7031)	1005	EL7031	8.0	8.0	1510
	6	Term 7 (EL2808)	1006	EL2808		1.0	1400
	17	Term 8 (EL3602)	1007	EL3602	12.0		1210
	8	Term 9 (EL3602)	1008	EL3602	12.0		1020
	9	Term 10 (EL3602)	1009	EL3602	12.0		830
	10	Term 11 (EL3602)	1010	EL3602	12.0		640
	11	Term 12 (EL3602)	1011	EL3602	12.0		450
	12	Term 13 (EL3602)	1012	EL3602	12.0		260
	13	Term 14 (EL3602)	1013	EL3602	12.0		70
	<mark>c</mark> 14	Term 3 (EL6688)	1014	EL6688	22.0		-240 !

Abb. 68: Unzulässige Überschreitung E-Bus Strom

Ab TwinCAT 2.11 wird bei der Aktivierung einer solchen Konfiguration eine Warnmeldung "E-Bus Power of Terminal…" im Logger-Fenster ausgegeben:

Message

```
E-Bus Power of Terminal 'Term 3 (EL6688)' may to low (-240 mA) - please check!
```

Abb. 69: Warnmeldung E-Bus-Überschreitung

HINWEIS

Achtung! Fehlfunktion möglich!

Die E-Bus-Versorgung aller EtherCAT-Klemmen eines Klemmenblocks muss aus demselben Massepotential erfolgen!

5.2 TwinCAT Quickstart

TwinCAT stellt eine Entwicklungsumgebung für Echtzeitsteuerung mit Multi-SPS-System, NC Achsregelung, Programmierung und Bedienung dar. Das gesamte System wird hierbei durch diese Umgebung abgebildet und ermöglicht Zugriff auf eine Programmierumgebung (inkl. Kompilierung) für die Steuerung. Einzelne digitale oder analoge Eingänge bzw. Ausgänge können auch direkt ausgelesen bzw. beschrieben werden, um diese z.B. hinsichtlich ihrer Funktionsweise zu überprüfen.

Weitere Informationen hierzu erhalten Sie unter http://infosys.beckhoff.de:

- EtherCAT Systemhandbuch: Feldbuskomponenten → EtherCAT-Klemmen → EtherCAT System Dokumentation → Einrichtung im TwinCAT System Manager
- **TwinCAT 2** \rightarrow TwinCAT System Manager \rightarrow E/A- Konfiguration
- Insbesondere zur TwinCAT Treiberinstallation: Feldbuskomponenten → Feldbuskarten und Switche → FC900x – PCI-Karten f
 ür Ethernet → Installation

Geräte, d. h. "devices" beinhalten jeweils die Klemmen der tatsächlich aufgebauten Konfiguration. Dabei gibt es grundlegend die Möglichkeit sämtliche Informationen des Aufbaus über die "Scan" - Funktion einzubringen ("online") oder über Editorfunktionen direkt einzufügen ("offline"):

- "offline": der vorgesehene Aufbau wird durch Hinzufügen und entsprechendes Platzieren einzelner Komponenten erstellt. Diese können aus einem Verzeichnis ausgewählt und Konfiguriert werden.
 - Die Vorgehensweise für den "offline" Betrieb ist unter <u>http://infosys.beckhoff.de</u> einsehbar: TwinCAT 2 → TwinCAT System Manager → EA - Konfiguration → Anfügen eines E/A-Gerätes
- "online": die bereits physikalisch aufgebaute Konfiguration wird eingelesen
 - Sehen Sie hierzu auch unter <u>http://infosys.beckhoff.de</u>:
 Feldbuskomponenten → Feldbuskarten und Switche → FC900x PCI-Karten f
 ür Ethernet → Installation → Ger
 äte suchen

Vom Anwender – PC bis zu den einzelnen Steuerungselementen ist folgender Zusammenhang vorgesehen:

Abb. 70: Bezug von der Anwender Seite (Inbetriebnahme) zur Installation

Das anwenderseitige Einfügen bestimmter Komponenten (E/A – Gerät, Klemme, Box,..) erfolgt bei TwinCAT 2 und TwinCAT 3 auf die gleiche Weise. In den nachfolgenden Beschreibungen wird ausschließlich der "online" Vorgang angewandt.

Beispielkonfiguration (realer Aufbau)

Ausgehend von der folgenden Beispielkonfiguration wird in den anschließenden Unterkapiteln das Vorgehen für TwinCAT 2 und TwinCAT 3 behandelt:

- Steuerungssystem (PLC) CX2040 inkl. Netzteil CX2100-0004
- Rechtsseitig angebunden am CX2040 (E-Bus): EL1004 (4-Kanal-Digital-Eingangsklemme 24 V_{DC})
- Über den X001 Anschluss (RJ-45) angeschlossen: EK1100 EtherCAT-Koppler
- Rechtsseitig angebunden am EK1100 EtherCAT-Koppler (E-Bus): EL2008 (8-Kanal-Digital-Ausgangsklemme 24 V_{DC}; 0,5 A)
- (Optional über X000: ein Link zu einen externen PC für die Benutzeroberfläche)

Abb. 71: Aufbau der Steuerung mit Embedded-PC, Eingabe (EL1004) und Ausgabe (EL2008)

Anzumerken ist, dass sämtliche Kombinationen einer Konfiguration möglich sind; beispielsweise könnte die Klemme EL1004 ebenso auch nach dem Koppler angesteckt werden oder die Klemme EL2008 könnte zusätzlich rechts an dem CX2040 angesteckt sein – dann wäre der Koppler EK1100 überflüssig.

5.2.1 TwinCAT 2

Startup

TwinCAT 2 verwendet grundlegend zwei Benutzeroberflächen: den "TwinCAT System Manager" zur Kommunikation mit den elektromechanischen Komponenten und "TwinCAT PLC Control" für die Erstellung und Kompilierung einer Steuerung. Begonnen wird zunächst mit der Anwendung des TwinCAT System Managers.

Nach erfolgreicher Installation des TwinCAT-Systems auf den Anwender-PC der zur Entwicklung verwendet werden soll, zeigt der TwinCAT 2 (System Manager) folgende Benutzeroberfläche nach dem Start:

Abb. 72: Initiale Benutzeroberfläche TwinCAT 2

Es besteht generell die Möglichkeit das TwinCAT "lokal" oder per "remote" zu verwenden. Ist das TwinCAT System inkl. Benutzeroberfläche (Standard) auf dem betreffenden PLC installiert, kann TwinCAT "lokal" eingesetzt werden und mit Schritt "Geräte einfügen [▶ 146]" fortgesetzt werden.

Ist es vorgesehen, die auf einem PLC installierte TwinCAT Laufzeitumgebung von einem anderen System als Entwicklungsumgebung per "remote" anzusprechen, ist das Zielsystem zuvor bekannt zu machen. Im

Menü unter "Aktionen" \rightarrow "Auswahl des Zielsystems…", über das Symbol " Goder durch Taste "F8" wird folgendes Fenster hierzu geöffnet:
Wähle Zielsystem			X
⊞-∰Local (123.45.67.89.1.	1)		OK Abbruch
			Suchen (Ethernet)
			Suchen (Fieldbus)
			🦳 Als Default
Verbindungs Timeout (s):	5	*	

Abb. 73: Wähle Zielsystem

Mittels "Suchen (Ethernet)..." wird das Zielsystem eingetragen. Dadurch wird ein weiterer Dialog geöffnet um hier entweder:

- den bekannten Rechnernamen hinter "Enter Host Name / IP:" einzutragen (wie rot gekennzeichnet)
- einen "Broadcast Search" durchzuführen (falls der Rechnername nicht genau bekannt)
- die bekannte Rechner IP oder AmsNetId einzutragen

Enter Host Name / IF	D :			Refresh Status		Broadcast Search
Hostiviame	Connected	Address	AMS NetId	TwinCAT	OS Version	Kommentar
Eintro	ia des Na	mens de	s Zielrechne	rs		
2. Aktiv	ioron von	"Entor l	Host Name	(ID"		
Q AKUV		LILLEIT	iost Nume /	IF		
oute Name (Target):			F	oute Name (Remo	te): Mì	/-PC
oute Name (Target): msNetId:			F	oute Name (Remol 2iel Route	te): M1	/-PC emote Route
oute Name (Target): msNetId: ransport Tup:	ТСРИР		F	oute Name (Remo Ziel Route O Projekt	te): Mi	/-PC emote Route) Keine
oute Name (Target): msNetId: ransport Typ:	TCP/IP		F	oute Name (Remol Ĉiel Route O Projekt O Static	te): Mì	7-PC emote Route) Keine) Static
oute Name (Target): msNetId: ransport Typ: dressen Info:	ТСРИР		F	oute Name (Remol Žiel Route O Projekt O Static O Temporär	te): Mî	/-PC emote Route) Keine) Static) Temporär
oute Name (Target): msNetId: ransport Typ: dressen Info: @ Host Name ()	TCP/IP		F	oute Name (Remo Žiel Route Projekt • Static • Temporär	te): Mî	Y-PC emote Route Meine Static Temporär
Route Name (Target): AmsNetId: Fransport Typ: Adressen Info: OHost Name Zerbindungs Timeout (s	TCP/IP IP Adresse			oute Name (Remo Čiel Route Projekt 9 Static Temporär	te): MY	Y-PC emote Route Meine Static Temporär

Abb. 74: PLC für den Zugriff des TwinCAT System Managers festlegen: Auswahl des Zielsystems

Ist das Zielsystem eingetragen steht dieses wie folgt zur Auswahl (ggf. muss zuvor das korrekte Passwort eingetragen werden):

Nach der Auswahl mit "OK" ist das Zielsystem über den System Manager ansprechbar.

Geräte einfügen

In dem linksseitigen Konfigurationsbaum der TwinCAT 2 – Benutzeroberfläche des System Managers wird "E/A-Geräte" selektiert und sodann entweder über Rechtsklick ein Kontextmenü geöffnet und

"Geräte Suchen..." ausgewählt oder in der Menüleiste mit

die Aktion gestartet. Ggf. ist zuvor der

TwinCAT System Manager in den "Konfig Modus" mittels oder über das Menü "Aktionen" \rightarrow "Startet/Restarten von TwinCAT in Konfig-Modus"(Shift + F4) zu versetzen.

🕀 🚱 SYSTEM - Konfigu	ation	
NC - Konfiguration SPS - Konfiguration	♥ <mark>⊯</mark> Gerät <u>A</u> nfügen	
E/A - Konfiguration	😭 Gerät I <u>m</u> portieren	
E/A Geräte	Geräte Suchen	
	Einfügen	Strg+V
	覺 Einfügen mit Verknüpfungen	Alt+Strg+V

Abb. 75: Auswahl "Gerät Suchen..."

Die darauffolgende Hinweismeldung ist zu bestätigen und in dem Dialog die Geräte "EtherCAT" zu wählen:

4 neue E/A Geräte gefunden
Serat 1 [EtherCAT) OK Gerat 3 [EtherCAT) [Local Area Connection (TwinCAT-Intel PCI Ethernet A] Gerat 2 (USB) Gerat 4 (NOV/DP-RAM) Alles wählen Nichts wählen

Abb. 76: Automatische Erkennung von E/A-Geräten: Auswahl der einzubindenden Geräte

Ebenfalls ist anschließend die Meldung "nach neuen Boxen suchen" zu bestätigen, um die an den Geräten angebundenen Klemmen zu ermitteln. "Free Run" erlaubt das Manipulieren von Ein- und Ausgangswerten innerhalb des "Config Modus" und sollte ebenfalls bestätigt werden.

Ausgehend von der am Anfang dieses Kapitels beschriebenen <u>Beispielkonfiguration [} 143]</u> sieht das Ergebnis wie folgt aus:

BECKHOFF

Abb. 77: Abbildung der Konfiguration im TwinCAT 2 System Manager

Der gesamte Vorgang setzt sich aus zwei Stufen zusammen, die auch separat ausgeführt werden können (erst das Ermitteln der Geräte, dann das Ermitteln der daran befindlichen Elemente wie Boxen, Klemmen o. ä.). So kann auch durch Markierung von "Gerät …" aus dem Kontextmenü eine "Suche" Funktion (Scan) ausgeführt werden, die hierbei dann lediglich die darunter liegenden (im Aufbau vorliegenden) Elemente einliest:

Abb. 78: Einlesen von einzelnen an einem Gerät befindlichen Klemmen

Diese Funktionalität ist nützlich, falls die Konfiguration (d. h. der "reale Aufbau") kurzfristig geändert wird.

PLC programmieren und integrieren

TwinCAT PLC Control ist die Entwicklungsumgebung zur Erstellung der Steuerung in unterschiedlichen Programmumgebungen: Das TwinCAT PLC Control unterstützt alle in der IEC 61131-3 beschriebenen Sprachen. Es gibt zwei textuelle Sprachen und drei grafische Sprachen.

Textuelle Sprachen

• Anweisungsliste (AWL, IL)

- Strukturierter Text (ST)
- Grafische Sprachen
 - Funktionsplan (FUP, FBD)
 - Kontaktplan (KOP, LD)
 - Freigrafischer Funktionsplaneditor (CFC)
 - Ablaufsprache (AS, SFC)

Für die folgenden Betrachtungen wird lediglich vom strukturierten Text (ST) Gebrauch gemacht.

Nach dem Start von TwinCAT PLC Control wird folgende Benutzeroberfläche für ein initiales Projekt dargestellt:

🥦 TwinCAT PLC Control - (Unbenannt)* - [MAIN (PRG-ST)]	• ×
🞇 Datei Bearbeiten Projekt Einfügen Extras Online Fenster Hilfe	- 8 ×
Bausteine 0001 PROGRAM MAIN 0002 VAR 0002 VAR 00003 END_VAR 00003 END_VAR 00005 0006 00005 0006 00007 0007	
0003 0010 0001 0001 0002 0003	4
D004 0005 Conce Lade Bibliothek 'C:\TWINCAT\PLC\LIB\STANDARD.LIB'	4
Bausteine Jatentypen 🛱 Visualisierungen 🎛 Ressourcen	×
Target: Local (123.45.67.89.1.1), Laufzeit: 1 TwinCAT Config Mode Z: 1, Sp.: 13 ONLINE I	JB LESEN

Abb. 79: TwinCAT PLC Control nach dem Start

Nun sind für den weiteren Ablauf Beispielvariablen sowie ein Beispielprogramm erstellt und unter dem Namen "PLC_example.pro" gespeichert worden:

🥦 TwinCAT PLC Control - PLC_example.pro - [MAIN (PRG-ST)]	
🥦 Datei Bearbeiten Projekt Einfügen Extras Online	Fenster Hilfe	_ 8 ×
	■+ Ⅲ	
Bausteine	0001 PROGRAM MAIN 0002 VAR 0003 nSwitchCtrl : BOOL := TRUE; 0004 nRotateUpper : WORD :=16#8000; 0005 nRotateLower : WORD :=16#01; 0006 END_VAR 0007 VAR_INPUT 0008 bEL1004_Ch4 AT%I* : BOOL; 0009 END_VAR 0010 VAR_OUTPUT 0011 nEL2008_value AT%Q* : BYTE; 0011 nEL2008_value AT%Q* : BYTE; 0012	
	Kongram example *)	F
	0002 IF beL1004_Ch4 THEN	<u> </u>
	0004 nSwitchCtrl := FALSE;	-
	Pototol outor:= DOI (nDototol outor ?);	•
🖹 Bausteine 🎫 Datentyp 💭 Visualisie 💭 Ressourc	Implementation des Bausteins 'MAIN' Implementation der Task 'Standard' Warnung 1990: Kein 'VAR_CONFIG' für 'MAIN.bEL1004_Ch4' Warnung 1990: Kein 'VAR_CONFIG' für 'MAIN.nEL2008_value' Bausteinindizes: 51 (2%) Größe der verbrauchten Daten: 45 von 1048576 Bytes (0.00%) Größe der verbrauchten Retain-Daten: 0 von 32768 Bytes (0.00%)	
	Target: Local (123.45.67.89.1.1), Laufzeit: 1 TwinCAT Config Mode Z.: 8, Sp.: 8	JONLINE JUB JLESEN

Abb. 80: Beispielprogramm mit Variablen nach einem Kompiliervorgang (ohne Variablenanbindung)

Die Warnung 1990 (fehlende "VAR_CONFIG") nach einem Kompiliervorgang zeigt auf, dass die als extern definierten Variablen (mit der Kennzeichnung "AT%I^{**} bzw. "AT%Q^{**}) nicht zugeordnet sind. Das TwinCAT PLC Control erzeugt nach erfolgreichen Kompiliervorgang eine "*.tpy" Datei in dem Verzeichnis, in dem das Projekt gespeichert wurde. Diese Datei ("*.tpy") enthält u.a. Variablenzuordnungen und ist dem System Manager nicht bekannt, was zu dieser Warnung führt. Nach dessen Bekanntgabe kommt es nicht mehr zu dieser Warnung.

Im **System Manager** ist das Projekt des TwinCAT PLC Control zunächst einzubinden. Dies geschieht über das Kontext Menü der "SPS-Konfiguration" (rechts-Klick) und der Auswahl "SPS-Projekt Anfügen…":

Abb. 81: Hinzufügen des Projektes des TwinCAT PLC Control

Über ein dadurch geöffnetes Browserfenster wird die PLC-Konfiguration "PLC_example.tpy" ausgewählt. Dann ist in dem Konfigurationsbaum des System Managers das Projekt inklusive der beiden "AT"– gekennzeichneten Variablen eingebunden:

Abb. 82: Eingebundenes PLC-Projekt in der SPS-Konfiguration des System Managers

Die beiden Variablen "bEL1004_Ch4" sowie "nEL2008_value" können nun bestimmten Prozessobjekten der E/A-Konfiguration zugeordnet werden.

Variablen Zuordnen

Über das Kontextmenü einer Variable des eingebundenen Projekts "PLC_example" unter "Standard" wird mittels "Verknüpfung Ändern…" ein Fenster zur Auswahl eines passenden Prozessobjektes (PDOs) geöffnet:

🗾 Unbenannt.tsm - TwinCAT System Ma	anager - 'remote-PLC'				- • •
Datei Bearbeiten Aktionen Ansicht	Optionen Hilfe				
D 🖻 📽 🖬 🍜 🖪 X 🖻 🛱	l 🗟 M 👌 🔜 🙃 🗸 💣 💁 👧	🛟 🔨 🎯 🗣 🖹 🔍	P 60 🗙 🔊 🚳	9 ?	
SYSTEM - Konfiguration NC - Konfiguration SPS - Konfiguration SPS - Konfiguration F() PLC_example PLC_example PLC_example-Prozessabbil Standard Standard MAIN.bEL1004_Cha	ld ♪ <u>Verknüpfung Ändern</u> ☆ Ver <u>k</u> nüpfung(en) löschen	Variable Flags Name: Typ: Gruppe: Adresse: Verknüpft m.	Online MAIN.bEL1004_Ch4 BOOL Eingänge 0.0	Größe User ID:	0.1
 ► E/A - Konfiguration ► E/A Geräte ► C Device 1 (EtherCAT) ► E Device 3 (EtherCAT) ► S Zuordnungen 	Gehe zu verknüpfter Variable Namen von verknüpfter Variable	Kommentar:	Variable des IEC61131 Pro	ojekts "PLC_examp	ole". Aufgefrischt n ≡
	Q Zum Watchfenster hinzufügen X Aus dem Watchfenster entfernen	ADS Info:	Port: 801, IGrp: 0xF021, IC)ffs: 0x0, Len: 1	•
] •	remote-PLC (123.45.67.89.1.1)	► Config Mode

Abb. 83: Erstellen der Verknüpfungen PLC-Variablen zu Prozessobjekten

In dem dadurch geöffneten Fenster kann aus dem SPS-Konfigurationsbaum das Prozessobjekt für die Variable "bEL1004_Ch4" vom Typ BOOL selektiert werden:

Variablenverknüpfung MAIN.bEL1004_Ch4 (Eingang)	•••
E/A - Konfiguration E/A Geräte Device 1 (EtherCAT) Term 2 (EL1004) Input > IX 26.0, BIT [0.1] Input > IX 26.3, BIT [0.1] Input - VicState > IX 1522, BIT [0.1] Device 3 (EtherCAT) Imput - S (EL2008) Imput - S (EL20	Zeige Variablen

Abb. 84: Auswahl des PDO vom Typ BOOL

Entsprechend der Standarteinstellungen stehen nur bestimmte PDO-Objekte zur Auswahl zur Verfügung. In diesem Beispiel wird von der Klemme EL1004 der Eingang von Kanal 4 zur Verknüpfung ausgewählt. Im Gegensatz hierzu muss für das Erstellen der Verknüpfung der Ausgangsvariablen die Checkbox "Alle Typen" aktiviert werden, um in diesem Fall eine Byte-Variable einen Satz von acht separaten Ausgangsbits zuzuordnen. Die folgende Abbildung zeigt den gesamten Vorgang:

Abb. 85: Auswahl von mehreren PDO gleichzeitig: Aktivierung von "Kontinuierlich" und "Alle Typen"

Zu sehen ist, dass überdies die Checkbox "Kontinuierlich" aktiviert wurde. Dies ist dafür vorgesehen, dass die in dem Byte der Variablen "nEL2008_value" enthaltenen Bits allen acht ausgewählten Ausgangsbits der Klemme EL2008 der Reihenfolge nach zugeordnet werden sollen. Damit ist es möglich, alle acht Ausgänge der Klemme mit einem Byte entsprechend Bit 0 für Kanal 1 bis Bit 7 für Kanal 8 von der PLC im Programm

später anzusprechen. Ein spezielles Symbol () an dem gelben bzw. roten Objekt der Variablen zeigt an, dass hierfür eine Verknüpfung existiert. Die Verknüpfungen können z. B. auch überprüft werden, indem "Goto Link Variable" aus dem Kontextmenü einer Variable ausgewählt wird. Dann wird automatisch das gegenüberliegende verknüpfte Objekt, in diesem Fall das PDO selektiert:

Abb. 86: Anwendung von "Goto Link Variable" am Beispiel von "MAIN.bEL1004_Ch4"

Anschließend wird mittels Menüauswahl "Aktionen" → "Zuordnung erzeugen…" oder über Vorgang des Zuordnens von Variablen zu PDO abgeschlossen.

der

Dies lässt sich entsprechend in der Konfiguration einsehen:

Zuordnungen
 PLC_example (Standard) - Device 1 (EtherCAT)
 PLC_example (Standard) - Device 3 (EtherCAT)

Der Vorgang zur Erstellung von Verknüpfungen kann auch in umgekehrter Richtung, d. h. von einzelnen PDO ausgehend zu einer Variablen erfolgen. In diesem Beispiel wäre dann allerdings eine komplette Auswahl aller Ausgangsbits der EL2008 nicht möglich, da die Klemme nur einzelne digitale Ausgänge zur Verfügung stellt. Hat eine Klemme ein Byte, Word, Integer oder ein ähnliches PDO, so ist es möglich dies wiederum einen Satz von bit-typisierten Variablen zuzuordnen. Auch hier kann ebenso in die andere Richtung ein "Goto Link Variable" ausgeführt werden, um dann die betreffende Instanz der PLC zu selektieren.

Aktivieren der Konfiguration

Die Zuordnung von PDO zu PLC-Variablen hat nun die Verbindung von der Steuerung zu den Ein- und

Ausgängen der Klemmen hergestellt. Nun kann die Konfiguration aktiviert werden. Zuvor kann mittels (oder über "Aktionen" \rightarrow "Konfiguration überprüfen…") die Konfiguration überprüft werden. Falls kein Fehler

vorliegt, kann mit (oder über "Aktionen" → "Aktiviert Konfiguration…") die Konfiguration aktiviert werden, um dadurch Einstellungen im System Manger auf das Laufzeitsystem zu übertragen. Die darauffolgenden Meldungen "Alte Konfigurationen werden überschrieben!" sowie "Neustart TwinCAT System in Run Modus" werden jeweils mit "OK" bestätigt.

Einige Sekunden später wird der Realtime Status Echtzeit 0% unten rechts im System Manager angezeigt. Das PLC-System kann daraufhin wie im Folgenden beschrieben gestartet werden.

Starten der Steuerung

Ausgehend von einem remote System muss nun als erstes auch die PLC Steuerung über "Online" \rightarrow "Choose Run-Time System…" mit dem embedded PC über Ethernet verbunden werden:

BECKHOFF

Online

Einloggen	F11		
Ausloggen	F12		
Laden			
Start	F5		
Stop	Umschalt+F8		
Reset			
Urlöschen		Zielsystem Auswahl	ſ
Breakpoint an/aus	F9		
Breakpoint-Dialog		□ □···· · · · · · · · · · · · · · · · ·	Ukay
Einzelschritt über	F10	remote-PLC (123.45.67.89.1.1)	Abbruch
Einzelschritt in	F8	Laufzeitsystem 1 (Port 80)	
Einzelzyklus	Strg+F5	, i i i i i i i i i i i i i i i i i i i	
Werte schreiben	Strg+F7		Versions Inf
Werte forcen	F7		
Forcen aufheben	Umschalt+F7		
Schreiben/Forcen-Dialog	Strg+Umschalt+F7		
Aufrufhierachie			
Ablaufkontrolle			
Simulation			
Kommunikationsparameter			
Ouellcode laden			
Auswahl des Zielsystems			
Erzeugen eines Bootprojektes			
Erzeugen eines Bootprojektes (offline	e)		
Bootprojekt löschen			

Abb. 87: Auswahl des Zielsystems (remote)

In diesem Beispiel wird das "Laufzeitsystem 1 (Port 801)" ausgewählt und bestätigt. Mittels Menüauswahl

"Online" → "Login", Taste F11 oder per Klick auf wird auch die PLC mit dem Echtzeitsystem verbunden und nachfolgend das Steuerprogramm geladen, um es ausführen lassen zu können. Dies wird entsprechend mit der Meldung "Kein Programm auf der Steuerung! Soll das neue Programm geladen werden?" bekannt gemacht und ist mit "Ja" zu beantworten. Die Laufzeitumgebung ist bereit zum Programstart:

😼 TwinCAT PLC Control - PLC_example.pro - [MAIN (PRG-ST)]	
📕 Datei Bearbeiten Projekt Einfügen Extras Online Fenster Hilfe	_ 8 ×
Image: Second	
0001 (* Program example *) bEL1004_Ch4 THEN nSwitchCt/I THEN 0002 IF SEL1004_Ch4 THEN nSwitchCt/I = FALSE; nSwitchCt/I = FALSE; 0003 nRotateLower := ROL(IRRotateLower; 2); nRotateLower = 15#01100 nRotateLower = 15#0100 0003 mRotateLower := ROL(IRRotateLower; 2); nRotateLower = 16#0080 nRotateLower = 16#0080 0006 mRotateLower := WORD_TO_BYTE(nRotateLower OR nRotateUpper); nRotateLower = 16#0080 nRotateLower = 16#0080 0007 mL2008_value := WORD_TO_BYTE(nRotateLower OR nRotateUpper); nSwitchCtrl = TRUE; nRotateLower = 16#00 00011 nSwitchCtrl := TRUE; 00012 END_JF nSwitchCtrl = TRUE; nSwitchCtrl = TRUE; 0013 END_JF 0014 0015 0016 nSwitchCtrl = TRUE;	ower = 16#0100
Zielsystem remote PLC (123.45.67.83.1.1), Lautzek: 1 [Z:: 14, Sp.: 1 [ONLINE: [SIM [LAUF1] [BP FORC	CE ÜB LESEN

Abb. 88: PLC Control Logged-in, bereit zum Programmstart

Über "Online" \rightarrow "Run", Taste F5 oder \clubsuit kann nun die PLC gestartet werden.

5.2.2 TwinCAT 3

Startup

TwinCAT 3 stellt die Bereiche der Entwicklungsumgebung durch das Microsoft Visual-Studio gemeinsam zur Verfügung: in den allgemeinen Fensterbereich erscheint nach dem Start linksseitig der Projektmappen-Explorer (vgl. "TwinCAT System Manager" von TwinCAT 2) zur Kommunikation mit den elektromechanischen Komponenten.

Nach erfolgreicher Installation des TwinCAT-Systems auf den Anwender PC der zur Entwicklung verwendet werden soll, zeigt der TwinCAT 3 (Shell) folgende Benutzeroberfläche nach dem Start:

Abb. 89: Initale Benutzeroberfläche TwinCAT 3

Zunächst ist die Erstellung eines neues Projekt mittels

"Datei"→"Neu"→"Projekt...") vorzunehmen. In dem darauf folgenden Dialog werden die entsprechenden Einträge vorgenommen (wie in der Abbildung gezeigt):

BECKHOFF

r Neues Projekt					8 2
▷ Aktuell		.NET Framework 4.5	 Sortieren nach: 	Standard	🚽 🏥 🔚 Suchen Inst 🔎 🗸
▲ Installiert			E Projekt (TwinCAT	Projekte	Typ: TwinCAT Projekte
 Vorlagen PowerShell TypeScript Andere Projektty TwinCAT Measu TwinCAT Projekt Beispiele Online 	rpen irement te			- OJEKIE	TwinCAT XAE System Manager Konfiguration
				_	
Name:	TwinCAT3 Proje	kt		_	
Ort:	C:\my_tc3_proje	cts\		•	Durchsuchen
Projektmappenname:	TwinCAT3 Proje	kt			Projektmappenverzeichnis erstellen
					OK Abbrechen

Abb. 90: Neues TwinCAT 3 Projekt erstellen

Im Projektmappen-Explorer liegt sodann das neue Projekt vor:

Abb. 91: Neues TwinCAT 3 Projekt im Projektmappen-Explorer

Es besteht generell die Möglichkeit das TwinCAT "lokal" oder per "remote" zu verwenden. Ist das TwinCAT System inkl. Benutzeroberfläche (Standard) auf dem betreffenden PLC (lokal) installiert, kann TwinCAT "lokal" eingesetzt werden und mit Schritt "<u>Geräte einfügen [▶ 157]</u>" fortgesetzt werden.

Ist es vorgesehen, die auf einem PLC installierte TwinCAT Laufzeitumgebung von einem anderen System als Entwicklungsumgebung per "remote" anzusprechen, ist das Zielsystem zuvor bekannt zu machen. Über das Symbol in der Menüleiste:

TwinCAT3 Projekt - Microsoft Visual Studio (Administrato	r)		₹4	Schnellsta	rt (Strg+Q)
DATEI BEARBEITEN ANSICHT PROJEKT ERSTELLEN	DEBUGGEN TWINCAT	TWINSAFE PLC EXTR	AS SCOPE	FENSTER	HILFE
🦉 G-0 18 - 10 - 😩 🗎 🚰 み 🗗 白 ツ- 🤇	🗧 🔹 🕨 Anfügen 👻	- Release	- TwinC	CAT RT (x64)	•
🛯 🔛 🧧 🗢 🎯 🚺 🐜 🛛 <lokal></lokal>	N = 0	- ∋ = €	4. G d ⊨	0 4 4	t ti ti i
Projektmappen-Explorer 👻 🕂 🗙	Zielsystem wählen				

wird das pull-down Menü aufgeklappt:

und folgendes Fenster hierzu geöffnet:

Wähle Zielsystem			8
	1		OK Abbruch
			Suchen (Ethernet)
			Suchen (Fieldbus)
			🥅 Als Default
Verbindungs Timeout (s):	5	×	

Abb. 92: Auswahldialog: Wähle Zielsystem

Mittels "Suchen (Ethernet)..." wird das Zielsystem eingetragen. Dadurch wird ein weiterer Dialog geöffnet um hier entweder:

- den bekannten Rechnernamen hinter "Enter Host Name / IP:" einzutragen (wie rot gekennzeichnet)
- einen "Broadcast Search" durchzuführen (falls der Rechnername nicht genau bekannt)
- die bekannte Rechner IP oder AmsNetId einzutragen

Enter Host Name / IP:				Refresh Status	Broadcast Search
Host Name	Connected	Address	AMS NetId	TwinCAT	OS Version Kommentar
Eintrag	des Na	mens des	s Zielrechn	ers	
& Aktivie	eren von	"Enter H	lost Name	/ IP"	
Route Name (Target):				Route Name (Remot	e): MY-PC
Route Name (Target): AmsNetId:]	Route Name (Remot Ziel Route	e): MY-PC Remote Route
Route Name (Target): AmsNetId: Transport Typ:	TCP/IP			Route Name (Remot Ziel Route	e): MY-PC Remote Route Keine
Route Name (Target): AmsNetId: Transport Typ:	TCP/IP			Route Name (Remot Ziel Route O Projekt O Static	e): MY-PC Remote Route © Keine @ Static
Route Name (Target): AmsNetId: Transport Typ: Adressen Info:	TCP/IP		•	Route Name (Remot Ziel Route Projekt Static Temporär	e): MY-PC Remote Route © Keine @ Static © Temporär
Route Name (Target): AmsNetId: Transport Typ: Adressen Info:	TCP/IP P Adresse			Route Name (Remot Ziel Route Projekt Static Temporär	e): MY-PC Remote Route © Keine @ Static © Temporär
Route Name (Target): AmsNetId: Transport Typ: Adressen Info:	TCP/IP IP Adresse 5			Route Name (Remot Ziel Route Projekt Static Temporär	e): MY-PC Remote Route © Keine © Static © Temporär

Abb. 93: PLC für den Zugriff des TwinCAT System Managers festlegen: Auswahl des Zielsystems

Ist das Zielsystem eingetragen, steht dieses wie folgt zur Auswahl (ggf. muss zuvor das korrekte Passwort eingetragen werden):

BECKHOFF

⊡---**I**ocal--- (147.99.12.34.1.1) -----**I** remote-PLC (123.45.67.89.1.1)

Nach der Auswahl mit "OK" ist das Zielsystem über das Visual Studio Shell ansprechbar.

Geräte einfügen

In dem linksseitigen Projektmappen-Explorer der Benutzeroberfläche des Visual Studio Shell wird innerhalb des Elementes "E/A" befindliche "Geräte" selektiert und sodann entweder über Rechtsklick ein Kontextmenü

geöffnet und "Scan" ausgewählt oder in der Menüleiste mit in die Aktion gest

die Aktion gestartet. Ggf. ist zuvor der

TwinCAT System Manager in den "Konfig Modus" mittels der über das Menü "TWINCAT" \rightarrow "Restart TwinCAT (Config Mode)" zu versetzen.

‰. C++ ⊿ 🔽 E/A			
 Geräte 	ت to	Neues Element hinzufügen Vorhandenes Element hinzufügen	Einfg Umschalt+Alt+A
		Export EAP Config File	
	×	Scan	4
	â	Einfügen Paste with Links	Strg+V 5

Abb. 94: Auswahl "Scan"

Die darauffolgende Hinweismeldung ist zu bestätigen und in dem Dialog die Geräte "EtherCAT" zu wählen:

Abb. 95: Automatische Erkennung von E/A-Geräten: Auswahl der einzubindenden Geräte

Ebenfalls ist anschließend die Meldung "nach neuen Boxen suchen" zu bestätigen, um die an den Geräten angebundenen Klemmen zu ermitteln. "Free Run" erlaubt das Manipulieren von Ein- und Ausgangswerten innerhalb des "Config Modus" und sollte ebenfalls bestätigt werden.

Ausgehend von der am Anfang dieses Kapitels beschriebenen <u>Beispielkonfiguration [} 143]</u> sieht das Ergebnis wie folgt aus:

Abb. 96: Abbildung der Konfiguration in VS Shell der TwinCAT 3 Umgebung

Der gesamte Vorgang setzt sich aus zwei Stufen zusammen, die auch separat ausgeführt werden können (erst das Ermitteln der Geräte, dann das Ermitteln der daran befindlichen Elemente wie Boxen, Klemmen o. ä.). So kann auch durch Markierung von "Gerät …" aus dem Kontextmenü eine "Suche" Funktion (Scan) ausgeführt werden, die hierbei dann lediglich die darunter liegenden (im Aufbau vorliegenden) Elemente einliest:

Abb. 97: Einlesen von einzelnen an einem Gerät befindlichen Klemmen

Diese Funktionalität ist nützlich, falls die Konfiguration (d. h. der "reale Aufbau") kurzfristig geändert wird.

PLC programmieren

TwinCAT PLC Control ist die Entwicklungsumgebung zur Erstellung der Steuerung in unterschiedlichen Programmumgebungen: Das TwinCAT PLC Control unterstützt alle in der IEC 61131-3 beschriebenen Sprachen. Es gibt zwei textuelle Sprachen und drei grafische Sprachen.

- Textuelle Sprachen
 - Anweisungsliste (AWL, IL)
 - Strukturierter Text (ST)
- Grafische Sprachen
 - Funktionsplan (FUP, FBD)
 - Kontaktplan (KOP, LD)
 - Freigrafischer Funktionsplaneditor (CFC)
 - Ablaufsprache (AS, SFC)

Für die folgenden Betrachtungen wird lediglich vom strukturierten Text (ST) Gebrauch gemacht.

Um eine Programmierumgebung zu schaffen, wird dem Beispielprojekt über das Kontextmenü von "SPS" im Projektmappen-Explorer durch Auswahl von "Neues Element hinzufügen…." ein PLC Unterprojekt hinzugefügt:

Abb. 98: Einfügen der Programmierumgebung in "SPS"

In dem darauf folgenden geöffneten Dialog wird ein "Standard PLC Projekt" ausgewählt und beispielsweise als Projektname "PLC_example" vergeben und ein entsprechendes Verzeichnis ausgewählt:

BECKHOFF

Neues Element hinzufü	gen - TwinCAT3 F	rojekt				8	×
▲ Installiert		Sortiere	n nach: Standard	- # E	Suchen Instal	lierte Vorlagen (Ctrl+E)	ρ-
Plc Templates			Standard PLC Project	Plc Templates	Typ: Plc Te	mplates	
▶ Online		Miske	Empty PLC Project	Plc Templates	Creates a ne	w TwinCAT PLC project a task and a program.	
Newser	DLC sussel						
ivame:	Chrenchell marie	t NT. in			Durchauchen		
Urt:	C:\my_tc3_proje	cts\1win	CA13 Projekt (TwinCA13 P	rojekt\ •	Durchsuchen.	Hinzufügen Abbrec	hen

Abb. 99: Festlegen des Namens bzw. Verzeichnisses für die PLC Programmierumgebung

Das durch Auswahl von "Standard PLC Projekt" bereits existierende Programm "Main" kann über das "PLC_example_Project" in "POUs" durch Doppelklick geöffnet werden. Es wird folgende Benutzeroberfläche für ein initiales Projekt dargestellt:

TwinCAT3 Projekt - Microsoft Visual Studio (Adr	ninistrator)			₹4	Schr	nellstart (Str	g+Q)	ç		х
DATEI BEARBEITEN ANSICHT PROJEKT ER	STELLEN	DEBUGGEN	TWINCAT	TWINSAFE	PLC	EXTRAS	SCOPE	FENSTER	HILFE	
6 - 0 📅 - 🖆 - 🚔 💾 🔏 🗗 A	9-9	🕞 🕨 Anfü	gen 👻		- R	lelease	- Twin	CAT RT (x86)) -	1
🐘 🧾 🖉 🌫 🌾 🎯 🍖 🔽 remote-PLC	:	• . PLC_	example		•	€ 6.	G G H	0 4	≞ ≌∣‡≬	÷
Projektmappen-Explorer 🔹 🕈 🗙	MAIN*	⇔ ×								-
	1	PROGRAM	MAIN							F.
Projektmannen-Evolorer (Stra+ ü) durchruchen	2	VAR								
Projektinappen-Explorer (Stig+d) durchsdenen 🎾	3 4	END_VAR								
Projektmappe TwinCAT3 Projekt (I Projekt)										
SYSTEM										
A MOTION										
SPS										
PLC_example										
External Types										
▶ i References	1									
DUTs										
GVLs										
PLC_example.tmc										
▷ 📑 PlcTask (PlcTask)										
PLC_example Instance										
% C++										
▲ 🔽 E/A										
⊿ 📲 Geräte										
✓ Gerät 1 (EtherCAT)										
Bereit				🙀 Z1	S	1	Zei 1		EINF	G

Abb. 100: Initiales Programm "Main" des Standard PLC Projektes

Nun sind für den weiteren Ablauf Beispielvariablen sowie ein Beispielprogramm erstellt worden:

TwinCAT3 Projekt - Microsoft Visual Stud	dio (Administrator)	₹4	Schnellstart (Str	rg+Q)	- 🗆 ×
DATEI BEARBEITEN ANSICHT PROJEK	T ERSTELLEN DEBUGGEN	TWINCAT TWINSAFE	PLC EXTRAS	SCOPE FENSTER	HILFE
🖁 G - O 👸 - 📩 - 🖕 💾 🗳 I	🗇 🏦 🦻 - 🤍 - 🕨 Anfü	igen 👻	- Release	→ TwinCAT RT (x64)	· · · ·
🗄 🔛 🧾 🥩 🔨 🌀 🚫 🗞 🛛 remot	te-PLC 🔹 🚽 PLC	_example -	▶ = ⋲] ५.	ら c 恒 ひ 🕋 i	≝ ≌ Ц282
Projektmappen-Explorer 🔹 👎 🗙	MAIN + ×				-
C C C C C C C C C C C C C C C C C C C	1 PROGRAM MAIN 2 VAR 3 pSwitchCtr		F -		
Projektmapper "TwinCAT3 Projekt" (1 Proj TwinCAT3 Projekt	4 nRotateUpp 5 nRotateLow	er : WORD :=16#8 er : WORD :=16#8	000; 1;		
SYSTEM MOTION SPS	7 bEL1004_Ch	4 AT%I* : BOOL;			
PLC_example PLC_example PLC_example Project DE Statemal Tunas	9 nEL2008_va 10 END_VAR 11	IUE AT%Q* : BYTE;			-
 External types References DUTs GVLs POUs 	1 (* Program ex 2 IF bEL1004_Ch 3 IF nSwitch 4 nSwitch 5 nRotate	<pre>ample *) 4 THEN Ctrl THEN Ctrl := FALSE; Lower := ROL(nRotateLo)</pre>	wer, 2);		
MAIN (PRG) □ VISUs ₽LC_example.tmc PICTask (PIcTask)	6 nRotate 7 nEL2008 8 END_IF 9 ELSE	Upper := ROR (nRotateUp; _value := WORD_TO_BYTE	per, 2); (nRotateLower (OR nRotateUpper);	
Eigen PLC_example Instance SAFETY Generation C++	 IO IF NOT nSw. 11 nSwitch 12 END_IF 	<pre>itchCtrl THEN Ctrl := TRUE;</pre>			
₽ Z E/A	13 END_IF 14				
Gespeicherte(s) Element(e)		🚺 Z 14	S1	Zei 1	EINFG

Abb. 101: Beispielprogramm mit Variablen nach einem Kompiliervorgang (ohne Variablenanbindung)

Das Steuerprogramm wird nun als Projektmappe erstellt und damit der Kompiliervorgang vorgenommen:

Abb. 102: Kompilierung des Programms starten

Anschließend liegen in den "Zuordnungen" des Projektmappen-Explorers die folgenden – im ST/ PLC Programm mit "AT%" gekennzeichneten Variablen vor:

Variablen Zuordnen

Über das Menü einer Instanz – Variablen innerhalb des "SPS" Kontextes wird mittels "Verknüpfung Ändern…" ein Fenster zur Auswahl eines passenden Prozessobjektes (PDOs) für dessen Verknüpfung geöffnet:

 SPS PLC_example PLC_example Project PLC_example Instance PLC_example Instance MAIN.bEL1004_Ch4 		Change Link
 PIcTask Outputs MAIN.nEL2008_value SAFETY C++ E/A 	аг Ж	Clear Link(s) Goto Link Variable Take Name Over from linked Variable Move Address Online Write '0' Online Write '1'
	→3 →3 -×× _× _×	Online Write Online Force Release Force Add to Watch Remove from Watch

Abb. 103: Erstellen der Verknüpfungen PLC-Variablen zu Prozessobjekten

In dem dadurch geöffneten Fenster kann aus dem SPS-Konfigurationsbaum das Prozessobjekt für die Variable "bEL1004_Ch4" vom Typ BOOL selektiert werden:

Variablenverknüpfung MAIN.bEL1004_Ch4 (Eingang)	×
Suchen:	Zeige Variablen Unbenutzt Alle Keine Disabled Keine vom selben Proz. Zeige Tooltips Nach Adresse sortiert Show Variable Types Passender Typ Passende Größe Alle Typen Array Modis Offsets Kontinuierlich Öffne Dialog Variablenname: Übergeben Übernehmen Abbruch

Abb. 104: Auswahl des PDO vom Typ BOOL

Entsprechend der Standarteinstellungen stehen nur bestimmte PDO-Objekte zur Auswahl zur Verfügung. In diesem Beispiel wird von der Klemme EL1004 der Eingang von Kanal 4 zur Verknüpfung ausgewählt. Im Gegensatz hierzu muss für das Erstellen der Verknüpfung der Ausgangsvariablen die Checkbox "Alle Typen" aktiviert werden, um in diesem Fall eine Byte-Variable einen Satz von acht separaten Ausgangsbits zuzuordnen. Die folgende Abbildung zeigt den gesamten Vorgang:

Abb. 105: Auswahl von mehreren PDO gleichzeitig: Aktivierung von "Kontinuierlich" und "Alle Typen"

Zu sehen ist, dass überdies die Checkbox "Kontinuierlich" aktiviert wurde. Dies ist dafür vorgesehen, dass die in dem Byte der Variablen "nEL2008_value" enthaltenen Bits allen acht ausgewählten Ausgangsbits der Klemme EL2008 der Reihenfolge nach zugeordnet werden sollen. Damit ist es möglich, alle acht Ausgänge der Klemme mit einem Byte entsprechend Bit 0 für Kanal 1 bis Bit 7 für Kanal 8 von der PLC im Programm

später anzusprechen. Ein spezielles Symbol () an dem gelben bzw. roten Objekt der Variablen zeigt an, dass hierfür eine Verknüpfung existiert. Die Verknüpfungen können z. B. auch überprüft werden, indem "Goto Link Variable" aus dem Kontextmenü einer Variable ausgewählt wird. Dann wird automatisch das gegenüberliegende verknüpfte Objekt, in diesem Fall das PDO selektiert:

Abb. 106: Anwendung von "Goto Link Variable" am Beispiel von "MAIN.bEL1004_Ch4"

Der Vorgang zur Erstellung von Verknüpfungen kann auch in umgekehrter Richtung, d. h. von einzelnen PDO ausgehend zu einer Variablen erfolgen. In diesem Beispiel wäre dann allerdings eine komplette Auswahl aller Ausgangsbits der EL2008 nicht möglich, da die Klemme nur einzelne digitale Ausgänge zur Verfügung stellt. Hat eine Klemme ein Byte, Word, Integer oder ein ähnliches PDO, so ist es möglich dies wiederum einen Satz von bit-typisierten Variablen zuzuordnen. Auch hier kann ebenso in die andere Richtung ein "Goto Link Variable" ausgeführt werden, um dann die betreffende Instanz der PLC zu selektieren.

Hinweis zur Art der Variablen-Zuordnung

Diese folgende Art der Variablen Zuordnung kann erst ab der TwinCAT Version V3.1.4024.4 verwendet werden und ist ausschließlich bei Klemmen mit einem Mikrocontroller verfügbar.

In TwinCAT ist es möglich eine Struktur aus den gemappten Prozessdaten einer Klemme zu erzeugen. Von dieser Struktur kann dann in der SPS eine Instanz angelegt werden, so dass aus der SPS direkt auf die Prozessdaten zugegriffen werden kann, ohne eigene Variablen deklarieren zu müssen.

Beispielhaft wird das Vorgehen an der EL3001 1-Kanal-Analog-Eingangsklemme -10...+10 V gezeigt.

- 1. Zuerst müssen die benötigten Prozessdaten im Reiter "Prozessdaten" in TwinCAT ausgewählt werden.
- 2. Anschließend muss der SPS Datentyp im Reiter "PLC" über die Check-Box generiert werden.
- 3. Der Datentyp im Feld "Data Type" kann dann über den "Copy"-Button kopiert werden.

General	EtherCAT	Settings	Process Data	Plc	Startup	CoE - Online	Online	
⊡ Cr	eate PLC Da	ata Type			-			
Pe	er Channel:							\sim
Data	Туре:		MDP5001	_300_C38	DD20B		Сору	·
Link	To PLC							

Abb. 107: Erzeugen eines SPS Datentyps

4. In der SPS muss dann eine Instanz der Datenstruktur vom kopierten Datentyp angelegt werden.

Abb. 108: Instance_of_struct

- Anschließend muss die Projektmappe erstellt werden. Das kann entweder über die Tastenkombination "STRG + Shift + B" gemacht werden oder über den Reiter "Erstellen"/ "Build" in TwinCAT.
- 6. Die Struktur im Reiter "PLC" der Klemme muss dann mit der angelegten Instanz verknüpft werden.

General EtherCAT Settings P	rocess Data Plc Startup	CoE - Online	Online		
Create PLC Data Type					
Per Channel:			\sim		
Data Type:	MDP5001_300_C38DD20B		Сору		
Link To PLC					
	Select Axis I	PLC Reference	('Term 1 (EL3001)')		×
	(nana)				
	MAIN.EL3001 (Untitled1 Instand	ce)		OK
					Cancel
				۲	Unused
				0	All

Abb. 109: Verknüpfung der Struktur

7. In der SPS können die Prozessdaten dann über die Struktur im Programmcode gelesen bzw. geschrieben werden.

Abb. 110: Lesen einer Variable aus der Struktur der Prozessdaten

Aktivieren der Konfiguration

Die Zuordnung von PDO zu PLC Variablen hat nun die Verbindung von der Steuerung zu den Ein- und

Ausgängen der Klemmen hergestellt. Nun kann die Konfiguration mit in oder über das Menü unter "TWINCAT" aktiviert werden, um dadurch Einstellungen der Entwicklungsumgebung auf das Laufzeitsystem zu übertragen. Die darauf folgenden Meldungen "Alte Konfigurationen werden überschrieben!" sowie "Neustart TwinCAT System in Run Modus" werden jeweils mit "OK" bestätigt. Die entsprechenden Zuordnungen sind in dem Projektmappen-Explorer einsehbar:

Zuordnungen PLC_example Instance - Gerät 3 (EtherCAT) 1 PLC_example Instance - Gerät 1 (EtherCAT) 1

Einige Sekunden später wird der entsprechende Status des Run Modus mit einem rotierenden Symbol unten rechts in der Entwicklungsumgebung VS Shell angezeigt. Das PLC System kann daraufhin wie im Folgenden beschrieben gestartet werden.

Starten der Steuerung

Entweder über die Menüauswahl "PLC" \rightarrow "Einloggen" oder per Klick auf ist die PLC mit dem Echtzeitsystem zu verbinden und nachfolgend das Steuerprogramm zu geladen, um es ausführen lassen zu können. Dies wird entsprechend mit der Meldung "*Kein Programm auf der Steuerung! Soll das neue Programm geladen werden?*" bekannt gemacht und ist mit "Ja" zu beantworten. Die Laufzeitumgebung ist

bereit zum Programmstart mit Klick auf das Symbol , Taste "F5" oder entsprechend auch über "PLC" im Menü durch Auswahl von "Start". Die gestartete Programmierumgebung zeigt sich mit einer Darstellung der Laufzeitwerte von einzelnen Variablen:

TwinCAT3 Projekt - Microsoft Visual Studio (Admi	nistrator)				₹4	Schnellsta	rt (Strg+Q))	x
DATEI BEARBEITEN ANSICHT PROJEKT ERST	ELLEN DE	BUGGEN 1	WINCAT	TWINSAFE	PLC EXTRAS S	COPE FEN	STER HILFE		
◎ - ○ î2 - ʿ - 🖕 💾 📲 X () ()	2 - 6 -	Anfüger	•		- Release -	TwinCAT R	T (x86) 🔹 🗾 🗾	÷	
🕴 🔐 🧱 🖉 🌂 🎯 <mark> 👰</mark> 🐛 🛛 remote-PLC	-	🚽 🖗 PLC_exa	mple	- ->) = 🗧 😔 G	G ⊭≣ Ω	🖆 🖆 🛱 🔁 🖕	8 6 4	Ŧ
Projektmappen-Explorer 🝷 🕂 🗙	MAIN [Onli	ne] ⊅ ×							-
G O 🏠 To - 🗊 🖌 🗕	TwinCA	[_Device.PL(_example.M	AIN					
Projektmappen-Explorer (Strg+ü) durchsuchen 🛛 🔎 👻	Ausdruck		Datentyp	Wert	Vorbereiteter Wert	Adresse	Kommentar		<u>b</u>
🔺 🚮 TwinCAT3 Projekt 🔺	🔷 nSw	vitchCtrl	BOOL	TRUE					
SYSTEM	🔷 nRo	tateUpper	WORD	16#8000					
MOTION	🔷 nRo	tateLower	WORD	16#0001					
SPS	🔷 bel	1004_Ch4	BOOL	FALSE		%I*			
PLC_example	🔷 nEL	2008_value	BYTE	16#01		%Q*			
PLC_example Project									
External lypes									
References	4							•	
	1	(* Progra	m example	*)					
	😑 2 🔿	IF bEL100	4_Ch4 FALSE	THEN					
	8 3 6	IF nSw	itchCtrl T	RUE THEN					
	4 0	n5W	tateLower	RUE := FAI	DL;	100001 21			
PIC example tmc	6	nRo	tatelloner	16#8000 .=	ROB (nRotatellower	16#2000 2)			
PicTask (PicTask)	7 -	nEL	2008 value	16#01 := \	ORD TO BYTE (nRot	ateLower 16	#0001 OR nRotateUpp	er 16#8000);	
PLC example Instance	8	END IF	_						
PicTask Inputs	😑 9	ELSE							
MAIN.bEL1004_Ch4	😑 10 💿	IF NOT	nSwitchCt	rl <mark>TRUE</mark> TH	IEN				
🔺 🛄 PlcTask Outputs	11 👄	nSw	itchCtrl <mark>T</mark>	RUE := TRU	JE;				
MAIN.nEL2008_value	12	END_IF							
SAFETY SAFETY	13	END_IF							
₩ C++	14 🖷	RETURN							I
▶ 🔽 E/A									_
	_								
Bereit					0 Z 2	\$ 20	Zei 20	EIN	FG 🦽

Abb. 111: TwinCAT 3 Entwicklungsumgebung (VS Shell): Logged-in, nach erfolgten Programmstart

Die beiden Bedienelemente zum Stoppen 📕 und Ausloggen 🖆 führen je nach Bedarf zu der gewünschten Aktion (entsprechend auch für Stopp "umschalt-Taste + F5" oder beide Aktionen über das "PLC" Menü auswählbar).

5.3 TwinCAT Entwicklungsumgebung

Die Software zur Automatisierung TwinCAT (The Windows Control and Automation Technology) wird unterschieden in:

- TwinCAT 2: System Manager (Konfiguration) & PLC Control (Programmierung)
- TwinCAT 3: Weiterentwicklung von TwinCAT 2 (Programmierung und Konfiguration erfolgt über eine gemeinsame Entwicklungsumgebung)

Details:

- TwinCAT 2:
 - Verbindet E/A-Geräte und Tasks variablenorientiert
 - Verbindet Tasks zu Tasks variablenorientiert
 - Unterstützt Einheiten auf Bit-Ebene
 - Unterstützt synchrone oder asynchrone Beziehungen
 - · Austausch konsistenter Datenbereiche und Prozessabbilder
 - Datenanbindung an NT-Programme mittels offener Microsoft Standards (OLE, OCX, ActiveX, DCOM+, etc.).
 - Einbettung von IEC 61131-3-Software-SPS, Software- NC und Software-CNC in Windows NT/ 2000/XP/Vista, Windows 7, NT/XP Embedded, CE
 - Anbindung an alle gängigen Feldbusse
 - Weiteres...

Zusätzlich bietet:

- **TwinCAT 3** (eXtended Automation):
 - Visual-Studio®-Integration
 - · Wahl der Programmiersprache
 - Unterstützung der objektorientierten Erweiterung der IEC 61131-3
 - Verwendung von C/C++ als Programmiersprache für Echtzeitanwendungen
 - Anbindung an MATLAB®/Simulink®
 - Offene Schnittstellen für Erweiterbarkeit
 - Flexible Laufzeitumgebung
 - Aktive Unterstützung von Multi-Core- und 64-Bit-Betriebssystemen
 - · Automatische Codegenerierung und Projekterstellung mit dem TwinCAT Automation Interface
 - Weiteres...

In den folgenden Kapiteln wird dem Anwender die Inbetriebnahme der TwinCAT Entwicklungsumgebung auf einem PC System der Steuerung sowie die wichtigsten Funktionen einzelner Steuerungselemente erläutert.

Bitte sehen Sie weitere Informationen zu TwinCAT 2 und TwinCAT 3 unter http://infosys.beckhoff.de/.

5.3.1 Installation der TwinCAT Realtime-Treiber

Um einen Standard Ethernet Port einer IPC-Steuerung mit den nötigen Echtzeitfähigkeiten auszurüsten, ist der Beckhoff Echtzeit-Treiber auf diesem Port unter Windows zu installieren.

Dies kann auf mehreren Wegen vorgenommen werden.

A: Über den TwinCAT Adapter-Dialog

Im System Manager ist über Options \rightarrow Show realtime Kompatible Geräte die TwinCAT-Übersicht über die lokalen Netzwerkschnittstellen aufzurufen.

Datei Bearbeiten	Aktionen	Ansicht	Optionen Hilfe
🛓 🗅 🚅 📽 🔛	🗟 🖪)	(• •	Liste Echtzeit Ethernet kompatible Geräte

Abb. 112: Aufruf im System Manager (TwinCAT 2)

Unter TwinCAT 3 ist dies über das Menü unter "TwinCAT" erreichbar:

👓 Example_Project - Microsoft Visual Studio (Admi	nistrat	tor)					
File Edit View Project Build Debug	Twin	CAT	TwinSAFE	PLC	Tools	Scope	Window	Help
i 🛅 • 🔠 • 📂 🔒 🥔 🗼 🐁 🛍 🖄	Activate Configuration							
i 🖸 🖓 🖕 🕴 🔛 🧧 🥩 🌾 🎯	-	Resta	art TwinCAT	System				
	Restart TwinConcer/IP Link Register							
	Opuate Firmware/EEPROM						•	
		Shov	v Realtime Et	hernet	Compat	tible Devi	ices	
		File H	Handling				L	1.
	EtherCAT Devices						•	
		Abou	ut TwinCAT					

Abb. 113: Aufruf in VS Shell (TwinCAT 3)

B: Über TcRteInstall.exe im TwinCAT-Verzeichnis

Windows (C:) > TwinCAT > 3.1 > System

Abb. 114: TcRteInstall.exe im TwinCAT-Verzeichnis

In beiden Fällen erscheint der folgende Dialog:

Installation of TwinCAT RT-Ethernet Adapters	8
Ethernet Adapters	Update List
Installed and ready to use devices	
- 📖 LAN3 - TwinCAT-Intel PCI Ethernet Adapter (Gigabit)	Install
- 💷 100M - TwinCAT-Intel PCI Ethernet Adapter	Bind
📖 🕮 1G - TwinCAT-Intel PCI Ethernet Adapter (Gigabit)	DING
Ecompatible devices	Unbind
Incompatible devices	
Disabled devices	Enable
	Disable
	🔲 Show Bindings

Abb. 115: Übersicht Netzwerkschnittstellen

Hier können nun Schnittstellen, die unter "Kompatible Geräte" aufgeführt sind, über den "Install" Button mit dem Treiber belegt werden. Eine Installation des Treibers auf inkompatiblen Devices sollte nicht vorgenommen werden.

Ein Windows-Warnhinweis bezüglich des unsignierten Treibers kann ignoriert werden.

Alternativ kann auch wie im Kapitel <u>Offline Konfigurationserstellung</u>, <u>Abschnitt "Anlegen des Geräts</u> <u>EtherCAT" [> 178]</u> beschrieben, zunächst ein EtherCAT-Gerät eingetragen werden, um dann über dessen Eigenschaften (Karteireiter "Adapter", Button "Kompatible Geräte…") die kompatiblen Ethernet Ports einzusehen:

	Allgemein Adapter	therCAT Online CoE - Onlin	ne
	 Network Adapter 	r —	
E/A - Konfiguration		OS (NDIS) OF PCI	DPRAM
📄 📲 E/A Geräte	Development		
庄 Gerät 1 (EtherCAT)	Beschreibung:	1G (Intel(R) PR0/1000 PM	Network Connection - Packet Sched
	Gerätename:	\DEVICE\{2E55A7C2-AF68	3-48A2-A9B8-7C0DE2A44BF0}
	PCI Bus/Slot:		Suchen
	MAC-Adresse:	00 01 05 05 f9 54	Kompatible Geräte
	IP-Adresse:	169.254.1.1 (255.255.0.0)	

Abb. 116: Eigenschaft von EtherCAT-Gerät (TwinCAT 2): Klick auf "Kompatible Geräte…" von "Adapter"

TwinCAT 3: Die Eigenschaften des EtherCAT-Gerätes können mit Doppelklick auf "Gerät .. (EtherCAT)" im Projektmappen-Explorer unter "E/A" geöffnet werden:

Nach der Installation erscheint der Treiber aktiviert in der Windows-Übersicht der einzelnen Netzwerkschnittstelle (Windows Start \rightarrow Systemsteuerung \rightarrow Netzwerk)

上 1G Properties 🛛 🕅 🔀							
General Authentication Advanced							
Connect using:							
TwinCAT-Intel PCI Ethernet Adapter (
This connection uses the following items:							
Client for Microsoft Networks							
🗹 🖳 File and Printer Sharing for Microsoft Networks							
🗹 📃 QoS Packet Scheduler							
TwinCAT Ethernet Protocol							
I <u>n</u> stall <u>U</u> ninstall P <u>r</u> operties							
Description							
Allows your computer to access resources on a Microsoft network.							
 Show icon in notification area when connected Notify me when this connection has limited or no connectivity 							
OK Cancel							

Abb. 117: Windows-Eigenschaften der Netzwerkschnittstelle

Eine korrekte Einstellung des Treibers könnte wie folgt aussehen:

Ethernet Adapters	Update List
Installed and ready to use devices Installed and ready to use devices Installed and ready to use devices Installed and ready to use devices	Install
TwinCAT Ethernet Protocol	Bind
Incompatible devices	Unbind
Law-verbindung 2 - Intel(H) 82579LM Gigabit Network Connection Section	Enable
Driver OK	Disable

Abb. 118: Beispielhafte korrekte Treiber-Einstellung des Ethernet Ports

Andere mögliche Einstellungen sind zu vermeiden:

Abb. 119: Fehlerhafte Treiber-Einstellungen des Ethernet Ports

WRONG: no TwinCAT driver

👰 Disabled devices

Enable

Disable

Show Bindings

IP-Adresse des verwendeten Ports

IP-Adresse/DHCP

In den meisten Fällen wird ein Ethernet-Port, der als EtherCAT-Gerät konfiguriert wird, keine allgemeinen IP-Pakete transportieren. Deshalb und für den Fall, dass eine EL6601 oder entsprechende Geräte eingesetzt werden, ist es sinnvoll, über die Treiber-Einstellung "Internet Protocol TCP/IP" eine feste IP-Adresse für diesen Port zu vergeben und DHCP zu deaktivieren. Dadurch entfällt die Wartezeit, bis sich der DHCP-Client des Ethernet Ports eine Default-IP-Adresse zuteilt, weil er keine Zuteilung eines DHCP-Servers erhält. Als Adressraum empfiehlt sich z. B. 192.168.x.x.

👍 1G Properties 🔹 😢 🔀
General Authentication Advanced
Connect using:
TwinCAT-Intel PCI Ethernet Adapter (Configure
This connection uses the following items:
🗹 📮 QoS Packet Scheduler 🔗
I I I I I I I I I I I I I I I I I I I
Internet Protocol (TCP/IP)
Install Uninstall Properties
Install Uninstall Properties Internet Protocol (TCP/IP) Properties
Install Uninstall Properties Internet Protocol (TCP/IP) Properties General
Instal Uninstall Properties Internet Protocol (TCP/IP) Properties General You can get IP settings assigned automatically if your network suppor this capability. Otherwise, you need to ask your network administrator the appropriate IP settings.
Instal Uninstall Properties Internet Protocol (TCP/IP) Properties General You can get IP settings assigned automatically if your network suppor this capability. Otherwise, you need to ask your network administrator the appropriate IP settings. Obtain an IP address automatically
Install Uninstall Properties Internet Protocol (TCP/IP) Properties General You can get IP settings assigned automatically if your network support this capability. Otherwise, you need to ask your network administrator the appropriate IP settings. Obtain an IP address automatically Use the following IP address:

Abb. 120: TCP/IP-Einstellung des Ethernet Ports

Hinweise zur ESI-Gerätebeschreibung 5.3.2

Installation der neuesten ESI-Device-Description

Der TwinCAT EtherCAT Master/System Manager benötigt zur Konfigurationserstellung im Online- und Offline-Modus die Gerätebeschreibungsdateien der zu verwendeten Geräte. Diese Gerätebeschreibungen sind die so genannten ESI (EtherCAT Slave Information) in Form von XML-Dateien. Diese Dateien können vom jeweiligen Hersteller angefordert werden bzw. werden zum Download bereitgestellt. Eine *.xml-Datei kann dabei mehrere Gerätebeschreibungen enthalten.

Auf der Beckhoff Website werden die ESI für Beckhoff EtherCAT-Geräte bereitgehalten.

Die ESI-Dateien sind im Installationsverzeichnis von TwinCAT abzulegen.

Standardeinstellungen:

- TwinCAT 2: C:\TwinCAT\IO\EtherCAT
- TwinCAT 3: C:\TwinCAT\3.1\Config\lo\EtherCAT

Beim Öffnen eines neuen System Manager-Fensters werden die Dateien einmalig eingelesen, wenn sie sich seit dem letzten System Manager-Fenster geändert haben.

TwinCAT bringt bei der Installation den Satz an Beckhoff-ESI-Dateien mit, der zum Erstellungszeitpunkt des TwinCAT builds aktuell war.

Ab TwinCAT 2.11 / TwinCAT 3 kann aus dem System Manager heraus das ESI-Verzeichnis aktualisiert werden, wenn der Programmier-PC mit dem Internet verbunden ist; unter

TwinCAT 2: Options → "Update EtherCAT Device Descriptions"

TwinCAT 3: TwinCAT \rightarrow EtherCAT Devices \rightarrow "Update Device Descriptions (via ETG Website)..."

Hierfür steht der TwinCAT ESI Updater [▶ 177] zur Verfügung.

ESI

Zu den *.xml-Dateien gehören die so genannten *.xsd-Dateien, die den Aufbau der ESI-XML-Dateien beschreiben. Bei einem Update der ESI-Gerätebeschreibungen sind deshalb beide Dateiarten ggf. zu aktualisieren.

Geräteunterscheidung

EtherCAT-Geräte/Slaves werden durch vier Eigenschaften unterschieden, aus denen die vollständige Gerätebezeichnung zusammengesetzt wird. Beispielsweise setzt sich die Gerätebezeichnung "EL2521-0025-1018" zusammen aus:

- · Familienschlüssel "EL"
- Name "2521"
- Typ "0025"
- und Revision "1018"

Name (EL2521-0025-1018) Revision

Abb. 121: Gerätebezeichnung: Struktur

Die Bestellbezeichnung aus Typ + Version (hier: EL2521-0010) beschreibt die Funktion des Gerätes. Die Revision gibt den technischen Fortschritt wieder und wird von Beckhoff verwaltet. Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn z. B. in der Dokumentation nicht anders angegeben. Jeder Revision zugehörig ist eine eigene ESI-Beschreibung. Siehe weitere Hinweise [**)** <u>11]</u>.

Online Description

Wird die EtherCAT Konfiguration online durch Scannen real vorhandener Teilnehmer erstellt (s. Kapitel Online Erstellung) und es liegt zu einem vorgefundenen Slave (ausgezeichnet durch Name und Revision) keine ESI-Beschreibung vor, fragt der System Manager, ob er die im Gerät vorliegende Beschreibung verwenden soll. Der System Manager benötigt in jedem Fall diese Information, um die zyklische und azyklische Kommunikation mit dem Slave richtig einstellen zu können.

TwinCAT System Manager									
New device type found (EL2521-0024 - 'EL2521-0024 1K. Pulse Train 24V DC Ausgang'). ProductRevision EL2521-0024-1016									
Use available online description instead									
🔲 Übernehmen für alle	Ja Nein								

Abb. 122: Hinweisfenster OnlineDescription (TwinCAT 2)

In TwinCAT 3 erscheint ein ähnliches Fenster, das auch das Web-Update anbietet:

TwinCAT XAE								
New device type found (EL2521-0024 - 'EL2521-0024 1K. Pulse Train 24V DC Ausgang'). ProductRevision EL2521-0024-1016								
Use available online description instead (YES) or try to load appropriate descriptions from the web								
🔲 Übernehmen für alle	Ja Nein Online ESI Update (Web access required)							

Abb. 123: Hinweisfenster OnlineDescription (TwinCAT 3)

Wenn möglich, ist das Yes abzulehnen und vom Geräte-Hersteller die benötigte ESI anzufordern. Nach Installation der XML/XSD-Datei ist der Konfigurationsvorgang erneut vorzunehmen.

HINWEIS

Veränderung der "üblichen" Konfiguration durch Scan

- ✓ f
 ür den Fall eines durch Scan entdeckten aber TwinCAT noch unbekannten Ger
 äts sind zwei F
 älle zu unterscheiden. Hier am Beispiel der EL2521-0000 in der Revision 1019:
- a) für das Gerät EL2521-0000 liegt überhaupt keine ESI vor, weder für die Revision 1019 noch für eine ältere Revision. Dann ist vom Hersteller (hier: Beckhoff) die ESI anzufordern.
- b) für das Gerät EL2521-0000 liegt eine ESI nur in älterer Revision vor, z. B. 1018 oder 1017. Dann sollte erst betriebsintern überprüft werden, ob die Ersatzteilhaltung überhaupt die Integration der erhöhten Revision in die Konfiguration zulässt. Üblicherweise bringt eine neue/größere Revision auch neue Features mit. Wenn diese nicht genutzt werden sollen, kann ohne Bedenken mit der bisherigen Revision 1018 in der Konfiguration weitergearbeitet werden. Dies drückt auch die Beckhoff Kompatibilitätsregel aus.

Siehe dazu insbesondere das Kapitel <u>"Allgemeine Hinweise zur Verwendung von Beckhoff EtherCAT IO-Komponenten</u>" und zur manuellen Konfigurationserstellung das Kapitel <u>"Offline Konfigurationserstellung</u> [<u>178]</u>".

Wird dennoch die Online Description verwendet, liest der System Manager aus dem im EtherCAT Slave befindlichen EEPROM eine Kopie der Gerätebeschreibung aus. Bei komplexen Slaves kann die EEPROM-Größe u. U. nicht ausreichend für die gesamte ESI sein, weshalb im Konfigurator dann eine *unvollständige* ESI vorliegt. Deshalb wird für diesen Fall die Verwendung einer offline ESI-Datei vorrangig empfohlen.

Der System Manager legt bei "online" erfassten Gerätebeschreibungen in seinem ESI-Verzeichnis eine neue Datei "OnlineDescription0000…xml" an, die alle online ausgelesenen ESI-Beschreibungen enthält.

OnlineDescriptionCache00000002.xml

Abb. 124: Vom System Manager angelegt OnlineDescription.xml

Soll daraufhin ein Slave manuell in die Konfiguration eingefügt werden, sind "online" erstellte Slaves durch ein vorangestelltes ">" Symbol in der Auswahlliste gekennzeichnet (siehe Abbildung *Kennzeichnung einer online erfassten ESI am Beispiel EL2521*).

EtherCAT G	erät hinzufügen (E-Bus) an Klemme 1						—
Suchen:	el2	Name:	Klemme 2	Mehrfach	1	* *	ОК
Туре:	ESCE Beckhoff Automation GmbH & Co Safety Klemmen Digitale Ausgangsklemmen (I EL2872 16K. Dig. Ausga EL2872.0010 16K. Dig. J EL2889 16K. Dig. Ausga EL2889 16K. Dig. Ausga EL2889 16K. Dig. Ausga EL2889 16K. Dig. Ausga		*	Abbruch Port B (E-Bus) C (Ethernet) X2 OUT'			
	Weitere Informationen	🗖 Zeige versti	eckte Geräte	🔽 Show Sut	o Group	ps	

Abb. 125: Kennzeichnung einer online erfassten ESI am Beispiel EL2521

Wurde mit solchen ESI-Daten gearbeitet und liegen später die herstellereigenen Dateien vor, ist die OnlineDescription....xml wie folgt zu löschen:

- alle System Managerfenster schließen
- TwinCAT in Konfig-Mode neu starten
- "OnlineDescription0000...xml" löschen
- TwinCAT System Manager wieder öffnen

Danach darf diese Datei nicht mehr zu sehen sein, Ordner ggf. mit <F5> aktualisieren.

OnlineDescription unter TwinCAT 3.x

Zusätzlich zu der oben genannten Datei "OnlineDescription0000…xml" legt TwinCAT 3.x auch einen so genannten EtherCAT-Cache mit neuentdeckten Geräten an, z. B. unter Windows 7 unter

C:\User\[USERNAME]\AppData\Roaming\Beckhoff\TwinCAT3\Components\Base\EtherCATCache.xm]

(Spracheinstellungen des Betriebssystems beachten!) Diese Datei ist im gleichen Zuge wie die andere Datei zu löschen.

Fehlerhafte ESI-Datei

Liegt eine fehlerhafte ESI-Datei vor die vom System Manager nicht eingelesen werden kann, meldet dies der System Manager durch ein Hinweisfenster.

BECKHOFF

Abb. 126: Hinweisfenster fehlerhafte ESI-Datei (links: TwinCAT 2; rechts: TwinCAT 3)

Ursachen dafür können sein

- Aufbau der *.xml entspricht nicht der zugehörigen *.xsd-Datei → pr
 üfen Sie die Ihnen vorliegenden Schemata
- Inhalt kann nicht in eine Gerätebeschreibung übersetzt werden → Es ist der Hersteller der Datei zu kontaktieren

5.3.3 TwinCAT ESI Updater

Ab TwinCAT 2.11 kann der System Manager bei Online-Zugang selbst nach aktuellen Beckhoff ESI-Dateien suchen:

Datei	Bearbeiten	Aktionen	Ansicht	Optionen Hilfe
0	🛎 📽 日	69 B.)	(🖻 🖻	Update der EtherCAT Konfigurationsbeschreibung

Abb. 127: Anwendung des ESI Updater (>=TwinCAT 2.11)

Der Aufruf erfolgt unter:

", Options" \rightarrow "Update EtherCAT Device Descriptions".

Auswahl bei TwinCAT 3:

👓 Exampl	le_Project - Microsoft	Visual Studio (A	Administrator)					
File Edit	View Project B	uild Debug	TwinCAT Twin	SAFE PLC Tools	Scope Window	Hel	p	
i 🛅 + 🖻	3 - 💕 🔲 🗿 🐇	も出り	Activate Co	nfiguration			- 🖄 SGR - 🔹	2 😤 🐋
	Ng 🚽 i 🖈 📧 🗖	🗢 🔨 🌀	🧧 Restart Twi	CAT System	U CVICES		- J → = E [] 4 0 a a	** *
			Restart Twi			•		
			Selected IR	m		•		
			EtherCAT [evices		•	Update Device Descriptions (via ETG Website)
			About Twi	САТ			Reload Device Descriptions	4
	EtherCAT Slave	Information (ES	SI) Updater				×	
	Vendor		Loaded UR					
	ROFF Beckhoff Au	utomation GmbH	0 htt	;//download.beckhof	ff.com/download/Conf	ig/Ethe	erCAT/XML_Device_Description/Beckhoff_EtherC	
	Target Path:	C:\TwinCAT\3	. 1\Config\Io\Ether	:AT			OK Cancel	

Abb. 128: Anwendung des ESI Updater (TwinCAT 3)

Der ESI Updater ist eine bequeme Möglichkeit, die von den EtherCAT Herstellern bereitgestellten ESIs automatisch über das Internet in das TwinCAT-Verzeichnis zu beziehen (ESI = EtherCAT slave information). Dazu greift TwinCAT auf die bei der ETG hinterlegte zentrale ESI-ULR-Verzeichnisliste zu; die Einträge sind dann unveränderbar im Updater-Dialog zu sehen.

Der Aufruf erfolgt unter:

",TwinCAT" \rightarrow ",EtherCAT Devices" \rightarrow ",Update Device Description (via ETG Website)...".

5.3.4 Unterscheidung Online/Offline

Die Unterscheidung Online/Offline bezieht sich auf das Vorhandensein der tatsächlichen I/O-Umgebung (Antriebe, Klemmen, EJ-Module). Wenn die Konfiguration im Vorfeld der Anlagenerstellung z. B. auf einem Laptop als Programmiersystem erstellt werden soll, ist nur die "Offline-Konfiguration" möglich. Dann müssen alle Komponenten händisch in der Konfiguration z. B. nach Elektro-Planung eingetragen werden.

Ist die vorgesehene Steuerung bereits an das EtherCAT System angeschlossen, alle Komponenten mit Spannung versorgt und die Infrastruktur betriebsbereit, kann die TwinCAT Konfiguration auch vereinfacht durch das so genannte "Scannen" vom Runtime-System aus erzeugt werden. Dies ist der so genannte Online-Vorgang.

In jedem Fall prüft der EtherCAT Master bei jedem realen Hochlauf, ob die vorgefundenen Slaves der Konfiguration entsprechen. Dieser Test kann in den erweiterten Slave-Einstellungen parametriert werden. Siehe hierzu den <u>Hinweis "Installation der neuesten ESI-XML-Device-Description" [} 173]</u>.

Zur Konfigurationserstellung

- muss die reale EtherCAT-Hardware (Geräte, Koppler, Antriebe) vorliegen und installiert sein.
- müssen die Geräte/Module über EtherCAT-Kabel bzw. im Klemmenstrang so verbunden sein wie sie später eingesetzt werden sollen.

- müssen die Geräte/Module mit Energie versorgt werden und kommunikationsbereit sein.
- muss TwinCAT auf dem Zielsystem im CONFIG-Modus sein.

Der Online-Scan-Vorgang setzt sich zusammen aus:

- Erkennen des EtherCAT-Gerätes [183] (Ethernet-Port am IPC)
- Erkennen der angeschlossenen EtherCAT-Teilnehmer [▶ 184]. Dieser Schritt kann auch unabhängig vom vorangehenden durchgeführt werden.
- <u>Problembehandlung</u> [▶ <u>187</u>]

Auch kann der Scan bei bestehender Konfiguration [▶ 188] zum Vergleich durchgeführt werden.

5.3.5 OFFLINE Konfigurationserstellung

Anlegen des Geräts EtherCAT

In einem leeren System Manager Fenster muss zuerst ein EtherCAT-Gerät angelegt werden.

Datei Bearbeiten Aktionen Ansicht Optionen Hilfe	1.1	⊳	<u></u>	SYSTEM MOTION	е <u>н</u>	Neues Element hinzufügen	Einfa N
] D 🗳 📽 🖬 🥌 🖪 🕺 X 🖻 🖻 🔒 🛤	1.1	⊳	90	SPS	ta	Vorhandenes Element hinzufügen	Umschalt+Alt+A
SYSTEM - Konfiguration NC - Konfiguration	1		<u>æ</u>	SAFETY C++		Export EAP Config File	
SPS - Konfiguration	1	4	2	E/A	X	Scan	
E/A Geräte	÷.			📲 Geräte	â	Einfügen	Strg+V
Zuordnunge 🔤 Gerät Anfügen	11		i	Zuordnungen		Paste with Links	

Abb. 129: Anfügen eines EtherCAT Device: links TwinCAT 2; rechts TwinCAT 3

Für eine EtherCAT I/O Anwendung mit EtherCAT Slaves ist der "EtherCAT" Typ auszuwählen. "EtherCAT Automation Protocol via EL6601" ist für den bisherigen Publisher/Subscriber-Dienst in Kombination mit einer EL6601/EL6614 Klemme auszuwählen.

Einfügen eines E/A-Gerätes			
Тур:	⊞- <mark>II/O</mark> Beckhoff Lightbus		
	🗄 📲 🎆 Profibus DP		
	± Profinet		
	🗄 🖬 CANopen		
	🗄 🛖 DeviceNet		
	🗄 😓 EtherNet/IP		
	· Interface		
	EtherCAT		
	EtherCAT		
	📲 👷 EtherCAT Automation Protocol (Netzwerkvariablen)		
	EtherCAT Automation Protocol via EL6601, EtherCAT		
	tar-not Ethernet		

Abb. 130: Auswahl EtherCAT Anschluss (TwinCAT 2.11, TwinCAT 3)

Diesem virtuellen Gerät ist dann ein realer Ethernet Port auf dem Laufzeitsystem zuzuordnen.

Abb. 131: Auswahl Ethernet Port

Diese Abfrage kann beim Anlegen des EtherCAT-Gerätes automatisch erscheinen, oder die Zuordnung kann später im Eigenschaftendialog gesetzt/geändert werden; siehe Abb. "Eigenschaften EtherCAT-Gerät (TwinCAT 2)".

 SYSTEM - Konfiguration NC - Konfiguration SPS - Konfiguration SPS - Konfiguration E/A - Konfiguration E/A - Konfiguration E/A Geräte Gerät 1 (EtherCAT) Zuordnungen 	Allgemeir Adapter	therCAT Online CoE - Online
	MAC-Adresse: IP-Adresse:	00 01 05 05 f9 54 Kompatible Geräte
		Promiscuous Mode (nur mit Netmon/Wireshark)
	Adapter Referen	ce
	Freerun Zyklus (ms):	4

Abb. 132: Eigenschaften EtherCAT-Gerät (TwinCAT 2)

TwinCAT 3: Die Eigenschaften des EtherCAT-Gerätes können mit Doppelklick auf "Gerät .. (EtherCAT)" im Projektmappen-Explorer unter "E/A" geöffnet werden:

Auswahl des Ethernet-Ports

Es können nur Ethernet-Ports für ein EtherCAT-Gerät ausgewählt werden, für die der TwinCAT Realtime-Treiber installiert ist. Dies muss für jeden Port getrennt vorgenommen werden. Siehe dazu die entsprechende Installationsseite [16].

Definieren von EtherCAT Slaves

Durch Rechtsklick auf ein Gerät im Konfigurationsbaum können weitere Geräte angefügt werden.

Abb. 133: Anfügen von EtherCAT-Geräten (links: TwinCAT 2; rechts: TwinCAT 3)

Es öffnet sich der Dialog zur Auswahl des neuen Gerätes. Es werden nur Geräte angezeigt für die ESI-Dateien hinterlegt sind.

Die Auswahl bietet auch nur Geräte an, die an dem vorher angeklickten Gerät anzufügen sind - dazu wird die an diesem Port mögliche Übertragungsphysik angezeigt (Abb. "Auswahldialog neues EtherCAT-Gerät", A). Es kann sich um kabelgebundene Fast-Ethernet-Ethernet-Physik mit PHY-Übertragung handeln, dann ist wie in Abb. "Auswahldialog neues EtherCAT-Gerät" nur ebenfalls kabelgebundenes Geräte auswählbar. Verfügt das vorangehende Gerät über mehrere freie Ports (z. B. EK1122 oder EK1100), kann auf der rechten Seite (A) der gewünschte Port angewählt werden.

Übersicht Übertragungsphysik

- "Ethernet": Kabelgebunden 100BASE-TX: Koppler, Box-Module, Geräte mit RJ45/M8/M12-Anschluss
- "E-Bus": LVDS "Klemmenbus", EtherCAT-Steckmodule (EJ), EtherCAT-Klemmen (EL/ES), diverse anreihbare Module

Das Suchfeld erleichtert das Auffinden eines bestimmten Gerätes (ab TwinCAT 2.11 bzw. TwinCAT 3).

Abb. 134: Auswahldialog neues EtherCAT-Gerät

Standardmäßig wird nur der Name/Typ des Gerätes als Auswahlkriterium verwendet. Für eine gezielte Auswahl einer bestimmen Revision des Gerätes kann die Revision als "Extended Information" eingeblendet werden.
EtherCAT G	erät hinzufügen (E-Bus) an Klemme 1 (EK1100)	—
Suchen:	el2521 Name: Klemme 2 Mehrfach 1	ОК
Тур:	Beckhoff Automation GmbH & Co. KG Digitale Ausgangsklemmen (EL2xxx) EL2521 1K. Pulse Train Ausgang (EL2521-0000-1022) EL2521-0024 1K. Pulse Train 24V DC Ausgang V(EL2521-0024-1021) EL2521-0025 1K. Pulse Train 24V DC Ausgang negativ (EL2521-0025-1021) EL2521-0124 1K. Pulse Train 24V DC Ausgang Capture/Compare (EL2521-0124-0020) EL2521-1001 1K. Pulse Train Ausgang (EL2521-1001-1020) Veitere Informationen Zeige versteckte Geräte Show Sub Groups	Abbruch Port B (E-Bus) C (Ethernet) X2 OUT'

Abb. 135: Anzeige Geräte-Revision

Oft sind aus historischen oder funktionalen Gründen mehrere Revisionen eines Gerätes erzeugt worden, z. B. durch technologische Weiterentwicklung. Zur vereinfachten Anzeige (s. Abb. "Auswahldialog neues EtherCAT-Gerät") wird bei Beckhoff Geräten nur die letzte (=höchste) Revision und damit der letzte Produktionsstand im Auswahldialog angezeigt. Sollen alle im System als ESI-Beschreibungen vorliegenden Revisionen eines Gerätes angezeigt werden, ist die Checkbox "Show Hidden Devices" zu markieren, s. Abb. "Anzeige vorhergehender Revisionen".

EtherCAT Gerä	t hinzufügen (E-Bus) an Klemme 1 (EK1100)				×
Suchen: el	2521 Nam	me: Klemme 2	Mehrfach	1	ОК
Type:	EECK Beckhoff Automation GmbH & Co. KG Digitale Ausgangsklemmen (EL2xxx) EL2521 1K. Pulse Train Ausgang EL2521-0024 1K. Pulse Train EL2521 1K. P	(EL2521-0000-1022) (EL2521-0000-0 (EL2521-0000-0) (EL2521-0000-1) (EL2521-0000-1) (EL2521-0000-1) (Ausgang (EL2521-0000-1) (Ausgang (EL2520-0000-1) (Ausgang (EL2520-0000-1	000) 016) 017) 020) 021) 21-0024-1021) L2521-0024-1016) L2521-0024-1017) Show Sut) o Groups	Abbruch Port B (E-Bus) C (Ethernet) X2 OUT'

Abb. 136: Anzeige vorhergehender Revisionen

Geräte-Auswahl nach Revision, Kompatibilität

Mit der ESI-Beschreibung wird auch das Prozessabbild, die Art der Kommunikation zwischen Master und Slave/Gerät und ggf. Geräte-Funktionen definiert. Damit muss das reale Gerät (Firmware wenn vorhanden) die Kommunikationsanfragen/-einstellungen des Masters unterstützen. Dies ist abwärtskompatibel der Fall, d. h. neuere Geräte (höhere Revision) sollen es auch unterstützen, wenn der EtherCAT Master sie als eine ältere Revision anspricht. Als Beckhoff-Kompatibilitätsregel für EtherCAT-Klemmen/ Boxen/ EJ-Module ist anzunehmen:

Geräte-Revision in der Anlage >= Geräte-Revision in der Konfiguration

Dies erlaubt auch den späteren Austausch von Geräten ohne Veränderung der Konfiguration (abweichende Vorgaben bei Antrieben möglich).

Beispiel

In der Konfiguration wird eine EL2521-0025-**1018** vorgesehen, dann kann real eine EL2521-0025-**1018** oder höher (-**1019**, -**1020**) eingesetzt werden.

Abb. 137: Name/Revision Klemme

Wenn im TwinCAT System aktuelle ESI-Beschreibungen vorliegen, entspricht der im Auswahldialog als letzte Revision angebotene Stand dem Produktionsstand von Beckhoff. Es wird empfohlen, bei Erstellung einer neuen Konfiguration jeweils diesen letzten Revisionsstand eines Gerätes zu verwenden, wenn aktuell produzierte Beckhoff-Geräte in der realen Applikation verwendet werden. Nur wenn ältere Geräte aus Lagerbeständen in der Applikation verbaut werden sollen, ist es sinnvoll eine ältere Revision einzubinden.

Das Gerät stellt sich dann mit seinem Prozessabbild im Konfigurationsbaum dar und kann nur parametriert werden: Verlinkung mit der Task, CoE/DC-Einstellungen, PlugIn-Definition, StartUp-Einstellungen, ...

Abb. 138: EtherCAT Klemme im TwinCAT-Baum (links: TwinCAT 2; rechts: TwinCAT 3)

5.3.6 ONLINE Konfigurationserstellung

Erkennen/Scan des Geräts EtherCAT

Befindet sich das TwinCAT-System im CONFIG-Modus, kann online nach Geräten gesucht werden. Erkennbar ist dies durch ein Symbol unten rechts in der Informationsleiste:

- bei TwinCAT 2 durch eine blaue Anzeige "Config Mode" im System Manager-Fenster: Config Mode .
- bei der Benutzeroberfläche der TwinCAT 3 Entwicklungsumgebung durch ein Symbol 😐.

TwinCAT lässt sich in diesem Modus versetzen:

- TwinCAT 2: durch Auswahl von 🕺 aus der Menüleiste oder über "Aktionen" → "Starten/Restarten von TwinCAT in Konfig-Modus"
- TwinCAT 3: durch Auswahl von aus der Menüleiste oder über "TWINCAT" → "Restart TwinCAT (Config Mode)"

Online Scannen im Config Mode

Die Online-Suche im RUN-Modus (produktiver Betrieb) ist nicht möglich. Es ist die Unterscheidung zwischen TwinCAT-Programmiersystem und TwinCAT-Zielsystem zu beachten.

Das TwinCAT 2-Icon () bzw. TwinCAT 3-Icon () in der Windows Taskleiste stellt immer den TwinCAT-Modus des lokalen IPC dar. Im System Manager-Fenster von TwinCAT 2 bzw. in der Benutzeroberfläche von TwinCAT 3 wird dagegen der TwinCAT-Zustand des Zielsystems angezeigt.

TwinCAT 2.x Systemmanager	TwinCAT Modus des Zielsystem	s TwinCAT	3.x GUI
Local (192.168.0.20.1.1)	×		> 🔳
	← Windows Taskleiste →	•• 📣 🗐 💽	12:37 05.02.2015
	winCAT Modus des Lokalsystem		

Abb. 139: Unterscheidung Lokalsystem/ Zielsystem (links: TwinCAT 2; rechts: TwinCAT 3)

Im Konfigurationsbaum bringt uns ein Rechtsklick auf den General-Punkt "I/O Devices" zum Such-Dialog.

Abb. 140: Scan Devices (links: TwinCAT 2; rechts: TwinCAT 3)

Dieser Scan-Modus versucht nicht nur EtherCAT-Geräte (bzw. die als solche nutzbaren Ethernet-Ports) zu finden, sondern auch NOVRAM, Feldbuskarten, SMB etc. Nicht alle Geräte können jedoch automatisch gefunden werden.

TwinCAT System Manager	Microsoft Visual Studio
HINWEIS: Es können nicht alle Gerätetypen automatisch erkannt werden	HINWEIS: Es können nicht alle Gerätetypen automatisch erkannt werden
OK Abbrechen	OK Abbrechen

Abb. 141: Hinweis automatischer GeräteScan (links: TwinCAT 2; rechts: TwinCAT 3)

Ethernet Ports mit installierten TwinCAT Realtime-Treiber werden als "RT-Ethernet" Geräte angezeigt. Testweise wird an diesen Ports ein EtherCAT-Frame verschickt. Erkennt der Scan-Agent an der Antwort, dass ein EtherCAT-Slave angeschlossen ist, wird der Port allerdings gleich als "EtherCAT Device" angezeigt.

Abb. 142: Erkannte Ethernet-Geräte

Über entsprechende Kontrollkästchen können Geräte ausgewählt werden (wie in der Abb. "Erkannte Ethernet-Geräte" gezeigt ist z. B. Gerät 3 und Gerät 4 ausgewählt). Für alle angewählten Geräte wird nach Bestätigung "OK" im nachfolgenden ein Teilnehmer-Scan vorgeschlagen, s. Abb. "Scan-Abfrage nach dem automatischen Anlegen eines EtherCAT-Gerätes".

Auswahl des Ethernet-Ports

Es können nur Ethernet-Ports für ein EtherCAT-Gerät ausgewählt werden, für die der TwinCAT Realtime-Treiber installiert ist. Dies muss für jeden Port getrennt vorgenommen werden. Siehe dazu die entsprechende Installationsseite [> 167].

Erkennen/Scan der EtherCAT Teilnehmer

Funktionsweise Online Scan

Beim Scan fragt der Master die Identity Informationen der EtherCAT Slaves aus dem Slave-EEPROM ab. Es werden Name und Revision zur Typbestimmung herangezogen. Die entsprechenden Geräte werden dann in den hinterlegten ESI-Daten gesucht und in dem dort definierten Default-Zustand in den Konfigurationsbaum eingebaut.

Abb. 143: Beispiel Default-Zustand

HINWEIS

Slave-Scan in der Praxis im Serienmaschinenbau

Die Scan-Funktion sollte mit Bedacht angewendet werden. Sie ist ein praktisches und schnelles Werkzeug, um für eine Inbetriebnahme eine Erst-Konfiguration als Arbeitsgrundlage zu erzeugen. Im Serienmaschinebau bzw. bei Reproduktion der Anlage sollte die Funktion aber nicht mehr zur

Konfigurationserstellung verwendet werden sondern ggf. zum Vergleich [188] mit der festgelegten Erst-Konfiguration.

Hintergrund: da Beckhoff aus Gründen der Produktpflege gelegentlich den Revisionsstand der ausgelieferten Produkte erhöht, kann durch einen solchen Scan eine Konfiguration erzeugt werden, die (bei identischem Maschinenaufbau) zwar von der Geräteliste her identisch ist, die jeweilige Geräterevision unterscheiden sich aber ggf. von der Erstkonfiguration.

Beispiel

Firma A baut den Prototyp einer späteren Serienmaschine B. Dazu wird der Prototyp aufgebaut, in TwinCAT ein Scan über die IO-Geräte durchgeführt und somit die Erstkonfiguration "B.tsm" erstellt. An einer beliebigen Stelle sitzt dabei die EtherCAT-Klemme EL2521-0025 in der Revision 1018. Diese wird also so in die TwinCAT-Konfiguration eingebaut:

BECKHOFF

	General	EtherCAT	DC	Proces	s Data	Startup	CoE - Online	Online
	Type:		EL252	1-0025	1Ch. Pu	ulse Train 2	4V DC Output	negative
l	Product	/Revision:	EL252	1-0025-	1018 (0)9d93052 /	03fa0019)	

Abb. 144: Einbau EtherCAT-Klemme mit Revision -1018

Ebenso werden in der Prototypentestphase Funktionen und Eigenschaften dieser Klemme durch die Programmierer/Inbetriebnehmer getestet und ggf. genutzt d. h. aus der PLC "B.pro" oder der NC angesprochen. (sinngemäß gilt das gleiche für die TwinCAT 3-Solution-Dateien).

Nun wird die Prototypenentwicklung abgeschlossen und der Serienbau der Maschine B gestartet, Beckhoff liefert dazu weiterhin die EL2521-0025-0018. Falls die Inbetriebnehmer der Abteilung Serienmaschinenbau immer einen Scan durchführen, entsteht dabei bei jeder Maschine wieder ein eine inhaltsgleiche B-Konfiguration. Ebenso werden eventuell von A weltweit Ersatzteillager für die kommenden Serienmaschinen mit Klemmen EL2521-0025-1018 angelegt.

Nach einiger Zeit erweitert Beckhoff die EL2521-0025 um ein neues Feature C. Deshalb wird die FW geändert, nach außen hin kenntlich durch einen höheren FW-Stand **und eine neue Revision** -1019. Trotzdem unterstützt das neue Gerät natürlich Funktionen und Schnittstellen der Vorgängerversion(en), eine Anpassung von "B.tsm" oder gar "B.pro" ist somit nicht nötig. Die Serienmaschinen können weiterhin mit "B.tsm" und "B.pro" gebaut werden, zur Kontrolle der aufgebauten Maschine ist ein <u>vergleichernder Scan</u> [<u>188]</u> gegen die Erstkonfiguration "B.tsm" sinnvoll.

Wird nun allerdings in der Abteilung Seriennmaschinenbau nicht "B.tsm" verwendet, sondern wieder ein Scan zur Erstellung der produktiven Konfiguration durchgeführt, wird automatisch die Revision **-1019** erkannt und in die Konfiguration eingebaut:

General	EtherCAT	DC Process Da			Startup	CoE - Online
Type:		EL252	1-0025	1Ch. Pu	ulse Train 2	4V DC Output r
Product	/Revision:	EL252	1-0025	1019 (0)9d93052 /	03fb0019)

Abb. 145: Erkennen EtherCAT-Klemme mit Revision -1019

Dies wird in der Regel von den Inbetriebnehmern nicht bemerkt. TwinCAT kann ebenfalls nichts melden, da ja quasi eine neue Konfiguration erstellt wird. Es führt nach der Kompatibilitätsregel allerdings dazu, dass in diese Maschine später keine EL2521-0025-**1018** als Ersatzteil eingebaut werden sollen (auch wenn dies in den allermeisten Fällen dennoch funktioniert).

Dazu kommt, dass durch produktionsbegleitende Entwicklung in Firma A das neue Feature C der EL2521-0025-1019 (zum Beispiel ein verbesserter Analogfilter oder ein zusätzliches Prozessdatum zur Diagnose) gerne entdeckt und ohne betriebsinterne Rücksprache genutzt wird. Für die so entstandene neue Konfiguration "B2.tsm" ist der bisherige Bestand an Ersatzteilgeräten nicht mehr zu verwenden.

Bei etabliertem Serienmaschinenbau sollte der Scan nur noch zu informativen Vergleichszwecken gegen eine definierte Erstkonfiguration durchgeführt werden. Änderungen sind mit Bedacht durchzuführen!

Wurde ein EtherCAT-Device in der Konfiguration angelegt (manuell oder durch Scan), kann das I/O-Feld nach Teilnehmern/Slaves gescannt werden.

TwinCAT System Manager	x
Nach neuen Boxen suchen	
Ja Nein	

Abb. 146: Scan-Abfrage nach dem automatischen Anlegen eines EtherCAT-Gerätes (links: TwinCAT 2; rechts TwinCAT 3)

对 E/A - Konfiguration 🗄 🖬 E/A Geräte		☑ E/A ▲ ⁴ ¹			
erät 1 (EtherCAT)	Box Anfügen Boxen scannen	 ▶ ➡ Gerät 1 (EtherCAT) ▶ ➡ Gerät 3 (EtherCAT) ➡ Zuordnungen 	ם סי א	Neues Element hinzufügen Einfg Vorhandenes Element hinzufügen Umschalt	:+Alt+A
	X Ausschneiden Strg+X		×	Change Id.	
	Change NetId		•	Disable	

Abb. 147: Manuelles Auslösen des Teilnehmer-Scans auf festegelegtem EtherCAT Device (links: TwinCAT 2; rechts TwinCAT 3)

Im System Manager (TwinCAT 2) bzw. der Benutzeroberfläche (TwinCAT 3) kann der Scan-Ablauf am Ladebalken unten in der Statusleiste verfolgt werden.

Suche	 	remote-PLC (123.45.67.89.1.1)	Config Mode	ai
				-

Abb. 148: Scanfortschritt am Beispiel von TwinCAT 2

Die Konfiguration wird aufgebaut und kann danach gleich in den Online-Zustand (OPERATIONAL) versetzt werden.

Microsoft Visual Studio
Aktiviere Free Run
Ja Nein

Abb. 149: Abfrage Config/FreeRun (links: TwinCAT 2; rechts TwinCAT 3)

Im Config/FreeRun-Mode wechselt die System Manager Anzeige blau/rot und das EtherCAT-Gerät wird auch ohne aktive Task (NC, PLC) mit der Freilauf-Zykluszeit von 4 ms (Standardeinstellung) betrieben.

Abb. 150: Anzeige des Wechsels zwischen "Free Run" und "Config Mode" unten rechts in der Statusleiste

Abb. 151: TwinCAT kann auch durch einen Button in diesen Zustand versetzt werden (links: TwinCAT 2; rechts TwinCAT 3)

Das EtherCAT System sollte sich danach in einem funktionsfähigen zyklischen Betrieb nach Abb. *Beispielhafte Online-Anzeige* befinden.

Abb. 152: Beispielhafte Online-Anzeige

Zu beachten sind

- alle Slaves sollen im OP-State sein
- der EtherCAT Master soll im "Actual State" OP sein
- "Frames/sec" soll der Zykluszeit unter Berücksichtigung der versendeten Frameanzahl sein
- es sollen weder übermäßig "LostFrames"- noch CRC-Fehler auftreten

Die Konfiguration ist nun fertig gestellt. Sie kann auch wie im <u>manuellen Vorgang [▶ 178]</u> beschrieben verändert werden.

Problembehandlung

Beim Scannen können verschiedene Effekte auftreten.

 es wird ein unbekanntes Gerät entdeckt, d. h. ein EtherCAT Slave f
ür den keine ESI-XML-Beschreibung vorliegt.
 In diesem Fall bietet der System Manager an die im Ger
ät eventuell vorliegende ESI auszule

In diesem Fall bietet der System Manager an, die im Gerät eventuell vorliegende ESI auszulesen. Lesen Sie dazu das Kapitel "Hinweise zu ESI/XML".

Teilnehmer werden nicht richtig erkannt

Ursachen können sein

- · fehlerhafte Datenverbindungen, es treten Datenverluste während des Scans auf
- · Slave hat ungültige Gerätebeschreibung

Es sind die Verbindungen und Teilnehmer gezielt zu überprüfen, z. B. durch den Emergency Scan.

Der Scan ist dann erneut vorzunehmen.

Abb. 153: Fehlerhafte Erkennung

Im System Manager werden solche Geräte evtl. als EK0000 oder unbekannte Geräte angelegt. Ein Betrieb ist nicht möglich bzw. sinnvoll.

Scan über bestehender Konfiguration

HINWEIS

Veränderung der Konfiguration nach Vergleich

Bei diesem Scan werden z. Z. (TwinCAT 2.11 bzw. 3.1) nur die Geräteeigenschaften Vendor (Hersteller), Gerätename und Revision verglichen! Ein "ChangeTo" oder "Copy" sollte nur im Hinblick auf die Beckhoff IO-Kompatibilitätsregel (s. o.) nur mit Bedacht vorgenommen werden. Das Gerät wird dann in der Konfiguration gegen die vorgefundene Revision ausgetauscht, dies kann Einfluss auf unterstützte Prozessdaten und Funktionen haben.

Wird der Scan bei bestehender Konfiguration angestoßen, kann die reale I/O-Umgebung genau der Konfiguration entsprechen oder differieren. So kann die Konfiguration verglichen werden.

Abb. 154: Identische Konfiguration (links: TwinCAT 2; rechts TwinCAT 3)

Sind Unterschiede feststellbar, werden diese im Korrekturdialog angezeigt, die Konfiguration kann umgehend angepasst werden.

Check Configuration		X
Found Items:	Disable >	Configured Items:
Ierm 3 [EK1100] [EK1100-0000-0017] Ierm 6 [EL5101] [EL5101-0000-1019]	Ignore >	Ierm 1 [EK1100] [EK1100-0000-0017]
Term 7 (EL2521) [EL2521-0000-1019] Term 8 (EL3351) [EL3351-0000-0016] Term 9 (EL9011)	Delete >	Term 5 (EL2521) [EL2521-0000-1016]
	> Copy Before >	
	> Copy After >	
	> Change to >	
	>> Copy All >>	
	OK Cancel	
Extended Information		

Abb. 155: Korrekturdialog

Die Anzeige der "Extended Information" wird empfohlen, weil dadurch Unterschiede in der Revision sichtbar werden.

Farbe	Erläuterung
grün	Dieser EtherCAT Slave findet seine Entsprechung auf der Gegenseite. Typ und Revision stimmen
	uberein.

Farbe	Erläuterung
blau	Dieser EtherCAT Slave ist auf der Gegenseite vorhanden, aber in einer anderen Revision. Diese andere Revision kann andere Default-Einstellungen der Prozessdaten und andere/zusätzliche Funktionen haben. Ist die gefundene Revision > als die konfigurierte Revision, ist der Einsatz unter Berücksichtigung der Kompatibilität möglich.
	Ist die gefundene Revision < als die konfigurierte Revision, ist der Einsatz vermutlich nicht möglich. Eventuell unterstützt das vorgefundene Gerät nicht alle Funktionen, die der Master von ihm aufgrund der höheren Revision erwartet.
hellblau	Dieser EtherCAT Slave wird ignoriert (Button "Ignore")
rot	Dieser EtherCAT Slave ist auf der Gegenseite nicht vorhanden
	 Er ist vorhanden, aber in einer anderen Revision, die sich auch in den Eigenschaften von der angegebenen unterscheidet. Auch hier gilt dann das Kompatibilitätsprinzip: Ist die gefundene Revision > als die konfigurierte Revision, ist der Einsatz unter Berücksichtigung der Kompatibilität möglich, da Nachfolger-Gerä- te die Funktionen der Vorgänger-Geräte unterstützen sollen.
	Ist die gefundene Revision < als die konfigurierte Revision, ist der Einsatz vermutlich nicht möglich. Eventuell unterstützt das vorgefundene Gerät nicht alle Funktionen, die der Master von ihm aufgrund der höheren Revision erwartet.

Geräte-Auswahl nach Revision, Kompatibilität

Mit der ESI-Beschreibung wird auch das Prozessabbild, die Art der Kommunikation zwischen Master und Slave/Gerät und ggf. Geräte-Funktionen definiert. Damit muss das reale Gerät (Firmware wenn vorhanden) die Kommunikationsanfragen/-einstellungen des Masters unterstützen. Dies ist abwärtskompatibel der Fall, d. h. neuere Geräte (höhere Revision) sollen es auch unterstützen, wenn der EtherCAT Master sie als eine ältere Revision anspricht. Als Beckhoff-Kompatibilitätsregel für EtherCAT-Klemmen/ Boxen/ EJ-Module ist anzunehmen:

Geräte-Revision in der Anlage >= Geräte-Revision in der Konfiguration

Dies erlaubt auch den späteren Austausch von Geräten ohne Veränderung der Konfiguration (abweichende Vorgaben bei Antrieben möglich).

Beispiel

In der Konfiguration wird eine EL2521-0025-**1018** vorgesehen, dann kann real eine EL2521-0025-**1018** oder höher (-**1019**, -**1020**) eingesetzt werden.

(EL2521-0025-1018)

Abb. 156: Name/Revision Klemme

Wenn im TwinCAT System aktuelle ESI-Beschreibungen vorliegen, entspricht der im Auswahldialog als letzte Revision angebotene Stand dem Produktionsstand von Beckhoff. Es wird empfohlen, bei Erstellung einer neuen Konfiguration jeweils diesen letzten Revisionsstand eines Gerätes zu verwenden, wenn aktuell produzierte Beckhoff-Geräte in der realen Applikation verwendet werden. Nur wenn ältere Geräte aus Lagerbeständen in der Applikation verbaut werden sollen, ist es sinnvoll eine ältere Revision einzubinden.

BECKHOFF

Abb. 157: Korrekturdialog mit Änderungen

Sind alle Änderungen übernommen oder akzeptiert, können sie durch "OK" in die reale *.tsm-Konfiguration übernommen werden.

Change to Compatible Type

TwinCAT bietet mit "Change to Compatible Type…" eine Funktion zum Austauschen eines Gerätes unter Beibehaltung der Links in die Task.

	🔺 🗮 Gerät 1 (EtherCAT)		
	Antrieb 1 (AX5101-0000-0011)	°D	Neues Element hinzufügen Einfg
			Insert New Item
🕀 🐨 🛊 AT 👘 📲 Append Box	WCState		Insert Existing Iter
WeState	👂 🛄 InfoData	C	,cct File
InfoData Ändern in kompatiblen Typ		•	Disable
Add to Hot Connect Groups			Change to Compatible Type
			Add to HotConnect group

Abb. 158: Dialog "Change to Compatible Type..." (links: TwinCAT 2; rechts TwinCAT 3)

Folgende Elemente in der ESI eines EtherCAT-Teilenhmers werden von TwinCAT verglichen und als gleich vorausgesetzt, um zu entscheiden, ob ein Gerät als "kompatibel" angezeigt wird:

- Physics (z.B. RJ45, Ebus...)
- FMMU (zusätzliche sind erlaubt)
- SyncManager (SM, zusätzliche sind erlaubt)
- EoE (Attribute MAC, IP)
- CoE (Attribute SdoInfo, PdoAssign, PdoConfig, PdoUpload, CompleteAccess)
- FoE
- PDO (Prozessdaten: Reihenfolge, SyncUnit SU, SyncManager SM, EntryCount, Entry.Datatype)

Bei Geräten der AX5000-Familie wird diese Funktion intensiv verwendet.

Change to Alternative Type

Der TwinCAT System Manager bietet eine Funktion zum Austauschen eines Gerätes: Change to Alternative Type

BECKHOFF

)	
	202)	1
-	■ Append Box	
	Change to Compatible 1980	L 7
	Add to Hot Connect Groups	
	Change to Alternative Type 🔷 🕨	EL1202-0100 2Ch. Fast Dig. Input 24V, 1µs, DC Latch

Abb. 159: TwinCAT 2 Dialog Change to Alternative Type

Wenn aufgerufen, sucht der System Manager in der bezogenen Geräte-ESI (hier im Beispiel: EL1202-0000) nach dort enthaltenen Angaben zu kompatiblen Geräten. Die Konfiguration wird geändert und gleichzeitig das ESI-EEPROM überschrieben - deshalb ist dieser Vorgang nur im Online-Zustand (ConfigMode) möglich.

5.3.7 EtherCAT-Teilnehmerkonfiguration

Klicken Sie im linken Fenster des TwinCAT 2 System Managers bzw. bei der TwinCAT 3 Entwicklungsumgebung im Projektmappen-Explorer auf das Element der Klemme im Baum, die Sie konfigurieren möchten (im Beispiel: Klemme 3: EL3751).

TwinCAT 2:	Т	winCAT 3:	Doppelklick auf das Klemmenelement öffnet Figenschaften
🖃 📲 Klemme 3 (EL3751) <	1	Klemme 3 (EL3751)	mit diversen Registerkarten
🛓 🗤 😂 PAI Status	⊳	🔁 PAI Status	int diversion registeriation
🚋 🗤 😂 🅈 PAI Samples 1	⊳	🕒 PAI Samples 1	*
🚋 🖓 💱 PAI Timestamp	⊳	🔁 PAI Timestamp	
🚊 💀 象 WcState	⊳	🛄 WcState	Allgemein EtherCAT Settings DC Prozessdaten Startup CoE - Online Diag History Online
🛓 💀 😫 InfoData	Þ	🛄 InfoData	

Abb. 160: "Baumzweig" Element als Klemme EL3751

Im rechten Fenster des System Managers (TwinCAT 2) bzw. der Entwicklungsumgebung (TwinCAT 3) stehen Ihnen nun verschiedene Karteireiter zur Konfiguration der Klemme zur Verfügung. Dabei bestimmt das Maß der Komplexität eines Teilnehmers welche Karteireiter zur Verfügung stehen. So bietet, wie im obigen Beispiel zu sehen, die Klemme EL3751 viele Einstellmöglichkeiten und stellt eine entsprechende Anzahl von Karteireitern zur Verfügung. Im Gegensatz dazu stehen z. B. bei der Klemme EL1004 lediglich die Karteireiter "Allgemein", "EtherCAT", "Prozessdaten" und "Online" zur Auswahl. Einige Klemmen, wie etwa die EL6695 bieten spezielle Funktionen über einen Karteireiter mit der eigenen Klemmenbezeichnung an, also "EL6695" in diesem Fall. Ebenfalls wird ein spezieller Karteireiter "Settings" von Klemmen mit umfangreichen Einstellmöglichkeiten angeboten (z. B. EL3751).

Karteireiter "Allgemein"

Allgemein Ether	rCAT Prozessdaten Startup CoE - Online Onlin Klemme 6 (EL5001)	e Id: 6		
Тур:	EL5001 1K. SSI Encoder	EL5001 1K. SSI Encoder		
<u>K</u> ommentar:				
	☐ <u>D</u> isabled	Symbole erzeugen 🗖		

Abb. 161: Karteireiter "Allgemein"

Name	Name des EtherCAT-Geräts
ld	Laufende Nr. des EtherCAT-Geräts
Тур	Typ des EtherCAT-Geräts
Kommentar	Hier können Sie einen Kommentar (z. B. zum Anlagenteil) hinzufügen.
Disabled	Hier können Sie das EtherCAT-Gerät deaktivieren.
Symbole erzeugen	Nur wenn dieses Kontrollkästchen aktiviert ist, können Sie per ADS auf diesen EtherCAT-Slave zugreifen.

Karteireiter "EtherCAT"

Allgemein	EtherCAT	Prozessdaten Startup	CoE - Online Online
Тур:		EL5001 1K. SSI Encode	r
Produkt / Revision:		EL5001-0000-0000	
Auto-Inc-Adresse:		FFFB	
EtherCAT-Adresse: 🗖		1006	Weitere Einstellungen
Vorgänger-	Port:	Klemme 5 (EL5001) - B	
Vorgänger-	Port:	Klemme 5 (EL5001) - B	
Vorgänger-	Port:	Klemme 5 (EL5001) - B	

Abb. 162: Karteireiter "EtherCAT"

Typ Product/Revision Auto Inc Adr.	Typ des EtherCAT-Geräts Produkt- und Revisions-Nummer des EtherCAT-Geräts Auto-Inkrement-Adresse des EtherCAT-Geräts. Die Auto-Inkrement-Adresse kann benutzt werden, um jedes EtherCAT-Gerät anhand seiner physikalischen Position im Kommunikationsring zu adressieren. Die Auto-Inkrement- Adressierung wird während der Start-Up-Phase benutzt, wenn der EtherCAT- master die Adressen an die EtherCAT-Geräte vergibt. Bei der Auto-Inkrement- Adressierung hat der erste EtherCAT-Slave im Ring die Adresse 0000 _{hex} und für jeden weiteren Folgenden wird die Adresse um 1 verringert (FFFF _{hex} , FFFE _{hex}
EtherCAT Adr.	usw.). Feste Adresse eines EtherCAT-Slaves. Diese Adresse wird vom EtherCAT- Master während der Start-Up-Phase vergeben. Um den Default-Wert zu ändern, müssen Sie zuvor das Kontrollkästchen links von dem Eingabefeld markieren.
Vorgänger Port	Name und Port des EtherCAT-Geräts, an den dieses Gerät angeschlossen ist. Falls es möglich ist, dieses Gerät mit einem anderen zu verbinden, ohne die Reihenfolge der EtherCAT-Geräte im Kommunikationsring zu ändern, dann ist dieses Kombinationsfeld aktiviert und Sie können das EtherCAT-Gerät auswählen, mit dem dieses Gerät verbunden werden soll.
Weitere Einstellungen	Diese Schaltfläche öffnet die Dialoge für die erweiterten Einstellungen.

Der Link am unteren Rand des Karteireiters führt Sie im Internet auf die Produktseite dieses EtherCAT-Geräts.

Karteireiter "Prozessdaten"

Zeigt die (Allgemeine Slave PDO-) Konfiguration der Prozessdaten an. Die Eingangs- und Ausgangsdaten des EtherCAT-Slaves werden als CANopen Prozess-Daten-Objekte (**P**rocess **D**ata **O**bjects, PDO) dargestellt. Falls der EtherCAT-Slave es unterstützt, ermöglicht dieser Dialog dem Anwender ein PDO über PDO-Zuordnung auszuwählen und den Inhalt des individuellen PDOs zu variieren.

BECKHOFF

BECKHOFF

Allgemein EtherCAT Prozessdaten	Startup CoE - Online Online
Sync-Manager:	PDO-Liste:
SMSizeTypeFlags0246MbxOut1246MbxIn20Outputs35Inputs	Index Size Name Flags SM SU 0x1A00 5.0 Channel 1 F 3 0
PD0-Zuordnung (0x1C13): ▼0x1A00	Index Size Offs Name Type 0x3101:01 1.0 0.0 Status BYTE 0x3101:02 4.0 1.0 Value UDINT 5.0 5.0 5.0 5.0 5.0
Download PDO-Zuordnung PDO-Konfiguration	Lade PDO-Info aus dem Gerät Sync-Unit-Zuordnung

Abb. 163: Karteireiter "Prozessdaten"

Die von einem EtherCAT Slave zyklisch übertragenen Prozessdaten (PDOs) sind die Nutzdaten, die in der Applikation zyklusaktuell erwartet werden oder die an den Slave gesendet werden. Dazu parametriert der EtherCAT Master (Beckhoff TwinCAT) jeden EtherCAT Slave während der Hochlaufphase, um festzulegen, welche Prozessdaten (Größe in Bit/Bytes, Quellort, Übertragungsart) er von oder zu diesem Slave übermitteln möchte. Eine falsche Konfiguration kann einen erfolgreichen Start des Slaves verhindern.

Für Beckhoff EtherCAT Slaves EL, ES, EM, EJ und EP gilt im Allgemeinen:

- Die vom Gerät unterstützten Prozessdaten Input/Output sind in der ESI/XML-Beschreibung herstellerseitig definiert. Der TwinCAT EtherCAT Master verwendet die ESI-Beschreibung zur richtigen Konfiguration des Slaves.
- Wenn vorgesehen, können die Prozessdaten im System Manager verändert werden. Siehe dazu die Gerätedokumentation.
 Solche Veränderungen können sein: Ausblenden eines Kanals, Anzeige von zusätzlichen zyklischen Informationen, Anzeige in 16 Bit statt in 8 Bit Datenumfang usw.
- Die Prozessdateninformationen liegen bei so genannten "intelligenten" EtherCAT-Geräten ebenfalls im CoE-Verzeichnis vor. Beliebige Veränderungen in diesem CoE-Verzeichnis, die zu abweichenden PDO-Einstellungen führen, verhindern jedoch das erfolgreiche Hochlaufen des Slaves. Es wird davon abgeraten, andere als die vorgesehene Prozessdaten zu konfigurieren, denn die Geräte-Firmware (wenn vorhanden) ist auf diese PDO-Kombinationen abgestimmt.

Ist laut Gerätedokumentation eine Veränderung der Prozessdaten zulässig, kann dies wie folgt vorgenommen werden, s. Abb. *Konfigurieren der Prozessdaten*.

- A: Wählen Sie das zu konfigurierende Gerät
- B: Wählen Sie im Reiter "Process Data" den Input- oder Output-Syncmanager (C)
- D: die PDOs können an- bzw. abgewählt werden
- H: die neuen Prozessdaten sind als link-fähige Variablen im System Manager sichtbar Nach einem Aktivieren der Konfiguration und TwinCAT-Neustart (bzw. Neustart des EtherCAT Masters) sind die neuen Prozessdaten aktiv.
- E: wenn ein Slave dies unterstützt, können auch Input- und Output-PDO gleichzeitig durch Anwahl eines so genannten PDO-Satzes ("Predefined PDO-settings") verändert werden.

Abb. 164: Konfigurieren der Prozessdaten

Manuelle Veränderung der Prozessdaten

In der PDO-Übersicht kann laut ESI-Beschreibung ein PDO als "fixed" mit dem Flag "F" gekennzeichnet sein (Abb. *Konfigurieren der Prozessdaten*, J). Solche PDOs können prinzipiell nicht in ihrer Zusammenstellung verändert werden, auch wenn TwinCAT den entsprechenden Dialog anbietet ("Edit"). Insbesondere können keine beliebigen CoE-Inhalte als zyklische Prozessdaten eingeblendet werden. Dies gilt im Allgemeinen auch für den Fall, dass ein Gerät den Download der PDO Konfiguration "G" unterstützt. Bei falscher Konfiguration verweigert der EtherCAT Slave üblicherweise den Start und Wechsel in den OP-State. Eine Logger-Meldung wegen "invalid SM cfg" wird im System Manager ausgegeben: Diese Fehlermeldung "invalid SM IN cfg" oder "invalid SM OUT cfg" bietet gleich einen Hinweis auf die Ursache des fehlgeschlagenen Starts.

Eine <u>detaillierte Beschreibung</u> [▶ <u>199</u>] befindet sich am Ende dieses Kapitels.

Karteireiter "Startup"

Der Karteireiter *Startup* wird angezeigt, wenn der EtherCAT-Slave eine Mailbox hat und das Protokoll *CANopen over EtherCAT* (CoE) oder das Protokoll *Servo drive over EtherCAT* unterstützt. Mit Hilfe dieses Karteireiters können Sie betrachten, welche Download-Requests während des Startups zur Mailbox gesendet werden. Es ist auch möglich neue Mailbox-Requests zur Listenanzeige hinzuzufügen. Die Download-Requests werden in derselben Reihenfolge zum Slave gesendet, wie sie in der Liste angezeigt werden.

RECKHOEE

BECKHOFF

AI	lgemein 🛛 Et	herCAT 📔	Prozessdaten	Startup CoE	- Online Online	
ſ	Transition	Brotocol	Indou	Data	Commont	
	ZDCN		0.4C12-00		comment	
	KES2 ZPSN	COE	0x1C12.00		clear smipdos (0x1C12)	
	<ps></ps>	CoE	0x1C13:01	0x1A00 (6656)	download pdo 0x1C13:01 index	
	<ps></ps>	CoE	0x1C13:00	0x01 (1)	download pdo 0x1C13 count	
	Move Up	Mov	e Down	Neu	. Löschen Edit.	
1						

Abb. 165: Karteireiter "Startup"

Spalte	Beschreibung
Transition	Übergang, in den der Request gesendet wird. Dies kann entweder
	 der Übergang von Pre-Operational to Safe-Operational (PS) oder
	• der Übergang von Safe-Operational to Operational (SO) sein.
	Wenn der Übergang in "<>" eingeschlossen ist (z. B. <ps>), dann ist der Mailbox Request fest und kann vom Anwender nicht geändert oder gelöscht werden.</ps>
Protokoll	Art des Mailbox-Protokolls
Index	Index des Objekts
Data	Datum, das zu diesem Objekt heruntergeladen werden soll.
Kommentar	Beschreibung des zu der Mailbox zu sendenden Requests
Move Up	Diese Schaltfläche bewegt den markierten Request in der Liste um eine Position nach oben.

Move Down	Diese Schaltfläche bewegt den markierten Request in der Liste um eine Position nach unten.
New	Diese Schaltfläche fügt einen neuen Mailbox-Download-Request, der währen des Startups

11011	Biede Behaltingene hagt einen neder manbex Bermieda Hequeet, der Manien des Start
	gesendet werden soll hinzu.
Delete	Diese Schaltfläche löscht den markierten Eintrag.

Edit Diese Schaltfläche editiert einen existierenden Request.

Karteireiter "CoE - Online"

Wenn der EtherCAT-Slave das Protokoll *CANopen over EtherCAT* (CoE) unterstützt, wird der zusätzliche Karteireiter *CoE - Online* angezeigt. Dieser Dialog listet den Inhalt des Objektverzeichnisses des Slaves auf (SDO-Upload) und erlaubt dem Anwender den Inhalt eines Objekts dieses Verzeichnisses zu ändern. Details zu den Objekten der einzelnen EtherCAT-Geräte finden Sie in den gerätespezifischen Objektbeschreibungen.

BECKHOFF

Al	Allgemein EtherCAT Prozessdaten Startup CoE - Online Online			
Update List 🛛 🗖 Auto Update				
Î	Advanced			
-	Advanced			
	Index	Name	Flags	Wert
	1000	Device type	RO	0x00000000 (0)
	1008	Device name	RO	EL5001-0000
	1009	Hardware version	RO	V00.01
	100A	Software version	RO	V00.07
	E 1011:0	Restore default parame	RW	>1<
	1011:01	Restore all	RW	0
	E 1018:0	Identity object	RO	> 4 <
	1018:01	Vendor id	RO	0x00000002 (2)
	1018:02	Product code	RO	0x13893052 (327757906)
	1018:03	Revision number	RO	0x00000000 (0)
	1018:04	Serial number	RO	0x00000001 (1)
	E 1A00:0	TxPDO 001 mapping	RO	>2<
	1A00:01	Subindex 001	RO	0x3101:01,8
	1A00:02	Subindex 002	RO	0x3101:02, 32
	E 1C00:0	SM type	RO	> 4 <
	1C00:01	Subindex 001	RO	0x01 (1)
	1000:02	Subindex 002	RO	0x02 (2)
	1000:03	Subindex 003	RO	0x03 (3)
	1C00:04	Subindex 004	RO	0x04 (4)
	E-1C13:0	SM 3 PDO assign (inputs)	RW	>1<
	1C13:01	Subindex 001	RW	0x1A00 (6656)
	E 3101:0	Inputs	RO P	>2<
	3101:01	Status	RO P	0x41 (65)
	3101:02	Value	RO P	0x00000000 (0)
	E 4061:0	Feature bits	RW	> 4 <
	4061:01	disable frame error	RW	FALSE
	4061:02	enbale power failure Bit	RW	FALSE
	4061:03	enable inhibit time	RW	FALSE
	4061:04	enable test mode	RW	FALSE
	4066	SSI-coding	BW	Gray code (1)
	4067	SSI-baudrate	BW	500 kBaud (3)
	4068	SSI-frame type	BW	Multitum 25 bit (0)
	4069	SSI-frame size	BW	0x0019 (25)
	406A	Data length	BW	0x0018 (24)
	406B	Min. inhibit time[μs]	RW	0x0000 (0)

Abb. 166: Karteireiter "CoE - Online"

Darstellung der Objekt-Liste

Spalte	Beschrei	Beschreibung	
Index	Index und	Index und Subindex des Objekts	
Name	Name des	Name des Objekts	
Flags	RW	Das Objekt kann ausgelesen und Daten können in das Objekt geschrieben werden (Read/Write)	
	RO	Das Objekt kann ausgelesen werden, es ist aber nicht möglich Daten in das Objekt zu schreiben (Read only)	
	Р	Ein zusätzliches P kennzeichnet das Objekt als Prozessdatenobjekt.	
Wert	Wert des	Wert des Objekts	

Update List Auto Update

Die Schaltfläche *Update List* aktualisiert alle Objekte in der Listenanzeige Wenn dieses Kontrollkästchen angewählt ist, wird der Inhalt der Objekte automatisch aktualisiert.

Advanced

Die Schaltfläche *Advanced* öffnet den Dialog *Advanced Settings*. Hier können Sie festlegen, welche Objekte in der Liste angezeigt werden.

Advanced Settings		×
Backup	Dictionary C Online - via SDO Information All Objects Mappable Objects (RxPDO) Mappable Objects (TxPDO)	
	Backup Objects Settings Objects O Offline - via EDS File Browse	
	OK Abbrechen	┛

Abb. 167: Dialog "Advanced settings"

Online - über SDO- Information	Wenn dieses Optionsfeld angewählt ist, wird die Liste der im Objektverzeichnis des Slaves enthaltenen Objekte über SDO-Information aus dem Slave hochgeladen. In der untenstehenden Liste können Sie festlegen welche Objekt-Typen hochgeladen werden sollen.
Offline - über EDS-Datei	Wenn dieses Optionsfeld angewählt ist, wird die Liste der im Objektverzeichnis enthaltenen Objekte aus einer EDS-Datei gelesen, die der Anwender bereitstellt.

Karteireiter "Online"

Allgemein EtherC4	AT Prozessdaten St e Bootstrap Safe-Op Fehler löschen	tartup CoE - Online Online Aktueller Status: OP angeforderter Status: OP
DLL-Status Port A: C Port B: C Port C: N Port D: N File access over Download	Carrier / Open Carrier / Open Io Carrier / Closed Io Carrier / Open I EtherCAT	

Abb. 168: Karteireiter "Online"

Status Maschine

Init

Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status *Init* zu setzen.

Pre-Op	Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status Pre- Operational zu setzen.
Ор	Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status <i>Operational</i> zu setzen.
Bootstrap	Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status <i>Bootstrap</i> zu setzen.
Safe-Op	Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status Safe- Operational zu setzen.
Fehler löschen	Diese Schaltfläche versucht die Fehleranzeige zu löschen. Wenn ein EtherCAT-Slave beim Statuswechsel versagt, setzt er eine Fehler-Flag.
	Beispiel: ein EtherCAT-Slave ist im Zustand PREOP (Pre-Operational). Nun fordert der Master den Zustand SAFEOP (Safe-Operational) an. Wenn der Slave nun beim Zustandswechsel versagt, setzt er das Fehler-Flag. Der aktuelle Zustand wird nun als ERR PREOP angezeigt. Nach Drücken der Schaltfläche <i>Fehler löschen</i> ist das Fehler-Flag gelöscht und der aktuelle Zustand wird wieder als PREOP angezeigt.
Aktueller Status	Zeigt den aktuellen Status des EtherCAT-Geräts an.
Angeforderter Status	Zeigt den für das EtherCAT-Gerät angeforderten Status an.

DLL-Status

Zeigt den DLL-Status (Data-Link-Layer-Status) der einzelnen Ports des EtherCAT-Slaves an. Der DLL-Status kann vier verschiedene Zustände annehmen:

Status	Beschreibung
No Carrier / Open	Kein Carrier-Signal am Port vorhanden, der Port ist aber offen.
No Carrier / Closed	Kein Carrier-Signal am Port vorhanden und der Port ist geschlossen.
Carrier / Open	Carrier-Signal ist am Port vorhanden und der Port ist offen.
Carrier / Closed	Carrier-Signal ist am Port vorhanden, der Port ist aber geschlossen.

File Access over EtherCAT

Download	Mit dieser Schaltfläche können Sie eine Datei zum EtherCAT-Gerät schreiben.
Upload	Mit dieser Schaltfläche können Sie eine Datei vom EtherCAT-Gerät lesen.

Karteireiter "DC" (Distributed Clocks)

Allgemein EtherCAT Settings DC	Prozessdaten Startup CoE - Online Diag History Online
Betriebsart:	SM-Synchron
	Erweiterte Einstellungen

Abb. 169: Karteireiter "DC" (Distributed Clocks)

Betriebsart	Auswahlmöglichkeiten (optional):
	• FreeRun
	SM-Synchron
	 DC-Synchron (Input based)
	DC-Synchron
Erweiterte Einstellungen	Erweiterte Einstellungen für die Nachregelung der echtzeitbestimmende TwinCAT-Uhr

Detaillierte Informationen zu Distributed Clocks sind unter http://infosys.beckhoff.de angegeben:

 $\textbf{Feldbuskomponenten} \rightarrow \textbf{EtherCAT-Klemmen} \rightarrow \textbf{EtherCAT System Dokumentation} \rightarrow \textbf{Distributed Clocks}$

5.3.7.1 Detaillierte Beschreibung des Karteireiters "Prozessdaten"

Sync-Manager

Listet die Konfiguration der Sync-Manager (SM) auf.

Wenn das EtherCAT-Gerät eine Mailbox hat, wird der SM0 für den Mailbox-Output (MbxOut) und der SM1 für den Mailbox-Intput (MbxIn) benutzt.

Der SM2 wird für die Ausgangsprozessdaten (Outputs) und der SM3 (Inputs) für die Eingangsprozessdaten benutzt.

Wenn ein Eintrag ausgewählt ist, wird die korrespondierende PDO-Zuordnung in der darunter stehenden Liste *PDO-Zuordnung* angezeigt.

PDO-Zuordnung

PDO-Zuordnung des ausgewählten Sync-Managers. Hier werden alle für diesen Sync-Manager-Typ definierten PDOs aufgelistet:

- Wenn in der Sync-Manager-Liste der Ausgangs-Sync-Manager (Outputs) ausgewählt ist, werden alle RxPDOs angezeigt.
- Wenn in der Sync-Manager-Liste der Eingangs-Sync-Manager (Inputs) ausgewählt ist, werden alle TxPDOs angezeigt.

Die markierten Einträge sind die PDOs, die an der Prozessdatenübertragung teilnehmen. Diese PDOs werden in der Baumdarstellung dass System-Managers als Variablen des EtherCAT-Geräts angezeigt. Der Name der Variable ist identisch mit dem Parameter *Name* des PDO, wie er in der PDO-Liste angezeigt wird. Falls ein Eintrag in der PDO-Zuordnungsliste deaktiviert ist (nicht markiert und ausgegraut), zeigt dies an, dass dieser Eintrag von der PDO-Zuordnung ausgenommen ist. Um ein ausgegrautes PDO auswählen zu können, müssen Sie zuerst das aktuell angewählte PDO abwählen.

)	Aktivierung	der	PDO-Zuordnun	g
---	--------------------	-----	--------------	---

- ✓ Wenn Sie die PDO-Zuordnung geändert haben, muss zur Aktivierung der neuen PDO-Zuordnung
- a) der EtherCAT-Slave einmal den Statusübergang PS (von Pre-Operational zu Safe-Operational) durchlaufen (siehe <u>Karteireiter Online [▶ 197]</u>)
- b) der System-Manager die EtherCAT-Slaves neu laden

		2 🗣 🛛		1 and 1	
(Schaltfläche	1 39	bei TwinCAT 2 bzw.	*	bei TwinCAT 3)

PDO-Liste

Liste aller von diesem EtherCAT-Gerät unterstützten PDOs. Der Inhalt des ausgewählten PDOs wird der Liste *PDO-Content* angezeigt. Durch Doppelklick auf einen Eintrag können Sie die Konfiguration des PDO ändern.

Spalte	Besc	chreibung					
Index	Index	ndex des PDO.					
Size	Größe des PDO in Byte.						
Name	Name des PDO. Wenn dieses PDO einem Sync-Manager zugeordnet ist, erscheint es als Variable des Slaves mit diesem Parameter als Namen.						
Flags	F	Fester Inhalt: Der Inhalt dieses PDO ist fest und kann nicht vom System-Manager geändert werden.					
	М	Obligatorisches PDO (Mandatory). Dieses PDO ist zwingend Erforderlich und muss deshalb einem Sync-Manager Zugeordnet werden! Als Konsequenz können Sie dieses PDO nicht aus der Liste <i>PDO-Zuordnungen</i> streichen					

BECKHOFF

Spalte	Beschreibung
SM	Sync-Manager, dem dieses PDO zugeordnet ist. Falls dieser Eintrag leer ist, nimmt dieses PDO
SU	Sync-Unit, der dieses PDO zugeordnet ist.

PDO-Inhalt

Zeigt den Inhalt des PDOs an. Falls das Flag F (fester Inhalt) des PDOs nicht gesetzt ist, können Sie den Inhalt ändern.

Download

Falls das Gerät intelligent ist und über eine Mailbox verfügt, können die Konfiguration des PDOs und die PDO-Zuordnungen zum Gerät herunter geladen werden. Dies ist ein optionales Feature, das nicht von allen EtherCAT-Slaves unterstützt wird.

PDO-Zuordnung

Falls dieses Kontrollkästchen angewählt ist, wird die PDO-Zuordnung die in der PDO-Zuordnungsliste konfiguriert ist beim Startup zum Gerät herunter geladen. Die notwendigen, zum Gerät zu sendenden Kommandos können in auf dem Karteireiter <u>Startup</u> [▶_194] betrachtet werden.

PDO-Konfiguration

Falls dieses Kontrollkästchen angewählt ist, wird die Konfiguration des jeweiligen PDOs (wie sie in der PDO-Liste und der Anzeige PDO-Inhalt angezeigt wird) zum EtherCAT-Slave herunter geladen.

5.3.8 Import/Export von EtherCAT-Teilnehmern mittels SCI und XTI

SCI und XTI Export/Import – Handling von benutzerdefiniert veränderten EtherCAT Slaves

5.3.8.1 Grundlagen

Ein EtherCAT Slave wird grundlegend durch folgende "Elemente" parametriert:

- Zyklische Prozessdaten (PDO)
- Synchronisierung (Distributed Clocks, FreeRun, SM-Synchron)
- CoE-Parameter (azyklisches Objektverzeichnis)

Hinweis: je nach Slave sind nicht alle drei Elemente vorhanden.

Zum besseren Verständnis der Export/Import-Funktion wird der übliche Ablauf bei der IO-Konfiguration betrachtet:

 Der Anwender/Programmierer bearbeitet die IO-Konfiguration, d.h. die Gesamtheit der Input/ Output-Geräte, wie etwa Antriebe, die an den verwendeten Feldbussen anliegen, in der TwinCAT-Systemumgebung.

Hinweis: Im Folgenden werden nur EtherCAT-Konfigurationen in der TwinCAT-Systemumgebung betrachtet.

- Der Anwender fügt z.B. manuell Geräte in eine Konfiguration ein oder führt einen Scan auf dem Online-System durch.
- Er erhält dadurch die IO-System-Konfiguration.
- Beim Einfügen erscheint der Slave in der System-Konfiguration in der vom Hersteller vorgesehenen Standard-Konfiguration, bestehend aus Standard-PDO, default-Synchronisierungsmethode und CoE-StartUp-Parameter wie in der ESI (XML Gerätebeschreibung) definiert ist.
- Im Bedarfsfall können dann, entsprechend der jeweiligen Gerätedokumentation, Elemente der Slave-Konfiguration verändert werden, z.B. die PDO-Konfiguration oder die Synchronisierungsmethode.

Nun kann der Bedarf entstehen, den veränderten Slave derartig in anderen Projekten wiederzuverwenden, ohne darin äquivalente Konfigurationsveränderungen an dem Slave nochmals vornehmen zu müssen. Um dies zu bewerkstelligen, ist wie folgt vorzugehen:

- Export der Slave-Konfiguration aus dem Projekt,
- Ablage und Transport als Datei,
- Import in ein anderes EtherCAT-Projekt.

Dazu bietet TwinCAT zwei Methoden:

- innerhalb der TwinCAT-Umgebung: Export/Import als xti-Datei oder
- außerhalb, d.h. TwinCAT-Grenzen überschreitend: Export/Import als sci-Datei.

Zur Veranschaulichung im Folgenden ein Beispiel: eine EL3702-Klemme in Standard-Einstellung wird auf 2-fach Oversampling umgestellt (blau) und das optionale PDO "StartTimeNextLatch" wahlweise hinzugefügt (rot):

Die beiden genannten Methoden für den Export und Import der veränderten Klemme werden im Folgenden demonstriert.

5.3.8.2 Das Vorgehen innerhalb TwinCAT mit xti-Dateien

Jedes IO Gerät kann einzeln exportiert/abgespeichert werden:

Die xti-Datei kann abgelegt:

Term 2 (EL3702).xti	
TwinCAT Export File (*.xti)	

und in einem anderen TwinCAT System über "Insert Existing item" wieder importiert werden:

Term 3 (EL1	(800	
Mappings	*0	Add New Item
		Insert New Item
		Insert Existing Item

5.3.8.3 Das Vorgehen innerhalb und außerhalb TwinCAT mit sci-Datei

Hinweis Verfügbarkeit (2021/01)

Das sog. "SCI-Verfahren" ist ab TwinCAT 3.1 build 4024.14 verfügbar.

Die Slave Configuration Information (SCI) beschreibt eine bestimmte vollständige Konfiguration für einen EtherCAT Slave (Klemme, Box, Antrieb...) basierend auf den Einstellungsmöglichkeiten der Gerätebeschreibungsdatei (ESI, EtherCAT Slave Information). Das heißt, sie umfasst PDO, CoE, Synchronisierung.

Export:

 einzelnes Gerät (auch Mehrfachauswahl möglich) über das Menü auswählen: TwinCAT → EtherCAT Devices → Export SCI.

TwinCAT Project34 - TcXaeShell							
File Edit View Project Build Debug	Twi	nCAT TwinSAFE PLC Team Scope	Tool	s Wind	dow Help		
🖉 🗸 🗢 🛛 📸 🕶 📩 🖕 🔛 👘	r	Windows	→	- 🕨 A	Attach 👻	Ŧ	5
🕴 Build 4024.12 (Loaded) 🛛 🚽 👬 🧱 📕	i.	Activate Configuration			• ₌ 8		-
Solution Explorer 🗸 🗸	4	Restart TwinCAT System					
	*	Restart TwinCAT (Config Mode)					
Second Solution Fundamen (Chile 3)	2	Reload Devices		e			
	6	Toggle Free Run State					
Solution "IwinCAT Project34" (1 project)	٥	Show Online Data		Name		Flags	5
SYSTEM	80 10-02	Show Sub Items		Ch1 C	vcleCount	MF	(
A MOTION	1	Hide Disabled Items		Ch1 S	ample 0	MFO	(
I PLC	5	Software Protection		Ch1 S	ample 1	FO	(
🚯 SAFETY	PEG		_	Ch1 S	ample 2	FO	
9 ₆₊ C++	Ē	Access Bus Coupler/IP Link Register		Ch I S	ample 3	FO	
ANALYTICS		Update Firmware/EEPROM	→	Ch1 S	ample 4	FO	
▲ 2 1/0		Show Realtime Ethernet Compatible Devices)):			
Devices		File Handling	->	Offs	Name		Type
and a bence (careford)		Selected Item	→	0.0	Ch1 CycleCount		UINT
🚔 Image-Info		EtherCAT Devices	• [Exr	ort SCI		UNIT
SyncUnits	63	TrBrojectCompare		Lin	date Device Descript	tions (via ETG W	abcita)
Inputs	43	leriojecteompare		00	uate Device Descript		ebsitej
Outputs		Target Browser	•	Kel	oad Device Descript	ions	
InfoData		Bode Plot	•	Ma	nage User Defined \	Whitelist	
Term 1 (EK1100)		Filter Designer	•	Ma	nage User Defined B	Blacklist	
P InfoData		About TwinCAT					

 Falls TwinCAT offline ist (es liegt keine Verbindung zu einer laufenden realen Steuerung vor) kann eine Warnmeldung erscheinen, weil nach Ausführung der Funktion das System den Versuch unternimmt, den EtherCAT Strang neu zu laden, ist in diesem Fall allerdings nicht ergebnisrelevant und kann mit Klick auf "OK" bestätigt werden:

• Im Weiteren kann eine Beschreibung angegeben werden:

Export SCI based on specification 1.0.12.3 (Draft)						
Name	EL3702 with added StartTimeNextLatch					
Description	just an example for a specific description	^				
Options	Keep Modules	~				
	Keep FSoE Module Information					
	AoE Set AmsNetId					
	EoE Set MAC and IP					
	CoE Set cycle time (0x1C3x.2)					
	Ехро	rt				

• Erläuterungen zum Dialogfenster:

Name		Name des SCIs, wird vom Anwender vergeben.
Description		Beschreibung der Slave Konfiguration für den genutzten Anwendungsfall, wird vom Anwender vergeben.
Options	Keep Modules	Falls ein Slave "Modules/Slots" unterstützt, kann entschieden werden, ob diese mit exportiert werden sollen oder ob die Modul- und Gerätedaten beim Export zusammengefasst werden.
	AoE Set AmsNetId	Die konfigurierte AmsNetld wird mit exportiert. Üblicherweise ist diese netzwerkabhängig und kann nicht immer vorab bestimmt werden.
	EoE Set MAC and IP	Die konfigurierte virtuelle MAC- und IP- Adresse werden in der SCI gespeichert. Üblicherweise sind diese netzwerkabhängig und können nicht immer vorab bestimmt werden.
	CoE Set cycle time(0x1C3x.2)	Die konfigurierte Zykluszeit wird exportiert. Üblicherweise ist diese netzwerkabhängig und kann nicht immer vorab bestimmt werden.
ESI		Referenz auf die ursprüngliche ESI Datei.
Export		SCI Datei speichern.

• Bei Mehrfachauswahl ist eine Listenansicht verfügbar (*Export multiple SCI files*):

Þ	♣ Image-Info ∞ SyncUnits	Export SCI		x
Þ	🔄 Inputs	All None	Name	Box 1 (Drive1)
Þ	Outputs	Box 1 (Drive1)		
Þ	🛄 InfoData	Box 2 (Drive1)	Description	- 1 of 2 axis is configured (in position mode)
-	🛛 幸 Box 1 (Drive1)			Distributed clocks synchronization is enabled
	🔺 幸 Module 1 (Position Mode)			- Software position range limit (0x607D) is set
	👂 🛄 Position Inputs			
	Position Outputs			
	WcState			
	👂 🛄 InfoData			
Þ	\Rightarrow Box 2 (Drive1)			
1	Mappings		Options	✓ Keep Modules
	KC-Task 1 SAF - Device 1 (EtherCAT) 1			AoE Set AmsNetId [10.35.16.42.2.2]
				EoE Set MAC and IP [02 01 05 10 03 e9 192.1
				CoE Set cycle time (0x1C3x.2)
				Export

- Auswahl der zu exportierenden Slaves:
 - All:
 - Es werden alle Slaves für den Export selektiert.
 - None:
 - Es werden alle Slaves abgewählt.
- Die sci-Datei kann lokal abgespeichert werden:

Dateiname: EL3702 with added StartTimeNextLatch.sci
Dateityp: SCI file (*.sci)

• Es erfolgt der Export:

Export SCI based on specification 1.0.12.3 (Draft)							
N	ame	EL3702 with added Start TimeNextLatch					
D	escription	just an example for a specific description	^				
	SCI Create	ed	×				
Q	The SCI StartTime	ile 'C:\TwinCAT\3.1\Config\lo\EtherCAT\EL3702 NextLatch.sci' was created	with added				
		Open Folder	Close				
		AoE Set AmsNetId					
		EOE Set MAC and IP					
		CoE Set cycle time (0x1C3x.2)					
			Export				

Import

• Eine sci-Beschreibung kann wie jede normale Beckhoff-Gerätebeschreibung manuell in die TwinCAT-Konfiguration eingefügt werden.

• Die sci-Datei muss im TwinCAT-ESI-Pfad liegen, i.d.R. unter: C:\TwinCAT\3.1\Config\lo\EtherCAT

EL3702 with added StartTimeNextLatch.sci	11.01.2021 13:29	SCI-Datei	6 KB

• Öffnen des Auswahl-Dialogs:

4		Ter	m 1 (EK1100)						
	⊳		InfoData						
	⊳	H	Term 2 (EL3)	702)					
	Þ	-	Term 3 (EL1)	008)		L			
M	lapp	oings	5	*ם	Add New It	tem			
					Insert New	ltem			

• SCI-Geräte anzeigen und gewünschtes Gerät auswählen und einfügen:

Add EtherCAT device at port B (E-Bus) of Term 3 (EL1008)							
Search: EL370 Name: Term 4 Multiple: 1	ок						
Type: Ecck boff Automation GmbH & Co. KG	Cancel						
EL3702 2Ch. Ana. Input +/-10V, DIFF, Oversample	Port						
EL3702-0015 2Ch. Ana. Input +7-150mV, DIFF, Uversample	OA						
	OD						
	B (E-Bus)						
	00						
L Extended Information Show Hidden Devices Show Su	b Groups						
Check Connector Show preconfigured Devices (SCI)							

Weitere Hinweise

 Einstellungen f
ür die SCI-Funktion k
önnen
über den allgemeinen Options Dialog vorgenommen werden (Tools → Options → TwinCAT → Export SCI):

Options					?	\times
Search Options (Ctrl+E) Tabs and Windows Task List Trust Settings Web Browser Projects and Solutions Source Control Work Items Text Editor Debugging NuGet Package Manager Text Templating TwinCAT Export SCI Measurement	۹ ۱	~	Default export options AoE Add AmsNetId CoE Set cycle time 0x1C3x.2 EoE Add IP and MAC Keep Modules Generic Reload Devices	False True False True Yes		V
 PLC Environment TwinSAFE Environment XAE Environment 	*	Ac If t th	•E Add AmsNetId the slaves supports AoE the init comm e SCI, otherwise the flags "GenerateOv	nand to set the slave AMS Net ID wnNetId" and "InitializeOwnNetI OK	is adde d" persi Cance	d to st.

Erläuterung der Einstellungen:

Default export	AoE Set AmsNetId	Standard Einstellung, ob die konfigurierte AmsNetId exportiert wird.		
options	CoE Set cycle time(0x1C3x.2)	Standard Einstellung, ob die konfigurierte Zykluszeit exportiert wird.		
	EoE Set MAC and IP	Standard Einstellung, ob die konfigurierten MAC- und IP-Adressen exportiert werden.		
	Keep Modules	Standard Einstellung, ob die Module bestehen bleiben.		
Generic	Reload Devices	Einstellung, ob vor dem SCI Export das Kommando "Reload Devices" ausgeführt wird. Dies wird dringend empfohlen, um eine konsistente Slave-Konfiguration zu gewährleisten.		

SCI-Fehlermeldungen werden bei Bedarf im TwinCAT Logger Output-Fenster angezeigt:

Output					
Show output from:	Export SCI	 알 알 알 ど 			
02/07/2020 14: 02/07/2020 14:	09:17 Reload Devices 09:18 Box 1 (Drive1) No EtherCAT Slav	e Information (ESI) available for 'Box 1 (Drive1			

5.4 EtherCAT-Grundlagen

Grundlagen zum Feldbus EtherCAT entnehmen Sie bitte der EtherCAT System-Dokumentation.

5.5 EtherCAT-Verkabelung - Drahtgebunden

Die zulässige Leitungslänge zwischen zwei EtherCAT-Geräten darf maximal 100 Meter betragen. Dies resultiert aus der FastEthernet-Technologie, die vor allem aus Gründen der Signaldämpfung über die Leitungslänge eine maximale Linklänge von 5 + 90 + 5 m erlaubt, wenn Leitungen mit entsprechenden Eigenschaften verwendet werden. Siehe dazu auch die <u>Auslegungsempfehlungen zur Infrastruktur für EtherCAT/Ethernet</u>.

Kabel und Steckverbinder

Verwenden Sie zur Verbindung von EtherCAT-Geräten nur Ethernet-Verbindungen (Kabel + Stecker), die mindestens der Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801 entsprechen. EtherCAT nutzt 4 Adern des Kabels für die Signalübertragung.

EtherCAT verwendet beispielsweise RJ45-Steckverbinder. Die Kontaktbelegung ist zum Ethernet-Standard (ISO/IEC 8802-3) kompatibel.

Pin	Aderfarbe	Signal	Beschreibung
1	gelb	TD+	Transmission Data +
2	orange	TD-	Transmission Data -
3	weiß	RD+	Receiver Data +
6	blau	RD-	Receiver Data -

Aufgrund der automatischen Kabelerkennung (Auto-Crossing) können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte als auch Cross-Over-Kabel verwenden.

Empfohlene Kabel

- Es wird empfohlen die entsprechenden Beckhoff Komponenten zu verwenden, z. B.
- Kabelsätze ZK1090-9191-xxxx bzw.
- feldkonfektionierbare RJ45 Stecker ZS1090-0005
- feldkonfektionierbare Ethernet Leitung ZB9010, ZB9020

Geeignete Kabel zur Verbindung von EtherCAT-Geräten finden Sie auf der Beckhoff Website!

E-Bus-Versorgung

Ein Buskoppler kann die an ihm angefügten EL-Klemmen mit der E-Bus-Systemspannung von 5 V versorgen, in der Regel ist ein Koppler dabei bis zu 2 A belastbar (siehe Dokumentation des jeweiligen Gerätes).

Zu jeder EL-Klemme ist die Information, wie viel Strom sie aus der E-Bus-Versorgung benötigt, online und im Katalog verfügbar. Benötigen die angefügten Klemmen mehr Strom als der Koppler liefern kann, sind an entsprechender Position im Klemmenstrang Einspeiseklemmen (z. B. <u>EL9410</u>) zu setzen.

Im TwinCAT System Manager wird der vorberechnete theoretische maximale E-Bus-Strom angezeigt. Eine Unterschreitung wird durch negativen Summenbetrag und Ausrufezeichen markiert, vor einer solchen Stelle ist eine Einspeiseklemme zu setzen.

B I/O Devices	Number	Box Name	Add	Туре	In Si	Out	E-Bus (mA)
Device 1 (EtherCAT)	間 1	Term 1 (EK1100)	1001	EK1100			
- Device 1-Image	5 1 2	Term 2 (EL2008)	1002	EL2008		1.0	1890
- Device 1-Image-Imo	₹3	Term 3 (EL2008)	1003	EL2008		1.0	1780
e al Outrute	₹4	Term 4 (EL2008)	1004	EL2008		1.0	1670
B A InfoData	[™] 15	Term 5 (EL6740	1005	EL6740-0010	2.0	2.0	1220
	16	Term 6 (EL6740	1006	EL6740-0010	2.0	2.0	770
B & InfoData	11 7	Term 7 (EL6740	1007	EL6740-0010	2.0	2.0	320
Term 2 (EL2008)	*18	Term 8 (EL6740	1008	EL6740-0010	2.0	2.0	-130 !
🛛 📲 Term 3 (EL2008)	9	Term 9 (EL6740	1009	EL6740-0010	2.0	2.0	-580 !

Abb. 170: System Manager Stromberechnung

HINWEIS

Fehlfunktion möglich!

Die E-Bus-Versorgung aller EtherCAT-Klemmen eines Klemmenblocks muss aus demselben Massepotential erfolgen!

5.6 Allgemeine Hinweise zur Watchdog-Einstellung

Die ELxxxx Klemmen sind mit einer Sicherungseinrichtung (Watchdog) ausgestattet, die z. B. bei unterbrochenem Prozessdatenverkehr nach einer voreinstellbaren Zeit die Ausgänge (so vorhanden) in einen ggf. vorgebbaren Zustand schaltet, in Abhängigkeit vom Gerät und Einstellung z. B. auf FALSE (aus) oder einen Ausgabewert.

Der EtherCAT Slave Controller (ESC) verfügt dazu über zwei Watchdogs:

- SM-Watchdog (default: 100 ms)
- PDI-Watchdog (default: 100 ms)

Deren Zeiten werden in TwinCAT wie folgt einzeln parametriert:

Erweiterte Einstellungen		×
 Allgemein Verhalten Timeout Einstellungen FMMU / SM Init Kommandos Distributed Clock ESC Zugriff 	Verhalten Startup Überprüfungen Oberprüfe Vendor Ids Prüfe Produkt Codes Oberprüfe Revision Nummer Oberprüfe Seriennummer	State Machine Auto Status Wiederherstellung Relnit nach Komm. Fehler Log Communication Changes Final State OP SAFEOP O PREOP O INIT
	Prozessdaten □ Nutze LRD/LWR statt LRW ☑ WC State Bit(s) einfügen Allgemein □ No AutoInc - Use 2. Address Watchdog □ Set Multiplier (Reg. 400h): □ Set PDI Watchdog (Reg. 410h): ☑ Set SM Watchdog (Reg. 420h):	Info Data ✓ Status einfügen △ Ads Adresse einfügen △ AoE NetId einfügen □ Drive Kanäle einfügen 2498 1000 ms: 1000 ms: 1000 Ms: 0K Cancel

Abb. 171: Karteireiter EtherCAT -> Erweiterte Einstellungen -> Verhalten --> Watchdog

Anmerkungen:

- der Multiplier Register 400h (hexadezimal, also x0400) ist für beide Watchdogs gültig.
- jeder Watchdog hat seine eigene Timer-Einstellung 410h bzw. 420h, die zusammen mit dem Multiplier eine resultierende Zeit ergibt.
- Wichtig: die Multiplier/Timer-Einstellung wird nur dann beim EtherCAT-Start in den Slave geladen, wenn die Checkbox davor aktiviert ist.
 Ist diese nicht aktiviert, wird nichts herunter geladen und die im ESC befindliche Einstellung bleibt unverändert.
- Die heruntergeladenen Werte können in den ESC-Registern x0400/0410/0420 eingesehen werden: ESC Access -> Memory

SM-Watchdog (SyncManager-Watchdog)

Der SyncManager-Watchdog wird bei jeder erfolgreichen EtherCAT-Prozessdaten-Kommunikation mit der Klemme zurückgesetzt. Findet z. B. durch eine Leitungsunterbrechung länger als die eingestellte und aktivierte SM-Watchdog-Zeit keine EtherCAT-Prozessdaten-Kommunikation mit der Klemme statt, löst der Watchdog aus. Der Status der Klemme (i.d.R. OP) bleibt davon unberührt. Der Watchdog wird erst wieder durch einen erfolgreichen EtherCAT-Prozessdatenzugriff zurückgesetzt.

Der SyncManager-Watchdog ist also eine Überwachung auf korrekte und rechtzeitige Prozessdatenkommunikation mit dem ESC von der EtherCAT-Seite aus betrachtet.

Die maximal mögliche Watchdog-Zeit ist geräteabhängig. Beispielsweise beträgt sie bei "einfachen" EtherCAT Slaves (ohne Firmware) mit Watchdog-Ausführung im ESC in der Regel bis zu ~170 Sekunden. Bei "komplexen" EtherCAT Slaves (mit Firmware) wird die SM-Watchdog-Funktion in der Regel zwar über Reg. 400/420 parametriert, aber vom µC ausgeführt und kann deutlich darunter liegen. Außerdem kann die Ausführung dann einer gewissen Zeitunsicherheit unterliegen. Da der TwinCAT-Dialog ggf. Eingaben bis 65535 zulässt, wird ein Test der gewünschten Watchdog-Zeit empfohlen.

PDI-Watchdog (Process Data Watchdog)

Findet länger als die eingestellte und aktivierte PDI-Watchdog-Zeit keine PDI-Kommunikation mit dem EtherCAT Slave Controller (ESC) statt, löst dieser Watchdog aus.

PDI (Process Data Interface) ist die interne Schnittstelle des ESC, z. B. zu lokalen Prozessoren im EtherCAT Slave. Mit dem PDI-Watchdog kann diese Kommunikation auf Ausfall überwacht werden.

Der PDI-Watchdog ist also eine Überwachung auf korrekte und rechtzeitige Prozessdatenkommunikation mit dem ESC, aber von der Applikations-Seite aus betrachtet.

Berechnung

Watchdog-Zeit = [1/25 MHz * (Watchdog-Multiplier + 2)] * PDI/SM Watchdog

Beispiel: default Einstellung Multiplier=2498, SM-Watchdog=1000 -> 100 ms

Der Wert in Multiplier + 2 entspricht der Anzahl 40ns-Basisticks, die einen Watchdog-Tick darstellen.

Ungewolltes Verhalten des Systems möglich!

Die Abschaltung des SM-Watchdog durch SM Watchdog = 0 funktioniert erst in Klemmen ab Version -0016. In vorherigen Versionen wird vom Einsatz dieser Betriebsart abgeraten.

Beschädigung von Geräten und ungewolltes Verhalten des Systems möglich!

Bei aktiviertem SM-Watchdog und eingetragenem Wert 0 schaltet der Watchdog vollständig ab! Dies ist die Deaktivierung des Watchdogs! Gesetzte Ausgänge werden dann bei einer Kommunikationsunterbrechung NICHT in den sicheren Zustand gesetzt!

5.7 EtherCAT State Machine

Über die EtherCAT State Machine (ESM) wird der Zustand des EtherCAT-Slaves gesteuert. Je nach Zustand sind unterschiedliche Funktionen im EtherCAT-Slave zugänglich bzw. ausführbar. Insbesondere während des Hochlaufs des Slaves müssen in jedem State spezifische Kommandos vom EtherCAT Master zum Gerät gesendet werden.

Es werden folgende Zustände unterschieden:

- Init
- Pre-Operational
- Safe-Operational und
- Operational
- Boot

Regulärer Zustand eines jeden EtherCAT Slaves nach dem Hochlauf ist der Status OP.

Abb. 172: Zustände der EtherCAT State Machine

Init

Nach dem Einschalten befindet sich der EtherCAT-Slave im Zustand Init. Dort ist weder Mailbox- noch Prozessdatenkommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle 0 und 1 für die Mailbox-Kommunikation.

Pre-Operational (Pre-Op)

Beim Übergang von Init nach Pre-Op prüft der EtherCAT-Slave, ob die Mailbox korrekt initialisiert wurde.

Im Zustand *Pre-Op* ist Mailbox-Kommunikation aber keine Prozessdaten-Kommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle für Prozessdaten (ab Sync-Manager-Kanal 2), die FMMU-Kanäle und falls der Slave ein konfigurierbares Mapping unterstützt das PDO-Mapping oder das Sync-Manager-PDO-Assignement. Weiterhin werden in diesem Zustand die Einstellungen für die Prozessdatenübertragung sowie ggf. noch klemmenspezifische Parameter übertragen, die von den Defaulteinstellungen abweichen.

Safe-Operational (Safe-Op)

Beim Übergang von *Pre-Op* nach *Safe-Op* prüft der EtherCAT-Slave, ob die Sync-Manager-Kanäle für die Prozessdatenkommunikation sowie ggf. ob die Einstellungen für die Distributed-Clocks korrekt sind. Bevor er den Zustandswechsel quittiert, kopiert der EtherCAT-Slave aktuelle Inputdaten in die entsprechenden DP-RAM-Bereiche des EtherCAT-Slave-Controllers (ECSC).

Im Zustand *Safe-Op* ist Mailbox- und Prozessdaten-Kommunikation möglich, allerdings hält der Slave seine Ausgänge im sicheren Zustand und gibt sie noch nicht aus. Die Inputdaten werden aber bereits zyklisch aktualisiert.

Ausgänge im SAFEOP

Die standardmäßig aktivierte Watchdogüberwachung bringt die Ausgänge im Modul in Abhängigkeit von den Einstellungen im SAFEOP und OP in einen sicheren Zustand - je nach Gerät und Einstellung z. B. auf AUS. Wird dies durch Deaktivieren der Watchdogüberwachung im Modul unterbunden, können auch im Geräte-Zustand SAFEOP Ausgänge geschaltet werden bzw. gesetzt bleiben.

Operational (Op)

Bevor der EtherCAT-Master den EtherCAT-Slave von *Safe-Op* nach *Op* schaltet, muss er bereits gültige Outputdaten übertragen.

Im Zustand *Op* kopiert der Slave die Ausgangsdaten des Masters auf seine Ausgänge. Es ist Prozessdatenund Mailbox-Kommunikation möglich.

Boot

Im Zustand *Boot* kann ein Update der Slave-Firmware vorgenommen werden. Der Zustand *Boot* ist nur über den Zustand *Init* zu erreichen.

Im Zustand *Boot* ist Mailbox-Kommunikation über das Protokoll *File-Access over EtherCAT (FoE)* möglich, aber keine andere Mailbox-Kommunikation und keine Prozessdaten-Kommunikation.

5.8 CoE-Interface

Allgemeine Beschreibung

Das CoE-Interface (CAN application protocol over EtherCAT) ist die Parameterverwaltung für EtherCAT-Geräte. EtherCAT-Slaves oder auch der EtherCAT-Master verwalten darin feste (ReadOnly) oder veränderliche Parameter, die sie zum Betrieb, Diagnose oder Inbetriebnahme benötigen.

CoE-Parameter sind in einer Tabellen-Hierarchie angeordnet und prinzipiell dem Anwender über den Feldbus lesbar zugänglich. Der EtherCAT-Master (TwinCAT System Manager) kann über EtherCAT auf die lokalen CoE-Verzeichnisse der Slaves zugreifen und je nach Eigenschaften lesend oder schreibend einwirken.

Es sind verschiedene Typen für CoE-Parameter möglich wie String (Text), Integer-Zahlen, Bool'sche Werte oder größere Byte-Felder. Damit lassen sich ganz verschiedene Eigenschaften beschreiben. Beispiele für solche Parameter sind Herstellerkennung, Seriennummer, Prozessdateneinstellungen, Gerätename, Abgleichwerte für analoge Messung oder Passwörter.

Die Ordnung erfolgt in zwei Ebenen über hexadezimale Nummerierung: zuerst wird der (Haupt)Index genannt, dann der Subindex. Die Wertebereiche sind

- Index: 0x0000...0xFFFF (0...65535_{dez})
- SubIndex: 0x00...0xFF (0...255_{dez})

Üblicherweise wird ein so lokalisierter Parameter geschrieben als 0x8010:07 mit voranstehendem "0x" als Kennzeichen des hexadezimalen Zahlenraumes und Doppelpunkt zwischen Index und Subindex.

Die für den EtherCAT-Feldbusanwender wichtigen Bereiche sind

- 0x1000: hier sind feste Identitäts-Informationen zum Gerät hinterlegt wie Name, Hersteller, Seriennummer etc. Außerdem liegen hier Angaben über die aktuellen und verfügbaren Prozessdatenkonstellationen.
- 0x8000: hier sind die für den Betrieb erforderlichen funktionsrelevanten Parameter für alle Kanäle zugänglich wie Filtereinstellung oder Ausgabefrequenz.

Weitere wichtige Bereiche sind:

- 0x4000: hier befinden sich bei manchen EtherCAT-Geräten die Kanalparameter. Historisch war dies der erste Parameterbereich, bevor der 0x8000 Bereich eingeführt wurde. EtherCAT Geräte, die früher mit Parametern in 0x4000 ausgerüstet wurden und auf 0x8000 umgestellt wurden, unterstützen aus Kompatibilitätsgründen beide Bereiche und spiegeln intern.
- 0x6000: hier liegen die Eingangs-PDO ("Eingang" aus Sicht des EtherCAT-Masters)
- 0x7000: hier liegen die Ausgangs-PDO ("Ausgang" aus Sicht des EtherCAT-Masters)

Verfügbarkeit

Nicht jedes EtherCAT Gerät muss über ein CoE-Verzeichnis verfügen. Einfache I/O-Module ohne eigenen Prozessor verfügen in der Regel. über keine veränderlichen Parameter und haben deshalb auch kein CoE-Verzeichnis. Wenn ein Gerät über ein CoE-Verzeichnis verfügt, stellt sich dies im TwinCAT System Manager als ein eigener Karteireiter mit der Auflistung der Elemente dar:

G	General EtherCAT Process Data Startup CoE - Online Online							
	Update Lis	st 📃 🗖 Auto Update	🔽 Single Up	date 🔽 Show Offline Data				
	Advanced.							
	Add to Start	up Offline Data	Offline Data Module OD (AoE Port): 0					
	Index	Name	Flags	Value				
	1000	Device type	RO	0x00FA1389 (16389001)				
	1008	Device name	RO	EL2502-0000				
	1009	Hardware version	RO					
	100A	Software version	RO					
	⊡ 1011:0	Restore default parameters	RO	>1<				
	i⊟ 1018:0	Identity	RO	> 4 <				
	1018:01	Vendor ID	RO	0x00000002 (2)				
	1018:02	Product code	RO	0x09C63052 (163983442)				
	1018:03	Revision	RO	0x00130000 (1245184)				
	1018:04	Serial number	RO	0x00000000 (0)				
	🕂 10F0:0	Backup parameter handling	RO	>1<				
	· . 1400:0	00:0 PWM RxPDO-Par Ch.1		>6<				
	1401:0 PWM RxPDO-Par Ch.2		RO	>6<				
	1402:0 PWM RxPD0-Par h.1 Ch.1		RO	>6<				
	. ⊕ 1403:0	PWM RxPDO-Par h.1 Ch.2	RO	>6<				
	· ─ 1600:0	PWM RxPDO-Map Ch.1	RO	>1<				

Abb. 173: Karteireiter "CoE-Online"

In der oberen Abbildung sind die im Gerät "EL2502" verfügbaren CoE-Objekte von 0x1000 bis 0x1600 zusehen, die Subindizes von 0x1018 sind aufgeklappt.

HINWEIS

Veränderungen im CoE-Verzeichnis (CAN over EtherCAT), Programmzugriff

Beachten Sie bei Verwendung/Manipulation der CoE-Parameter die allgemeinen CoE-Hinweise im Kapitel "<u>CoE-Interface</u>" der EtherCAT-System-Dokumentation:

- StartUp-Liste führen für den Austauschfall,
- Unterscheidung zwischen Online/Offline Dictionary,
- Vorhandensein aktueller XML-Beschreibung (Download von der Beckhoff Website),
- "CoE-Reload" zum Zurücksetzen der Veränderungen
- Programmzugriff im Betrieb über die PLC (s. <u>TwinCAT3 | PLC-Bibliothek: Tc2 EtherCAT</u> und <u>Beispielprogramm R/W CoE</u>)

Datenerhaltung und Funktion "NoCoeStorage"

Einige, insbesondere die vorgesehenen Einstellungsparameter des Slaves sind veränderlich und beschreibbar. Dies kann schreibend/lesend geschehen

- über den System Manager (Abb. Karteireiter "CoE-Online") durch Anklicken
 Dies bietet sich bei der Inbetriebnahme der Anlage/Slaves an. Klicken Sie auf die entsprechende Zeile des zu parametrierenden Indizes und geben sie einen entsprechenden Wert im "SetValue"-Dialog ein.
- aus der Steuerung/PLC über ADS z. B. durch die Bausteine aus der TcEtherCAT.lib Bibliothek Dies wird für Änderungen während der Anlangenlaufzeit empfohlen oder wenn kein System Manager bzw. Bedienpersonal zur Verfügung steht.

Datenerhaltung

Werden online auf dem Slave CoE-Parameter geändert, wird dies in Beckhoff-Geräten üblicherweise ausfallsicher im Gerät (EEPROM) gespeichert. D. h. nach einem Neustart (Repower) sind die veränderten CoE-Parameter immer noch erhalten. Andere Hersteller können dies anders handhaben.

Ein EEPROM unterliegt in Bezug auf Schreibvorgänge einer begrenzten Lebensdauer. Ab typischerweise 100.000 Schreibvorgängen kann eventuell nicht mehr sichergestellt werden, dass neue (veränderte) Daten sicher gespeichert werden oder noch auslesbar sind. Dies ist für die normale Inbetriebnahme ohne Belang. Werden allerdings zur Maschinenlaufzeit fortlaufend CoE-Parameter über ADS verändert, kann die Lebensdauergrenze des EEPROM durchaus erreicht werden.

Es ist von der FW-Version abhängig, ob die Funktion NoCoeStorage unterstützt wird, die das Abspeichern veränderter CoE-Werte unterdrückt.

Ob das auf das jeweilige Gerät zutrifft, ist den technischen Daten dieser Dokumentation zu entnehmen.

 wird unterstützt: die Funktion ist per einmaligem Eintrag des Codeworts 0x12345678 in CoE 0xF008 zu aktivieren und solange aktiv, wie das Codewort nicht verändert wird. Nach dem Einschalten des Gerätes ist sie nicht aktiv.

Veränderte CoE-Werte werden dann nicht im EEPROM abgespeichert, sie können somit beliebig oft verändert werden.

• wird nicht unterstützt: eine fortlaufende Änderung von CoE-Werten ist angesichts der o.a. Lebensdauergrenze nicht zulässig.

1

Startup List

Veränderungen im lokalen CoE-Verzeichnis der Klemme gehen im Austauschfall mit der alten Klemme verloren. Wird im Austauschfall eine neue Klemme mit Werkseinstellungen ab Lager Beckhoff eingesetzt, bringt diese die Standardeinstellungen mit. Es ist deshalb empfehlenswert, alle Veränderungen im CoE-Verzeichnis eines EtherCAT Slave in der Startup List des Slaves zu verankern, die bei jedem Start des EtherCAT Feldbus abgearbeitet wird. So wird auch ein im Austauschfall ein neuer EtherCAT Slave automatisch mit den Vorgaben des Anwenders parametriert.

Wenn EtherCAT Slaves verwendet werden, die lokal CoE-Wert nicht dauerhaft speichern können, ist zwingend die StartUp-Liste zu verwenden.

Empfohlenes Vorgehen bei manueller Veränderung von CoE-Parametern

- gewünschte Änderung im System Manager vornehmen Werte werden lokal im EtherCAT Slave gespeichert
- wenn der Wert dauerhaft Anwendung finden soll, einen entsprechenden Eintrag in der StartUp-Liste vornehmen.

Die Reihenfolge der StartUp-Einträge ist dabei i.d.R. nicht relevant.

G	General EtherCAT Process Data Startup CoE - Online Online						
	Transition	Protocol	Index	Data	Comment		
	C <ps></ps>	CoE	0x1C12:00	0x00 (0)	clear sm pdos (0)x1C12)	
	C <ps></ps>	CoE	0x1C13:00	0x00 (0)	clear sm pdos (C)x1C13)	
	C <ps></ps>	CoE	0x1C12:01	0x1600 (5632)	download pdo 0	x1C12:01 i	
	C <ps></ps>	CoE	0x1C12:02	0x1601 (5633)	download pdo 0	x1C12:02 i	
	C <ps></ps>	CoE	0x1C12:00	0x02 (2)	download pdo 0	x1C12 count	
			📑 Insert				
			🗙 Delete				
			Edit				

Abb. 174: StartUp-Liste im TwinCAT System Manager

In der StartUp-Liste können bereits Werte enthalten sein, die vom System Manager nach den Angaben der ESI dort angelegt werden. Zusätzliche anwendungsspezifische Einträge können angelegt werden.

Online/Offline Verzeichnis

Während der Arbeit mit dem TwinCAT System Manager ist zu unterscheiden ob das EtherCAT-Gerät gerade "verfügbar", also angeschaltet und über EtherCAT verbunden und damit **online** ist oder ob ohne angeschlossene Slaves eine Konfiguration **offline** erstellt wird.

In beiden Fällen ist ein CoE-Verzeichnis nach Abb. "Karteireiter ,CoE-Online" zu sehen, die Konnektivität wird allerdings als offline/online angezeigt.

- wenn der Slave offline ist:
 - wird das Offline-Verzeichnis aus der ESI-Datei angezeigt. Änderungen sind hier nicht sinnvoll bzw. möglich.
 - · wird in der Identität der konfigurierte Stand angezeigt
 - wird kein Firmware- oder Hardware-Stand angezeigt, da dies Eigenschaften des realen Gerätes sind.
 - ist ein rotes Offline zu sehen

G	General EtherCAT Process Data Startup CoE - Online Online						
	Update List 🔽 Auto Update 🔽 Single Update 🔽 Show Offline Data						
	Advanced						
	Add to Start	up Offline Data	Offline Data Module OD (AoE P				
	Index	Name 🔨	Flags	Value			
	1000	Device type	RO	0x00FA1389 (16389001)			
	1008	Device name 🛛 🗛 🔪	RO	EL2502-0000			
	1009	Hardware version	RO				
	100A	Software version	RO				
	. <u>∓</u> … 1011:0	Restore default parameters	RO	>1<			
	i⊟ 1018:0	Identity	RO	> 4 <			
	1018:01	Vendor ID	RO	0x00000002 (2)			
	1018:02	Product code	RO	0x09C63052 (163983442)			
	1018:03	Revision	RO	0x00130000 (1245184)			
	1018:04	Serial number	RO	0x00000000 (0)			
	连 10F0:0	Backup parameter handling	RO	>1<			
	主 ·· 1400:0	PWM RxPDO-Par Ch.1	RO	>6<			
	主 ··· 1401:0	PWM RxPDO-Par Ch.2	RO	> 6 <			
	主 1402:0	PWM RxPDO-Par h.1 Ch.1	RO	>6<			
	😟 1403:0	PWM RxPD0-Par h.1 Ch.2	RO	> 6 <			
	· ● 1600:0	PWM RxPDO-Map Ch.1	RO	>1<			

Abb. 175: Offline-Verzeichnis

- · wenn der Slave online ist
 - wird das reale aktuelle Verzeichnis des Slaves ausgelesen. Dies kann je nach Größe und Zykluszeit einige Sekunden dauern.
 - wird die tatsächliche Identität angezeigt
 - · wird der Firmware- und Hardware-Stand des Gerätes laut elektronischer Auskunft angezeigt
 - ist ein grünes **Online** zu sehen

General EtherCAT Process Data Startup CoE - Online Online						
Update List 🔲 Auto Update 🔽 Single Update 🗖 Show Offline Data						
Advanced.		_				
Add to Startup Online Data Module OD (AoE Port): 0						
Index	Name	Flags	Value			
1000	Device type	RO	0x00FA1389 (16389001)			
1008	Device name	RO	EL2502-0000			
1009	Hardware version	RO	02			
100A	Software version	RO	07			
	Restore default parameters	RO	>1<			
i⊟ 1018:0	Identity	RO	> 4 <			
1018:01	Vendor ID	RO	0x00000002 (2)			
1018:02	Product code	RO	0x09C63052 (163983442)			
1018:03	Revision	RO	0x00130000 (1245184)			
1018:04	Serial number	RO	0x00000000 (0)			
主 🗉 10F0:0	Backup parameter handling	RO	>1<			
	PWM RxPD0-Par Ch.1	RO	>6<			

Abb. 176: Online-Verzeichnis

Kanalweise Ordnung

Das CoE-Verzeichnis ist in EtherCAT Geräten angesiedelt, die meist mehrere funktional gleichwertige Kanäle umfassen. z. B. hat eine 4 kanalige Analogeingangsklemme 0...10 V auch vier logische Kanäle und damit vier gleiche Sätze an Parameterdaten für die Kanäle. Um in den Dokumentationen nicht jeden Kanal auflisten zu müssen, wird gerne der Platzhalter "n" für die einzelnen Kanalnummern verwendet.

Im CoE-System sind für die Menge aller Parameter eines Kanals eigentlich immer 16 Indizes mit jeweils 255 Subindizes ausreichend. Deshalb ist die kanalweise Ordnung in $16_{dez}/10_{hex}$ -Schritten eingerichtet. Am Beispiel des Parameterbereichs 0x8000 sieht man dies deutlich:

- Kanal 0: Parameterbereich 0x8000:00 ... 0x800F:255
- Kanal 1: Parameterbereich 0x8010:00 ... 0x801F:255
- Kanal 2: Parameterbereich 0x8020:00 ... 0x802F:255

• ...

Allgemein wird dies geschrieben als 0x80n0.

Ausführliche Hinweise zum CoE-Interface finden Sie in der <u>EtherCAT-Systemdokumentation</u> auf der Beckhoff Website.

5.9 Distributed Clock

Die Distributed Clock stellt eine lokale Uhr im EtherCAT Slave Controller (ESC) dar mit den Eigenschaften:

- Einheit 1 ns
- Nullpunkt 1.1.2000 00:00
- Umfang 64 Bit (ausreichend für die nächsten 584 Jahre); manche EtherCAT-Slaves unterstützen jedoch nur einen Umfang von 32 Bit, d. h. nach ca. 4,2 Sekunden läuft die Variable über
- Diese lokale Uhr wird vom EtherCAT Master automatisch mit der Master Clock im EtherCAT Bus mit einer Genauigkeit < 100 ns synchronisiert.

Detaillierte Informationen entnehmen Sie bitte der vollständigen EtherCAT-Systembeschreibung.
6 Montage und Verdrahtung

6.1 Einbaulagen

HINWEIS

Einschränkung von Einbaulage und Betriebstemperaturbereich

Entnehmen Sie den technischen Daten zu einer Klemme, ob sie Einschränkungen bei Einbaulage und/oder Betriebstemperaturbereich unterliegt. Sorgen Sie bei der Montage von Klemmen mit erhöhter thermischer Verlustleistung dafür, dass im Betrieb oberhalb und unterhalb der Klemmen ausreichend Abstand zu anderen Komponenten eingehalten wird, so dass die Klemmen ausreichend belüftet werden!

Optimale Einbaulage (Standard)

Für die optimale Einbaulage wird die Tragschiene waagerecht montiert und die Anschlussflächen der EL/KL-Klemmen weisen nach vorne (siehe Abb. *Empfohlene Abstände bei Standard-Einbaulage*). Die Klemmen werden dabei von unten nach oben durchlüftet, was eine optimale Kühlung der Elektronik durch Konvektionslüftung ermöglicht. Bezugsrichtung "unten" ist hier die Erdbeschleunigung.

Abb. 177: Empfohlene Abstände bei Standard-Einbaulage

Die Einhaltung der Abstände nach Abb. Empfohlene Abstände bei Standard-Einbaulage wird empfohlen.

Weitere Einbaulagen

Alle anderen Einbaulagen zeichnen sich durch davon abweichende räumliche Lage der Tragschiene aus, siehe Abb. *Weitere Einbaulagen.*

Auch in diesen Einbaulagen empfiehlt sich die Anwendung der oben angegebenen Mindestabstände zur Umgebung.

D ᄀ BB 88 88 88 88 888 888 日間 88 88 岠口 φC 0

Abb. 178: Weitere Einbaulagen

6.2 Positionierung von passiven Klemmen

Hinweis zur Positionierung von passiven Klemmen im Busklemmenblock

EtherCAT-Klemmen (ELxxxx / ESxxxx), die nicht aktiv am Datenaustausch innerhalb des Busklemmenblocks teilnehmen, werden als passive Klemmen bezeichnet. Zu erkennen sind diese Klemmen an der nicht vorhandenen Stromaufnahme aus dem E-Bus. Um einen optimalen Datenaustausch zu gewährleisten, dürfen nicht mehr als zwei passive Klemmen direkt aneinander gereiht werden!

BECKHOFF

Beispiele für die Positionierung von passiven Klemmen (hell eingefärbt)

Abb. 179: Korrekte Positionierung

Abb. 180: Inkorrekte Positionierung

6.3 ATEX - Besondere Bedingungen (Standardtemperaturbereich)

WARNUNG

Beachten Sie die besonderen Bedingungen für die bestimmungsgemäße Verwendung von Beckhoff-Feldbuskomponenten mit Standardtemperaturbereich in explosionsgefährdeten Bereichen (Richtlinie 2014/34/EU)!

- Die zertifizierten Komponenten sind in ein geeignetes Gehäuse zu errichten, das eine Schutzart von mindestens IP54 gemäß EN 60079-15 gewährleistet! Dabei sind die Umgebungsbedingungen bei der Verwendung zu berücksichtigen!
- Für Staub (nur die Feldbuskomponenten der Zertifikatsnummer KEMA 10ATEX0075 X Issue 9): Das Gerät ist in ein geeignetes Gehäuse einzubauen, das einen Schutzgrad von IP54 gemäß EN 60079-31 für Gruppe IIIA oder IIIB und IP6X für Gruppe IIIC bietet, wobei die Umgebungsbedingungen, unter denen das Gerät verwendet wird, zu berücksichtigen sind!
- Wenn die Temperaturen bei Nennbetrieb an den Einführungsstellen der Kabel, Leitungen oder Rohrleitungen höher als 70°C oder an den Aderverzweigungsstellen höher als 80°C ist, so müssen Kabel ausgewählt werden, deren Temperaturdaten den tatsächlich gemessenen Temperaturwerten entsprechen!
- Es müssen Maßnahmen zum Schutz gegen Überschreitung der Nennbetriebsspannung durch kurzzeitige Störspannungen um mehr als 40% getroffen werden!
- Die einzelnen Klemmen dürfen nur aus dem Busklemmensystem gezogen oder entfernt werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!
- Die Anschlüsse der zertifizierten Komponenten dürfen nur verbunden oder unterbrochen werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!
- Die Sicherung der Einspeiseklemmen KL92xx/EL92xx dürfen nur gewechselt werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!
- Adresswahlschalter und ID-Switche dürfen nur eingestellt werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!

Normen

Die grundlegenden Sicherheits- und Gesundheitsanforderungen werden durch Übereinstimmung mit den folgenden Normen erfüllt:

- EN 60079-0:2012+A11:2013
- EN 60079-15:2010
- EN 60079-31:2013 (nur für Zertifikatsnummer KEMA 10ATEX0075 X Issue 9)

Kennzeichnung

Die gemäß ATEX-Richtlinie für den explosionsgefährdeten Bereich zertifizierten Beckhoff-Feldbuskomponenten mit Standardtemperaturbereich tragen eine der folgenden Kennzeichnungen:

II 3G KEMA 10ATEX0075 X Ex nA IIC T4 Gc Ta: 0 ... +55°C

II 3D KEMA 10ATEX0075 X Ex tc IIIC T135°C Dc Ta: 0 ... +55°C (nur für Feldbuskomponenten mit Zertifikatsnummer KEMA 10ATEX0075 X Issue 9)

II 3G KEMA 10ATEX0075 X Ex nA nC IIC T4 Gc Ta: 0 ... +55°C

II 3D KEMA 10ATEX0075 X Ex tc IIIC T135°C Dc Ta: 0 ... +55°C (nur für Feldbuskomponenten mit Zertifikatsnummer KEMA 10ATEX0075 X Issue 9)

6.4 Hinweise zu Stecker und Verdrahtung

Es liegt in der Natur von EtherCAT IO-Modulen/Klemmen/Box-Modulen, dass sie zwei Anschlussseiten haben: die eine obligatorisch zum Feldbus, um mit dem Modul zu kommunizieren, die andere zum Signal/ Sensor/Aktor, um das Modul bestimmungsgemäß verwenden zu können. Die "äußere" Anschlussseite ist in der Regel mit Kontaktiertechnik ausgerüstet, um die weiterführenden Leitungen anschließen zu können.

Nur wenige IO-Geräte verfügen über keine 2. Seite, wie z.B. die EL6070 Dongle-Klemme oder eine EL6090 Displayklemme.

Im Folgenden einige Hinweise und Anregungen zum Umgang mit der Anschlusstechnik

- Herstellerseitige Vorgaben/Hinweise zur Anschlusstechnik sind zu beachten. Ggf. ist vorgesehenes Spezialwerkzeug sachgerecht zu verwenden, Stichwort Gasdichtigkeit beim Crimpen durch den Pressdruck.
- Jede lösbare Anschlusstechnik unterliegt Vorgaben zur Anzahl der Verbindungszyklen. Bei jedem Lösen/Stecken der Verbindung kommt es zu Reibvorgängen/Abrieb, mechanischer Dehnung/ Relaxation, evtl. Eintrag von Schmutz, Zutritt von Gasen/Flüssigkeiten/Betauung, Kontaktentladung, Veränderung der elektrischen Eigenschaften und des Kontaktpunkts (ohmscher Übergangswiderstand). Es treten also mechanische, chemische und damit am Ende elektrische Veränderungen ein, wenn ein Kontakt gelöst/verbunden wird. Im Hinblick auf das Einsatzszenario ist deshalb die passende Verbindungstechnik bzw. Geräte mit der passenden Verbindungstechnik zu wählen:
 - Für selten zu lösende Verbindungen können Stecker/Kontakte sinnvoll sein die mit einer max.
 Steckzyklenzahl (laut Hersteller) von 10 bis 100 spezifiziert sind. Dies kann der Fall sein, wenn Geräte einmalig installiert/verdrahtet werden, und über die Lebenszeit nur mit Umverdrahtung im Wartungsfall zu rechnen ist.
 - Für häufig zu lösende Verbindungen müssen Stecker/Kontakte mit einer max. Steckzyklenzahl von 1.000 und aufwärts gewählt werden. Solche Verbindungen sind typischerweise im Laborumfeld zu finden, wo mehrmals täglich die Verkabelung verändert wird und trotzdem über Jahre qualitativ hochwertiger Kontakt sichergestellt sein muss.
- Bei der Handhabung und insbesondere Konfektionierung von Steckern/Kontakten ist streng darauf zu achten, dass auch bei Low-Tech Verbindungen (offene Litze, Käfigzugfeder/Push-In) der Kontakt mit Handschweiß/Flüssigkeiten vermieden wird. Saure/Alkalische Flüssigkeiten können sehr aggressiv auf die Kontaktoberflächen einwirken und führen dort schnell zu Gefügeveränderungen und Oxidationsschichten. Diese wirken äußerst störend im analogen Messbetrieb, insbesondere da sie die Reproduzierbarkeit von Messungen untergraben und damit (wenn bekannt) eine sehr große systematische Messunsicherheit bewirken. Gegebenenfalls kann eine nachfolgende gründliche Reinigung vorgesehen werden.
- Die auftretende/erwartete **Belastung im Betrieb** muss dringend bei der Steckerauswahl bedacht werden.
- Außerordentliche Schwingungen können zu Mikroreibung/Korrosion führen und die elektrischen Eigenschaften verändern, bis zum vollständigen Kontaktabbruch.
- Temperatur hat Einfluss u.a. auf die mechanische Festigkeit der Verbindung und die Federkräfte in metallischen Komponenten.
- Gas/Flüssigkeitseinwirkung kann die Verbindung schädigen, insbesondere wenn sie in den eigentlichen Kontaktbereich dringt und dort nicht mehr entweichen kann.
- Im analogen Messtechnischen Bereich ist die elektrische Qualität der Verbindung, sowohl kurzzeitig im Inbetriebnahmefall als auch über die Lebensdauer unter äußeren Einflüssen und ggf. wiederholten Steckzyklen von hoher Relevanz. Dies drückt sich in der Wiederholpräzision des Übergangs aus, der Einfluss ist gegen die gesetzten Genauigkeitserwartungen zu prüfen. Hauptsächlich ist dort der (frequenzabhängige) Kontaktwiderstand relevant; Effekte können sein:
 - Durch Erhöhung des Kontaktwiderstands kommt es bei Stromübertragung zu Spannungsabfall und damit gegebenenfalls kritischer Eigenerwärmung

- Der interne Spannungsabfall kann entsprechende Messungen verfälschen. Um Auswirkungen zu vermeiden sind 4/5/6-Leiter-Verbindungen in der DMS/Widerstandmessung vorzusehen, da nichtstromführende Kontakte keinen verfälschenden Spannungsabfall mehr aufweisen. Die beliebte 3-Leiter-Verbindung bei Widerstandsmessung (PT100, PT1000 etc.) ist kein absoluter Schutz da die singuläre Leitung nicht diagnostiziert werden kann. Strom/Spannungsmessungen im industriellen Umfeld sind weniger sensibel auf Kontaktveränderungen.
- Bei schadhafter Kontaktoberfläche kann es je nach Kontaktlage zu zufälligen Widerstandsverhältnissen kommen, je nach Lage/Temperatur. Damit wird eine reproduzierbare Messung schwierig.
- Der **Aufwand für die Herstellung der Verbindung**, das Konfektionieren der Leitungen/Stecker, steigt in der Regel mit dem Anspruch an die Übertragungsqualität. Dies betrifft die benötigten Werkzeuge, Sorgfalt der Ausführung und Zeitbedarf. Beispiele:
 - Die in der Automatisierungstechnik übliche K\u00e4figzugfeder/Push-In-Verbindung (Beispiel Beckhoff EL-Klemmen) ist in wenigen Sekunden mit oder ohne Aderendh\u00fclse hergestellt oder gel\u00f6st, ein Schraubendreher oder Dr\u00fcckstift ist ausreichend. Daf\u00fcr ist die (ohmsche) Wiederholgenauigkeit oft nicht ausreichend f\u00fcr hochpr\u00e4zise Messungen im DMS/R-Bereich.
 - Zur Konfektionierung eines Labor-üblichen LEMO/ODU-Steckers (Beispiel Beckhoff ELM3704-0001) sind einige 10 Minuten und Kosten von einigen 10 € anzusetzen - je nach Polzahl. Dafür erhält man höchstwertige Verbindungstechnik mit hoher zugelassener Steckzyklenzahl.
 - Eine Zwischenform können feldkonfektionierbare M8/M12-Verbindungen sein. Aus Dichtigkeitsgründen sind sie aufwendiger zu konfektionieren (ggf. löten oder Schneidklemmtechnik), von der Steckzyklenzahl sind sie oft eher im Bereich der Wartungsstecker anzusiedeln.
- Eine konfektionierte Verbindung sollte vor Inbetriebnahme elektrisch/mechanisch geprüft werden: Sichtkontrolle, Auszugstest, Crimphöhenmessung, Widerstandsmessung etc.

6.5 Schirmkonzept

Die vorkonfektionierten Leitungen von Beckhoff Automation bieten zusammen mit der Schirmschiene einen optimalen Schutz gegen elektro-magnetische Störungen.

Es wird empfohlen, den Schirm möglichst nah an der Klemme aufzulegen, um Störungen auf ein Minimum zu reduzieren.

Anschluss der Motorleitung an die Schirmschiene

Befestigen Sie die Schirmschienenträger 1 auf der Hutschiene 2. Die Tragschiene 2 muss großflächig mit der metallischen Rückwand des Schaltschranks verbunden sein. Montieren Sie die Schirmschiene 3 wie in Abb. "Schirmschiene" abgebildet.

Alternativ kann ein Schirmschienen-Bügel 3a direkt mit der metallischen Rückwand des Schaltschranks verschraubt werden (Abb. "Schirmschienen-Bügel")

Abb. 181: Schirmschiene

Abb. 182: Schirmschienen-Bügel

Verdrahten Sie die Adern 4 der Motorleitung 5 und befestigen Sie dann das kupferummantelte Ende 6 der Motorleitung 5 mit der Schirmschelle 7 an die Schirmschiene 3 bzw. Schirmschienen-Bügel 3a. Ziehen Sie die Schraube 8 bis zum Anschlag an.

Befestigen Sie die PE-Schelle 9 an die Schirmschiene 3 bzw. Schirmschienen-Bügel 3a. Klemmen Sie die PE-Ader 10 der Motorleitung 5 unter die PE-Schelle 9.

Abb. 183: Schirmanbindung

Anschluss der Feedbackleitung an den Motor

Verdrillen der Feedbackleitungen

Die Feedbackleitungen sollten verdrillt werden, um Störeinflüsse zu minimieren.

Beim Anschrauben des Feedbacksteckers an den Motor wird der Schirmanschluss der Feedbackleitung über die metallische Steckerbefestigung hergestellt.

Auf der Klemmenseite kann der Schirm ebenfalls aufgelegt werden. Verdrahten Sie die Adern der Feedbackleitung und befestigen Sie das kupferummantelte Ende der Feedbackleitung mit der Schirmschelle 7 an der Schirmschiene 3 bzw. Schirmschienen-Bügel 3a. Motor- und Feedbackleitung können zusammen mit der Schraube 8 der Schirmschelle 7 aufgelegt werden.

6.6 Tragschienenmontage

WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Das Busklemmen-System ist für die Montage in einem Schaltschrank oder Klemmkasten vorgesehen.

Montage

Abb. 184: Montage auf Tragschiene

Die Buskoppler und Busklemmen werden durch leichten Druck auf handelsübliche 35 mm Tragschienen (Hutschienen nach EN 60715) aufgerastet:

- 1. Stecken Sie zuerst den Feldbuskoppler auf die Tragschiene.
- 2. Auf der rechten Seite des Feldbuskopplers werden nun die Busklemmen angereiht. Stecken Sie dazu die Komponenten mit Nut und Feder zusammen und schieben Sie die Klemmen gegen die Tragschiene, bis die Verriegelung hörbar auf der Tragschiene einrastet. Wenn Sie die Klemmen erst auf die Tragschiene schnappen und dann nebeneinander schieben ohne das Nut und Feder ineinander greifen, wird keine funktionsfähige Verbindung hergestellt! Bei richtiger Montage darf kein nennenswerter Spalt zwischen den Gehäusen zu sehen sein.

Tragschienenbefestigung

Der Verriegelungsmechanismus der Klemmen und Koppler reicht in das Profil der Tragschiene hinein. Achten Sie bei der Montage der Komponenten darauf, dass der Verriegelungsmechanismus nicht in Konflikt mit den Befestigungsschrauben der Tragschiene gerät. Verwenden Sie zur Befestigung von Tragschienen mit einer Höhe von 7,5 mm unter den Klemmen und Kopplern flache Montageverbindungen wie Senkkopfschrauben oder Blindnieten.

Demontage

Abb. 185: Demontage von Tragschiene

Jede Klemme wird durch eine Verriegelung auf der Tragschiene gesichert, die zur Demontage gelöst werden muss:

- 1. Ziehen Sie die Klemme an ihren orangefarbigen Laschen ca. 1 cm von der Tragschiene herunter. Dabei wird die Tragschienenverriegelung dieser Klemme automatisch gelöst und Sie können die Klemme nun ohne großen Kraftaufwand aus dem Busklemmenblock herausziehen.
- 2. Greifen Sie dazu mit Daumen und Zeigefinger die entriegelte Klemme gleichzeitig oben und unten an den Gehäuseflächen und ziehen sie aus dem Busklemmenblock heraus.

Verbindungen innerhalb eines Busklemmenblocks

Die elektrischen Verbindungen zwischen Buskoppler und Busklemmen werden durch das Zusammenstecken der Komponenten automatisch realisiert:

- Die sechs Federkontakte des K-Bus/E-Bus übernehmen die Übertragung der Daten und die Versorgung der Busklemmenelektronik.
- Die Powerkontakte übertragen die Versorgung für die Feldelektronik und stellen so innerhalb des Busklemmenblocks eine Versorgungsschiene dar. Die Versorgung der Powerkontakte erfolgt über Klemmen auf dem Buskoppler (bis 24 V) oder für höhere Spannungen über Einspeiseklemmen.

Powerkontakte

Beachten Sie bei der Projektierung eines Busklemmenblocks die Kontaktbelegungen der einzelnen
Busklemmen, da einige Typen (z.B. analoge Busklemmen oder digitale 4-Kanal-Busklemmen) die Powerkontakte nicht oder nicht vollständig durchschleifen. Einspeiseklemmen (KL91xx, KL92xx bzw. EL91xx, EL92xx) unterbrechen die Powerkontakte und stellen so den Anfang einer neuen Versorgungsschiene dar.

PE-Powerkontakt

Der Powerkontakt mit der Bezeichnung PE kann als Schutzerde eingesetzt werden. Der Kontakt ist aus Sicherheitsgründen beim Zusammenstecken voreilend und kann Kurzschlussströme bis 125 A ableiten.

Abb. 186: Linksseitiger Powerkontakt

HINWEIS

Beschädigung des Gerätes möglich

Beachten Sie, dass aus EMV-Gründen die PE-Kontakte kapazitiv mit der Tragschiene verbunden sind. Das kann bei der Isolationsprüfung zu falschen Ergebnissen und auch zur Beschädigung der Klemme führen (z. B. Durchschlag zur PE-Leitung bei der Isolationsprüfung eines Verbrauchers mit 230 V Nennspannung). Klemmen Sie zur Isolationsprüfung die PE- Zuleitung am Buskoppler bzw. der Einspeiseklemme ab! Um weitere Einspeisestellen für die Prüfung zu entkoppeln, können Sie diese Einspeiseklemmen entriegeln und mindestens 10 mm aus dem Verbund der übrigen Klemmen herausziehen.

WARNUNG

Verletzungsgefahr durch Stromschlag!

Der PE-Powerkontakt darf nicht für andere Potentiale verwendet werden!

6.7 Anschluss

6.7.1 Anschlusstechnik

WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Übersicht

Mit verschiedenen Anschlussoptionen bietet das Busklemmensystem eine optimale Anpassung an die Anwendung:

- Die Klemmen der Serien ELxxxx und KLxxxx mit Standardverdrahtung enthalten Elektronik und Anschlussebene in einem Gehäuse.
- Die Klemmen der Serien ESxxxx und KSxxxx haben eine steckbare Anschlussebene und ermöglichen somit beim Austausch die stehende Verdrahtung.
- Die High-Density-Klemmen (HD-Klemmen) enthalten Elektronik und Anschlussebene in einem Gehäuse und haben eine erhöhte Packungsdichte.

Standardverdrahtung (ELxxxx / KLxxxx)

Abb. 187: Standardverdrahtung

Die Klemmen der Serien ELxxxx und KLxxxx sind seit Jahren bewährt und integrieren die schraublose Federkrafttechnik zur schnellen und einfachen Montage.

Steckbare Verdrahtung (ESxxxx / KSxxxx)

Abb. 188: Steckbare Verdrahtung

Die Klemmen der Serien ESxxxx und KSxxxx enthalten eine steckbare Anschlussebene. Montage und Verdrahtung werden wie bei den Serien ELxxxx und KLxxxx durchgeführt.

Im Servicefall erlaubt die steckbare Anschlussebene, die gesamte Verdrahtung als einen Stecker von der Gehäuseoberseite abzuziehen.

Das Unterteil kann, über das Betätigen der Entriegelungslasche, aus dem Klemmenblock herausgezogen werden.

Die auszutauschende Komponente wird hineingeschoben und der Stecker mit der stehenden Verdrahtung wieder aufgesteckt. Dadurch verringert sich die Montagezeit und ein Verwechseln der Anschlussdrähte ist ausgeschlossen.

Die gewohnten Maße der Klemme ändern sich durch den Stecker nur geringfügig. Der Stecker trägt ungefähr 3 mm auf; dabei bleibt die maximale Höhe der Klemme unverändert.

Eine Lasche für die Zugentlastung des Kabels stellt in vielen Anwendungen eine deutliche Vereinfachung der Montage dar und verhindert ein Verheddern der einzelnen Anschlussdrähte bei gezogenem Stecker.

Leiterquerschnitte von 0,08 mm² bis 2,5 mm² können weiter in der bewährten Federkrafttechnik verwendet werden.

Übersicht und Systematik in den Produktbezeichnungen der Serien ESxxxx und KSxxxx werden wie von den Serien ELxxxx und KLxxxx bekannt weitergeführt.

High-Density-Klemmen (HD-Klemmen)

Abb. 189: High-Density-Klemmen

Die Klemmen dieser Baureihe mit 16 Klemmstellen zeichnen sich durch eine besonders kompakte Bauform aus, da die Packungsdichte auf 12 mm doppelt so hoch ist wie die der Standard-Busklemmen. Massive und mit einer Aderendhülse versehene Leiter können ohne Werkzeug direkt in die Federklemmstelle gesteckt werden.

Verdrahtung HD-Klemmen

Die High-Density-Klemmen der Serien ELx8xx und KLx8xx unterstützen keine steckbare Verdrahtung.

Ultraschall-litzenverdichtete Leiter

Ultraschall-litzenverdichtete Leiter

An die Standard- und High-Density-Klemmen können auch ultraschall-litzenverdichtete (ultraschallverschweißte) Leiter angeschlossen werden. Beachten Sie die Tabellen zum Leitungsquerschnitt [▶ 230]!

6.7.2 Verdrahtung

WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Klemmen für Standardverdrahtung ELxxxx/KLxxxx und für steckbare Verdrahtung ESxxxx/KSxxxx

Abb. 190: Anschluss einer Leitung an eine Klemmstelle

Bis zu acht Klemmstellen ermöglichen den Anschluss von massiven oder feindrähtigen Leitungen an die Busklemme. Die Klemmstellen sind in Federkrafttechnik ausgeführt. Schließen Sie die Leitungen folgendermaßen an:

- 1. Öffnen Sie eine Klemmstelle, indem Sie einen Schraubendreher gerade bis zum Anschlag in die viereckige Öffnung über der Klemmstelle drücken. Den Schraubendreher dabei nicht drehen oder hin und her bewegen (nicht hebeln).
- 2. Der Draht kann nun ohne Widerstand in die runde Klemmenöffnung eingeführt werden.
- 3. Durch Rücknahme des Druckes schließt sich die Klemmstelle automatisch und hält den Draht sicher und dauerhaft fest.

Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle.

Klemmengehäuse	ELxxxx, KLxxxx	ESxxxx, KSxxxx
Leitungsquerschnitt (massiv)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 1,5 mm ²	0,14 1,5 mm ²
Abisolierlänge	8 9 mm	9 10 mm

High-Density-Klemmen (HD-Klemmen [▶ 228]) mit 16 Klemmstellen

Bei den HD-Klemmen erfolgt der Leiteranschluss bei massiven Leitern werkzeuglos, in Direktstecktechnik, das heißt der Leiter wird nach dem Abisolieren einfach in die Klemmstelle gesteckt. Das Lösen der Leitungen erfolgt, wie bei den Standardklemmen, über die Kontakt-Entriegelung mit Hilfe eines Schraubendrehers. Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle.

Klemmer	ngehäuse
---------	----------

HD-Gehäuse

Leitungsquerschnitt (massiv)	0,08 1,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,25 1,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 0,75 mm ²
Leitungsquerschnitt (ultraschall-litzenverdichtet)	nur 1,5 mm² (siehe <u>Hinweis [</u> ▶ <u>229]</u>)
Abisolierlänge	8 9 mm

6.7.3 Schirmung

Schirmung

Encoder, analoge Sensoren und Aktoren sollten immer mit geschirmten, paarig verdrillten Leitungen angeschlossen werden.

6.8 Hinweis Spannungsversorgung

A WARNUNG

Spannungsversorgung aus SELV/PELV-Netzteil!

Zur Versorgung dieses Geräts müssen SELV/PELV-Stromkreise (Schutzkleinspannung, Sicherheitskleinspannung) nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung (Safety Extra Low Voltage) liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung (Protective Extra Low Voltage) benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

6.9 Bedeutung der LEDs

LED	Farbe	Bedeutung								
EcRun	grün	aus	Zustand der EtherCAT State Machine: INIT = Initialisierung der Klemme							
schnell blinkend blinkend Einzelblitz		schnell blinkend	Zustand der EtherCAT State Machine: BOOTSTRAP = Funktion für Firmware Updates der Klemme							
		blinkend	Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox- Kommunikation und abweichende Standard-Einstellungen gesetzt							
		Einzelblitz	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des Sync-Managers und der Distributed Clocks.							
										Ausgänge bleiben im sicheren Zustand
		an	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox- und Prozessdatenkommunikation ist möglich							

LED	Farbe	Bedeutung
Ok/Error	grün	Kein Fehler
	rot	Fehleranzeige, zugleich mit Error Bit im Status, bei
		Range Error des Messbereiches (nicht bei Underrange/Overrange!)
		 Messtyp eingestellt der nicht kalibriert ist (siehe CoE Objekt <u>0x800F [> 97]</u>)
		 Prozessorüberlast (siehe CoE Objekt <u>0xF900 [> 103]</u>, InfoData")
		ADC in Sättigung "saturation"
		 Analoge Schaltung überlastet "in overload", Überspannung an Eingängen erkannt; siehe Hinweise im Kapitel "<u>Technische Daten [> 18]</u>" und im folgenden Kapitel "<u>An-</u> schlussbelegung [> 232]"
		Oversampling Error im Synchron Mode
	aus	Kein Betrieb

6.10 Anschlussbelegung

Klemmstelle		
Bezeichnung	Nr.	Beschreibung
+Input 1	1	+Eingang 1
+Input 2	2	+Eingang 2
+Uv	3	+Versorgungsspannung
Shield	4	Schirm (FE)/ SGND
-Input 1	5	-Eingang 1
-Input 2	6	-Eingang 2
-Uv (GND _{int})	7	-Versorgungsspannung (interne Masse)
Shield	8	Schirm (FE)/ SGND

6.11 Entsorgung

Mit einer durchgestrichenen Abfalltonne gekennzeichnete Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

7 Anhang

7.1 Diagnose - Grundlagen zu Diag Messages

Mit *DiagMessages* wird ein System der Nachrichtenübermittlung vom EtherCAT Slave an den EtherCAT Master/TwinCAT bezeichnet. Die Nachrichten werden vom Gerät im eigenen CoE unter 0x10F3 abgelegt und können von der Applikation oder dem System Manager ausgelesen werden. Für jedes im Gerät hinterlegtes Ereignis (Warnung, Fehler, Statusänderung) wird eine über einen Code referenzierte Fehlermeldung ausgegeben.

Definition

Das System *DiagMessages* ist in der ETG (<u>EtherCAT Technology Group</u>) in der Richtlinie ETG.1020, Kap. 13 "Diagnosis Handling" definiert. Es wird benutzt, damit vordefinierte oder flexible Diagnosemitteilungen vom EtherCAT-Slave an den Master übermittelt werden können. Das Verfahren kann also nach ETG herstellerübergreifend implementiert werden. Die Unterstützung ist optional. Die Firmware kann bis zu 250 DiagMessages im eigenen CoE ablegen.

Jede DiagMessage besteht aus

- Diag Code (4 Byte)
- Flags (2 Byte; Info, Warnung oder Fehler)
- Text-ID (2 Byte; Referenz zum erklärenden Text aus der ESI/XML)
- Zeitstempel (8 Byte, lokale Slave-Zeit oder 64-Bit Distributed-Clock-Zeit, wenn vorhanden)
- · dynamische Parameter, die von der Firmware mitgegeben werden

In der zum EtherCAT-Gerät gehörigen ESI/XML-Datei werden die DiagMessages in Textform erklärt: Anhand der in der DiagMessage enthaltenen Text-ID kann die entsprechende Klartextmeldung in den Sprachen gefunden werden, die in der ESI/XML enthalten sind. Üblicherweise sind dies bei Beckhoff-Produkten deutsch und englisch.

Der Anwender erhält durch den Eintrag *NewMessagesAvailable* Information, dass neue Meldungen vorliegen.

DiagMessages können im Gerät bestätigt werden: die letzte/neueste unbestätigte Meldung kann vom Anwender bestätigt werden.

1	£:			-11 - 1	Ot		11:			1-1-1 0. A 0 C 0	
Im	TINGEN	SICD	SUMUDI	nie :	Stellereintrade		HIGTORY	seinet im	$\Box \cap \vdash \Box \cap \square$		
	muuch	31011	3000011	uic '	Olouoronniago	wic aic	1 113101 9	301031111			

Gen	eral 🛛 EtherCAT	DC Process Data Startup	CoE - Online	Diag History Online
	Update Li: Advanced	st 🗌 Auto Update 🔽	Single Update	Show Offline Data
	Add to Start	up	Module OD	(AoE Port): 0
	ndex	Name	Flags	Value
Ē	1018:0	Identity	RO	> 4 <
Ē	10F0:0	Backup parameter handling	RO	>1<
Ė	10F3:0	Diagnosis History	RO	> 55 <
	10F3:01	Maximum Messages	RO	0x32 (50)
	10F3:02	Newest Message	RO	0x15(21)
	10F3:03	Newest Acknowledged Message	BW	0x14 (20)
	10F3:04	New Messages Available	RO	FALSE
	10F3:05	Flags	BW	0x0000 (0)
	10F3:06	Diagnosis Message 001	RO	00 E0 A4 08 10 00 03 00 60 1F 0D 00 00 00 00 00 06 00 00 00 06 00 00 00
	10F3:07	Diagnosis Message 002	RO	00 E0 A4 08 10 00 02 00 00 6A 18 00 00 00 00 00 06 00 00 00 06 00 00 00
	10F3:08	Diagnosis Message 003	RO	00 E0 A4 08 10 00 03 00 40 D8 67 02 00 00 00 00 00 00 00 00 06 00 03 00 06 00 00 00
	10F3:09	Diagnosis Message 004	RO	00 E0 A4 08 12 00 00 81 E0 89 47 03 00 00 00 00 06 00 04 44 06 00 00 00 06 00 00 00

Abb. 191: DiagMessages im CoE

Unter 0x10F3:02 ist der Subindex der neuesten DiagMessage auslesbar.

Unterstützung zur Inbetriebnahme

Das System der DiagMesssages ist vor allem während der Anlageninbetriebnahme einzusetzen. Zur Online-Diagnose während des späteren Dauerbetriebs sind die Diagnosewerte z. B. im StatusWord des Gerätes (wenn verfügbar) hilfreich.

٨

Implementierung TwinCAT System Manager

Ab TwinCAT 2.11 werden DiagMessages, wenn vorhanden, beim Gerät in einer eigenen Oberfläche angezeigt. Auch die Bedienung (Abholung, Bestätigung) erfolgt darüber.

				\frown			
	General Ether	CAT DO	C Process Data Start	up CoE - Online Diag History Online			
в	Update His	tory	Auto Update only new Messages	Ack. Messages Export Diag History Advanced			
	Туре	Flags	Timestamp	Message			
	U Warning	N	2.1.2012 13:09:23 370	(0x4413) I2T Amplifier overload			
0	U Warning	N	2.1.2012 13:09:23 370	(0x4101) Terminal-Overtemperature			
C	💿 Error	Q	2.1.2012 13:09:23 356	(0x8406) Undervoltage DC-Link			
	🚯 Info	Q	2.1.2012 13:09:23 317	(0x0002) Communication established			
	🕤 Info	Q	2.1.2012 13:09:23 316	(0x0003) Initialization: 0x0, 0x0, 0xFF			

Abb.	192: Im	plementierung	DiadMe	essage-S	vstem im	TwinCAT \$	Svstem	Manager
					J · · · · · ·			

Im Reiter Diag History (A) sind die Betätigungsfelder (B) wie auch die ausgelesene History (C) zu sehen. Die Bestandteile der Message:

- Info/Warning/Error
- Acknowledge-Flag (N = unbestätigt, Q = bestätigt)
- Zeitstempel
- Text-ID
- Klartext-Meldung nach ESI/XML Angabe

Die Bedeutung der Buttons ist selbsterklärend.

DiagMessages im ADS Logger/Eventlogger

Ab TwinCAT 3.1 build 4022 werden von einer Klemme abgesetzte DiagMessages auch im TwinCAT ADS Logger gezeigt. Da nun IO-übergreifend DiagMessages an einem Ort dargestellt werden, vereinfacht dies die Inbetriebnahme. Außerdem kann die Logger-Ausgabe in eine Datei gespeichert werden – somit stehen die DiagMessages auch langfristig für Analysen zur Verfügung.

DiagMessages liegen eigentlich nur lokal im CoE 0x10F3 in der Klemme vor und können bei Bedarf manuell z. B. über die oben genannte DiagHistory ausgelesen werden.

Bei Neuentwicklungen sind die EtherCAT-Klemmen standardmäßig so eingestellt, dass sie das Vorliegen einer DiagMessage über EtherCAT als Emergency melden; der Eventlogger kann die DiagMessage dann abholen. Die Funktion wird in der Klemme über 0x10F3:05 aktiviert, deshalb haben solche Klemmen folgenden Eintrag standardmäßig in der StartUp-Liste:

Transition Protocol Index Data Comment	
UX1C12CU UUUU download pdo 0x1C12ind/	<
C <ps> CoE 0x1C13 C 0 05 00 00 1A 01 1A 10 1A download pdo 0x1C13 inde</ps>	< .
C IP CoE 0x10F3:05 0x0001 (1)	

Abb. 193: StartUp-Liste

Soll die Funktion ab Gerätestart deaktiviert werden weil z. B. viele Meldungen kommen oder der EventLogger nicht genutzt wird, kann der StartUp-Eintrag gelöscht oder auf 0 gesetzt werden. Der Wert kann dann bei Bedarf später aus der PLC per CoE-Zugriff wieder auf 1 gesetzt werden.

Nachrichten in die PLC einlesen

- In Vorbereitung -

Interpretation

Zeitstempel

Der Zeitstempel wird aus der lokalen Uhr der Klemme zum Zeitpunkt des Ereignisses gewonnen. Die Zeit ist üblicherweise die Distributed-Clocks-Zeit (DC) aus Register x910.

Bitte beachten: die DC-Zeit wird in der Referenzuhr gleich der lokalen IPC/TwinCAT-Zeit gesetzt, wenn EtherCAT gestartet wird. Ab diesem Moment kann die DC-Zeit gegenüber der IPC-Zeit divergieren, da die IPC-Zeit nicht nachgeregelt wird. Es können sich so nach mehreren Wochen Betrieb ohne EtherCAT Neustart größere Zeitdifferenzen entwickeln. Als Abhilfe kann die sog. Externe Synchronisierung der DC-Zeit genutzt werden, oder es wird fallweise eine manuelle Korrekturrechnung vorgenommen: die aktuelle DC-Zeit kann über den EtherCAT Master oder durch Einsicht in das Register x901 eines DC-Slaves ermittelt werden.

Aufbau der Text-ID

Der Aufbau der MessagelD unterliegt keiner Standardisierung und kann herstellerspezifisch definiert werden. Bei Beckhoff EtherCAT-Geräten (EL, EP) lautet er nach **xyzz** üblichwerweise:

x	У	ZZ
0: Systeminfo	0: System	Fehlernummer
1: Info	1: General	
2: reserved	2: Communication	
4: Warning	3: Encoder	
8: Error	4: Drive	
	5: Inputs	
	6: I/O allgemein	
	7: reserved	

Beispiel: Meldung 0x4413 --> Drive Warning Nummer 0x13

Übersicht Text-IDs

Spezifische Text-IDs sind in der Gerätedokumentation aufgeführt.

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x0001	Information	System	No error	Kein Fehler
0x0002	Information	System	Communication established	Verbindung aufgebaut
0x0003	Information	System	Initialisation: 0x%X, 0x%X, 0x%X	allgemeine Information, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x1000	Information	System	Information: 0x%X, 0x%X, 0x%X	allgemeine Information, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x1012	Information	System	EtherCAT state change Init - PreOp	
0x1021	Information	System	EtherCAT state change PreOp - Init	
0x1024	Information	System	EtherCAT state change PreOp - Safe-Op	
0x1042	Information	System	EtherCAT state change SafeOp - PreOp	
0x1048	Information	System	EtherCAT state change SafeOp - Op	
0x1084	Information	System	EtherCAT state change Op - SafeOp	
0x1100	Information	Allgemein	Detection of operation mode completed: 0x%X, %d	Erkennung der Betriebsart beendet

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x1135	Information	Allgemein	Cycle time o.k.: %d	Zykluszeit o.k.
0x1157	Information	Allgemein	Data manually saved (ldx: 0x%X, Subldx: 0x%X)	Daten manuell gespeichert
0x1158	Information	Allgemein	Data automatically saved (ldx: 0x%X, Subldx: 0x%X)	Daten automatisch gespeichert
0x1159	Information	Allgemein	Data deleted (Idx: 0x%X, SubIdx: 0x%X)	Daten gelöscht
0x117F	Information	Allgemein	Information: 0x%X, 0x%X, 0x%X	Information
0x1201	Information	Kommunikation	Communication re-established	Kommunikation zur Feldseite wiederhergestellt Die Meldung tritt auf, wenn z. B. im Betrieb die Spannung der Powerkontakte entfernt und wieder angelegt wurde.
0x1300	Information	Encoder	Position set: %d, %d	Position gesetzt - StartInputhandler
0x1303	Information	Encoder	Encoder Supply ok	Encoder Netzteil OK
0x1304	Information	Encoder	Encoder initialization successfully, channel: %X	Encoder Initialisierung erfolgreich abgeschlossen
0x1305	Information	Encoder	Sent command encoder reset, channel: %X	Sende Kommando Encoder Reset
0x1400	Information	Drive	Drive is calibrated: %d, %d	Antrieb ist kalibriert
0x1401	Information	Drive	Actual drive state: 0x%X, %d	Aktueller Status des Antriebs
0x1705	Information		CPU usage returns in normal range (< 85%)	Prozessorauslastung ist wieder im normalen Bereich
0x1706	Information		Channel is not in saturation anymore	Kanal ist nicht mehr in Sättigung
0x1707	Information		Channel is not in overload anymore	Kanal ist nicht mehr überlastet
0x170A	Information		No channel range error anymore	Es liegt kein Messbereichsfehler mehr vor
0x170C	Information		Calibration data saved	Abgleichdaten wurden gespeichert
0x170D	Information		Calibration data will be applied and saved after sending the command "0x5AFE"	Abgleichdaten werden erst nach dem Senden des Kommandos "0x5AFE" übernommen und gespeichert

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x2000	Information	System	%s: %s	
0x2001	Information	System	%s: Network link lost	Netzwerk Verbindung verloren
0x2002	Information	System	%s: Network link detected	Netzwerk Verbindung gefunden
0x2003	Information	System	%s: no valid IP Configuration - Dhcp client started	Ungültige IP Konfiguration
0x2004	Information	System	%s: valid IP Configuration (IP: %d.%d.%d.%d) assigned by Dhcp server %d.%d.%d.%d	Gültige, vom DHCP-Server zugewiesene IP- Konfiguration
0x2005	Information	System	%s: Dhcp client timed out	Zeitüberschreitung DHCP-Client
0x2006	Information	System	%s: Duplicate IP Address detected (%d.%d.%d.%d)	Doppelte IP-Adresse gefunden
0x2007	Information	System	%s: UDP handler initialized	UDP-Handler initialisiert
0x2008	Information	System	%s: TCP handler initialized	TCP-Handler initialisiert
0x2009	Information	System	%s: No more free TCP sockets available	Keine freien TCP Sockets verfügbar

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x4000	Warnung		Warning: 0x%X, 0x%X, 0x%X	allgemeine Warnung, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x4001	Warnung	System	Warning: 0x%X, 0x%X, 0x%X	
0x4002	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d API:%dms) from %d. %d.%d.%d successful	
0x4003	Warnung	System	%s: %s Connection Close (IN:%d OUT:%d) from %d.%d.%d.%d successful	
0x4004	Warnung	System	%s: %s Connection (IN:%d OUT: %d) with %d.%d.%d.%d timed out	

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x4005	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Error: %u)	
0x4006	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Input Data Size expected: %d Byte(s) received: %d Byte(s))	
0x4007	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Output Data Size expected: %d Byte(s) received: %d Byte(s))	
0x4008	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (RPI:%dms not supported -> API:%dms)	
0x4101	Warnung	Allgemein	Terminal-Overtemperature	Übertemperatur. Die Innentemperatur der Klemme überschreitet die parametrierte Warnschwelle.
0x4102	Warnung	Allgemein	Discrepancy in the PDO- Configuration	Die ausgewählten PDOs passen nicht zur eingestellten Betriebsart. Beispiel: Antrieb arbeitet im Velocity Mode. Das
				Velocity-PDO ist jedoch nicht in die PDOs gemapped.
0x417F	Warnung	Allgemein	Warnung: 0x%X, 0x%X, 0x%X	
0x428D	Warnung	Allgemein	Challenge is not Random	
0x4300	Warnung	Encoder	Subincrements deactivated: %d, %d	Subinkremente deaktiviert (trotz aktivierter Konfiguration)
0x4301	Warnung	Encoder	Encoder-Warning	Allgemeiner Encoderfehler
0x4302	Warnung	Encoder	Maximum frequency of the input signal is nearly reached (channel %d)	Maximale Frequenz des Eingangssignals ist bald erreicht
0x4303	Warnung	Encoder	Limit counter value was reduced because of the PDO configuration (channel %d)	Limit-Zählergrenze wurde aufgrund der PDO- Konfiguration reduziert (Kanal %d)
0x4304	Warnung	Encoder	Reset counter value was reduced because of the PDO configuration (channel %d)	Reset-Zählergrenze wurde aufgrund der PDO- Konfiguration reduziert (Kanal %d)
0x4400	Warnung	Drive	Drive is not calibrated: %d, %d	Antrieb ist nicht kalibriert
0x4401	Warnung	Drive	Starttype not supported: 0x%X, %d	Starttyp wird nicht unterstützt
0x4402	Warnung	Drive	Command rejected: %d, %d	Kommando abgewiesen
0x4405	Warnung	Drive	Invalid modulo subtype: %d, %d	Modulo-Subtyp ungültig
0x4410	Warnung	Drive	Target overrun: %d, %d	Zielposition wird überfahren
0x4411	Warnung	Drive	DC-Link undervoltage (Warning)	Die Zwischenkreisspannung der Klemme unterschreitet die parametrierte Mindestspannung. Das Aktivieren der Endstufe wird unterbunden.
0x4412	Warnung	Drive	DC-Link overvoltage (Warning)	Die Zwischenkreisspannung der Klemme überschreitet die parametrierte Maximalspannung. Das Aktivieren der Endstufe wird unterbunden.
0x4413	Warnung	Drive	I2T-Model Amplifier overload (Warning)	 Der Verstärker wir außerhalb der Spezifikation betrieben Das I2T-Modell des Verstärkers ist falsch
0×1111	Warnung	Drive	I2T Model Motor everland	parametriert
0,4414	wamung	Dive	(Warning)	Nenwerte betrieben. Des IQT Medell des Maters ist falseh perspectriet.
0x4415	Warnung	Drive	Speed limitation active	Das 121-Modell des Motors ist laisch parametrierten
0,4415	Wannung	Dive		Objekte (z. B. velocity limitation, motor speed limitation) begrenzt. Die Warnung wird ausgegeben, wenn die Sollgeschwindigkeit größer ist, als eines der parametrierten Begrenzungen.
0x4416	Warnung	Drive	Step lost detected at position: 0x%X%X	Schrittverlust erkannt
0x4417	Warnung	Drive	Motor-Overtemperature	Die Innentemperatur des Motors übersteigt die parametrierte Warnschwelle.
0x4418	Warnung	Drive	Limit: Current	Limit: Strom wird limitiert
0x4419	Warnung	Drive	Limit: Amplifier I2T-model exceeds 100%	Die Schwellwerte für den maximalen Strom wurden überschritten.

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x441A	Warnung	Drive	Limit: Motor I2T-model exceeds 100%	Limit: Motor I2T-Modell übersteigt 100%
0x441B	Warnung	Drive	Limit: Velocity limitation	Die Schwellwerte für die maximale Drehzahl wurden überschritten.
0x441C	Warnung	Drive	STO while the axis was enabled	Es wurde versucht die Achse zu aktivieren, obwohl die Spannung am STO-Eingang nicht anliegt.
0x4600	Warnung	Allgemein IO	Wrong supply voltage range	Versorgungsspannung im falschen Bereich
0x4610	Warnung	Allgemein IO	Wrong output voltage range	Ausgangsspannung im falschen Bereich
0x4705	Warnung		Processor usage at %d %	Prozessorauslastung bei %d %
0x470A	Warnung		EtherCAT Frame missed (change Settings or DC Operation Mode or Sync0 Shift Time)	EtherCAT Frame verpasst (Einstellungen, DC Operation Mode oder Sync0 Shift Time ändern)

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x8000	Fehler	System	%s: %s	
0x8001	Fehler	System	Error: 0x%X, 0x%X, 0x%X	allgemeiner Fehler, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x8002	Fehler	System	Communication aborded	Kommunikation abgebrochen
0x8003	Fehler	System	Configuration error: 0x%X, 0x%X,	allgemeine, Parameter je nach Ereignis.
			0x%X	Interpretation siehe Gerätedokumentation.
0x8004	Fehler	System	%s: Unsuccessful FwdOpen- Response received from %d.%d. %d.%d (%s) (Error: %u)	
0x8005	Fehler	System	%s: FwdClose-Request sent to %d.%d.%d.%d (%s)	
0x8006	Fehler	System	%s: Unsuccessful FwdClose- Response received from %d.%d. %d.%d (%s) (Error: %u)	
0x8007	Fehler	System	%s: Connection with %d.%d.%d. %d (%s) closed	
0x8100	Fehler	Allgemein	Status word set: 0x%X, %d	Fehlerbit im Statuswort gesetzt
0x8101	Fehler	Allgemein	Operation mode incompatible to PDO interface: 0x%X, %d	Betriebsart inkompatibel zum PDO-Interface
0x8102	Fehler	Allgemein	Invalid combination of Inputs and Outputs PDOs	Ungültige Kombination von In- und Output PDOs
0x8103	Fehler	Allgemein	No variable linkage	Keine Variablen verknüpft
0x8104	Fehler	Allgemein	Terminal-Overtemperature	Die Innentemperatur der Klemme überschreitet die parametrierte Fehlerschwelle. Das Aktivieren der Klemme wird unterbunden.
0x8105	Fehler	Allgemein	PD-Watchdog	Die Kommunikation zwischen Feldbus und Endstufe wird durch einen Watchdog abgesichert. Sollte die Feldbuskommunikation abbrechen, wird die Achse automatisch gestoppt.
				Die EtherCAT-Verbindung wurde im Betrieb unterbrochen
				Der Master wurde im Betrieb in den Config-Mode geschaltet
0x8135	Fehler	Allgemein	Cycletime has to be a multiple of 125 $\ensuremath{\mu s}$	Die IO- oder NC-Zykluszeit ist nicht ganzzahlig durch 125µs teilbar.
0x8136	Fehler	Allgemein	Configuration error: invalid sampling rate	Konfigurationsfehler: Ungültige Samplingrate
0x8137	Fehler	Allgemein	Elektronisches Typenschild: CRC-Fehler	Inhalt des Speicher des externen Typenschildes nicht gültig.
0x8140	Fehler	Allgemein	Sync Error	Echtzeitverletztung
0x8141	Fehler	Allgemein	Sync%X Interrupt lost	Sync%X Interrupt fehlt
0x8142	Fehler	Allgemein	Sync Interrupt asynchronous	Sync Interrupt asynchron
0x8143	Fehler	Allgemein	Jitter too big	Jitter Grenzwertüberschreitung
0x817F	Fehler	Allgemein	Error: 0x%X, 0x%X, 0x%X	
0x8200	Fehler	Kommunikation	Write access error: %d, %d	Fehler beim Schreiben
0x8201	Fehler	Kommunikation	No communication to field-side (Auxiliary voltage missing)	Es ist keine Spannung an den Powerkontakten angelegt
0.0001	E a la la c	Kanana II. II	Open and the faile of 2011	EIN Firmware Update ist fehlgeschlagen
0x8281	Fenier	Kommunikation	Ownersnip talled: %X	1
UX8282	renier	rommunikation	To many keys founded	

Text-ID	Tvp	Ort	Text Message	Zusätzlicher Kommentar
0x8283	Fehler	Kommunikation	Key Creation failed: %X	
0x8284	Fehler	Kommunikation	Key loading failed	
0x8285	Fehler	Kommunikation	Reading Public Key failed: %X	
0x8286	Fehler	Kommunikation	Reading Public EK failed: %X	
0x8287	Fehler	Kommunikation	Reading PCR Value failed: %X	
0x8288	Fehler	Kommunikation	Reading Certificate EK failed: %X	
0x8289	Fehler	Kommunikation	Challenge could not be hashed: %X	
0x828A	Fehler	Kommunikation	Tickstamp Process failed	
0x828B	Fehler	Kommunikation	PCR Process failed: %X	
0x828C	Fehler	Kommunikation	Quote Process failed: %X	
0x82FF	Fehler	Kommunikation	Bootmode not activated	Bootmode nicht aktiviert
0x8300	Fehler	Encoder	Set position error: 0x%X, %d	Fehler beim Setzen der Position
0x8301	Fehler	Encoder	Encoder increments not configured: 0x%X, %d	Enkoderinkremente nicht konfiguriert
0x8302	Fehler	Encoder	Encoder-Error	Die Amplitude des Resolvers ist zu klein.
0x8303	Fehler	Encoder	Encoder power missing (channel %d)	Encoderspannung nicht vorhanden (Kanal %d)
0x8304	Fehler	Encoder	Encoder communication error, channel: %X	Encoder Kommunikationsfehler
0x8305	Fehler	Encoder	EnDat2.2 is not supported, channel: %X	EnDat2.2 wird nicht unterstützt
0x8306	Fehler	Encoder	Delay time, tolerance limit exceeded, 0x%X, channel: %X	Laufzeitmessung, Toleranz überschritten
0x8307	Fehler	Encoder	Delay time, maximum value exceeded, 0x%X, channel: %X	Laufzeitmessung, Maximalwert überschritten
0x8308	Fehler	Encoder	Unsupported ordering designation, 0x%X, channel: %X (only 02 and 22 is supported)	Falsche EnDat Bestellbezeichnung
0x8309	Fehler	Encoder	Encoder CRC error, channel: %X	Encoder CRC Fehler
0x830A	Fehler	Encoder	Temperature %X could not be read, channel: %X	Temperatur kann nicht gelesen werden
0x830C	Fehler	Encoder	Encoder Single-Cycle-Data Error, channel. %X	CRC Fehler festgestellt. Überprüfen Sie den Übertragungsweg und das CRC Polynom
0x830D	Fehler	Encoder	Encoder Watchdog Error, channel. %X	Der Sensor hat nicht innerhalb einer vordefinierten Zeitspanne geantwortet
0x8310	Fehler	Encoder	Initialisation error	Initialisierungsfehler
0x8311	Fehler	Encoder	Maximum frequency of the input signal is exceeded (channel %d)	Maximale Frequenz des Eingangssignals ist überschritten (Kanal %d)
0x8312	Fehler	Encoder	Encoder plausibility error (channel %d)	Encoder Plausibilitätsfehler (Kanal %d)
0x8313	Fehler	Encoder	Configuration error (channel %d)	Konfigurationsfehler (Kanal %d)
0x8314	Fehler	Encoder	Synchronisation error	Synchronisierungsfehler
0x8315	Fehler	Encoder	Error status input (channel %d)	Fehler Status-Eingang (Kanal %d)
0x8400	Fehler	Drive	Incorrect drive configuration: 0x%X, %d	Antrieb fehlerhaft konfiguriert
0x8401	Fehler	Drive	Limiting of calibration velocity: %d, %d	Begrenzung der Kalibrier-Geschwindigkeit
0x8402	Fehler	Drive	Emergency stop activated: 0x%X, %d	Emergency-Stop aktiviert
0x8403	Fehler	Drive	ADC Error	Fehler bei Strommessung im ADC
0x8404	Fehler	Drive	Overcurrent	Überstrom Phase U, V, oder W
0x8405	Fehler	Drive	Invalid modulo position: %d	Modulo-Position ungültig
0x8406	Fehler	Drive	DC-Link undervoltage (Error)	Die Zwischenkreisspannung der Klemme unterschreitet die parametrierte Mindestspannung. Das Aktivieren der Endstufe wird unterbunden.
0x8407	Fehler	Drive	DC-Link overvoltage (Error)	Die Zwischenkreisspannung der Klemme überschreitet die parametrierte Maximalspannung. Das Aktivieren der Endstufe wird unterbunden.
0x8408	Fehler	Drive	I2T-Model Amplifier overload (Error)	 Der Verstärker wir außerhalb der Spezifikation betrieben
				 Das I2T-Modell des Verstärkers ist falsch parametriert

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x8409	Fehler	Drive	I2T-Model motor overload (Error)	Der Motor wird außerhalb der parametrierten Nennwerte betrieben.
				Das I2T-Modell des Motors ist falsch parametriert.
0x840A	Fehler	Drive	Overall current threshold exceeded	Summenstrom überschritten
0x8415	Fehler	Drive	Invalid modulo factor: %d	Modulo-Faktor ungültig
0x8416	Fehler	Drive	Motor-Overtemperature	Die Innentemperatur des Motors übersteigt die parametrierte Fehlerschwelle. Der Motor bleibt sofort stehen. Das Aktivieren der Endstufe wird unterbunden.
0x8417	Fehler	Drive	Maximum rotating field velocity exceeded	Drehfeldgeschwindigkeit übersteigt den von Dual Use (EU 1382/2014) vorgeschriebenen Wert.
0x841C	Fehler	Drive	STO while the axis was enabled	Es wurde versucht die Achse zu aktivieren, obwohl die Spannung am STO-Eingang nicht anliegt.
0x8550	Fehler	Inputs	Zero crossing phase %X missing	Nulldurchgang Phase %X fehlt
0x8551	Fehler	Inputs	Phase sequence Error	Drehrichtung Falsch
0x8552	Fehler	Inputs	Overcurrent phase %X	Überstrom Phase %X
0x8553	Fehler	Inputs	Overcurrent neutral wire	Überstrom Neutralleiter
0x8581	Fehler	Inputs	Wire broken Ch %D	Leitungsbruch Ch %d
0x8600	Fehler	Allgemein IO	Wrong supply voltage range	Versorgungsspannung im falschen Bereich
0x8601	Fehler	Allgemein IO	Supply voltage to low	Versorgungsspannung zu klein
0x8602	Fehler	Allgemein IO	Supply voltage to high	Versorgungsspannung zu groß
0x8603	Fehler	Allgemein IO	Over current of supply voltage	Überstrom der Versorgungsspannung
0x8610	Fehler	Allgemein IO	Wrong output voltage range	Ausgangsspannung im falschen Bereich
0x8611	Fehler	Allgemein IO	Output voltage to low	Ausgangsspannung zu klein
0x8612	Fehler	Allgemein IO	Output voltage to high	Ausgangsspannung zu groß
0x8613	Fehler	Allgemein IO	Over current of output voltage	Überstrom der Ausgangsspannung
0x8700	Fehler		Channel/Interface not calibrated	Kanal/Interface nicht abgeglichen
0x8701	Fehler		Operating time was manipulated	Betriebslaufzeit wurde manipuliert
0x8702	Fehler		Oversampling setting is not possible	Oversampling Einstellung nicht möglich
0x8703	Fehler		No slave controller found	Kein Slave Controller gefunden
0x8704	Fehler		Slave controller is not in Bootstrap	Slave Controller ist nicht im Bootstrap
0x8705	Fehler		Processor usage to high (>= 100%)	Prozessorauslastung zu hoch (>= 100%)
0x8706	Fehler		Channel in saturation	Kanal in Sättigung
0x8707	Fehler		Channel overload	Kanalüberlastung
0x8708	Fehler		Overloadtime was manipulated	Überlastzeit wurde manipuliert
0x8709	Fehler		Saturationtime was manipulated	Sättigungszeit wurde manipuliert
0x870A	Fehler		Channel range error	Messbereichsfehler des Kanals
0x870B	Fehler		no ADC clock	Kein ADC Takt vorhanden
0xFFFF	Information		Debug: 0x%X, 0x%X, 0x%X	Debug: 0x%X, 0x%X, 0x%X

7.2 TcEventLogger und IO

Der TwinCAT 3 EventLogger stellt eine Schnittstelle zum Austausch von Nachrichten zwischen verschiedenen TwinCAT- und Nicht-TwinCAT-Komponenten bereit.

Abb. 194: Schematische Darstellung TCEventLogger

Siehe dazu die Erläuterungen in der TwinCAT EventLogger Dokumentation z. B. im Beckhoff InfoSys <u>https://infosys.beckhoff.com/</u> \rightarrow TwinCAT 3 \rightarrow TE1000 XAE \rightarrow Technologien \rightarrow EventLogger .

Der EventLogger speichert in eine lokale Datenbank unter ..\TwinCAT\3.1\Boot\LoggedEvents.db und ist im Gegensatz zum VisualStudio Error Window für dauerhafte Aufzeichnung konzipiert.

Auch IO-Geräte können eine Quelle von Nachrichten sein. Werden im IO-Gerät sogenannte DiagMessages erzeugt, können diese bei entsprechender Geräteeinstellung von TwinCAT über EtherCAT abgeholt und im TcEventLogger angezeigt werden. Das erleichtert die zentrale Verwaltung von betriebsbehindernden Ereignissen, da nun nicht mehr in der Applikation für jedes IO-Gerät einzeln eine textuelle Diagnose ausprogrammiert werden muss. Die Nachrichten/Events können z. B. direkt in der TwinCAT HMI angezeigt werden und erleichtern so die Diagnose.

Hinweise:

- · dieses Feature wird ab TwinCAT 3.1 build 4022.16 unterstützt.
- TwinCAT kann sich im RUN- oder CONFIG-Mode befinden
- das betrachtete IO-Gerät muss herstellerseitig 1. lokale DiagMessages erstellen und 2. grundsätzlich fähig sein, diese als Event über EtherCAT abzusetzen. Dies ist nicht für alle EtherCAT-IO Geräte/ Klemmen/Box-Module von Beckhoff der Fall.

Die vom EventLogger verwalteten Nachrichten können ausgegeben werden in bzw. ausgelesen werden von

- der HMI \rightarrow EventGrid
- C#
- der PLC
- TwinCAT Engineering \rightarrow Logged Events

Im Folgenden Erläuterungen zur Verwendung des EventLoggers mit EtherCAT IO mit TwinCAT 3.1 build 4022.22 während der Inbetriebnahme.

• Im TwinCAT Engineering ist ggf. das EventLogger Window anzuzeigen

M TwinCA	T Pro	ject9 - Microsoft Visual Stud	dio (Administrator)	
FILE EDIT	VIE	W PROJECT BUILD	DEBUG TWINCAT	TWINSAFE PLC TOOLS SCOPE
G • O	×1	Solution Explorer	Ctrl+Alt+L	Attach
Build 4022.	•	Server Explorer	Ctrl+Alt+S	<local> Untit</local>
Solution Evolo	Ь	Bookmark Window	Ctrl+K, Ctrl+W	TwinCAT Project9 - + X
	Ζ	Call Hierarchy	Ctrl+Alt+K	
	*⊈	Class View	Ctrl+Shift+C	T Settings DC Process Data Startu
Search Solutio	\bigcirc	Code Definition Window	Ctrl+ ^, D	V Auto Update Ack. Mes
Solution	27	Object Browser	Ctrl+Alt+J	Only new Messages
	Ĝ	Error List	Ctrl+^, E	Flags Timestamp
A M	K	Output	Ctrl+Alt+O	N 23.11.2018 10:58:46 581 ms
PL	Ċ	Start Page		N 23.11.2018 10:58:41 431 ms N 23.11.2018 10:58:40.335 ms
🙆 SA	₿	Task List	Ctrl+ ^, T	23.11.2018 10:58:21 231 ms
₩. C·	â	Toolbox	Ctrl+Alt+X	V 23.11.2018 10:58:19 484 ms
	₹	Notifications	Ctrl+W, N	Q 23.11.2018 10:57:42 171 ms
		Find Results	•	23.11.2018 10:57:42 53 ms
		Other Windows	•	Command Window
		Toolbars	•	Web Browser
	5	Full Screen	Shift+Alt+Enter	1× TcTargetBrowserShortcutMenu
	đ	All Windows	Shift+Alt+M	G TcProjectCompare
	G	Navigate Backward	Ctrl+-	TwinCAT Logged Events
	Θ	Navigate Forward	Ctrl+Shift+-	ൺ ADS Symbol Watch
		Next Task		ADS Image Watch
		Previous Task		🗄 Document Outline
	ų	Properties Window	F4	😤 Resource View
		Property Pages	Shift+F4	
	_			

Abb. 195: Anzeige EventLogger Window

• Im Folgenden sind am Beispiel einer ELM3602-0002 einige DiagMessages und daraus resultierend die Logged Events zu sehen

TcEventLogger output window

- Abb. 196: Anzeige DiagMessages und Logged Events
 - Im Logger Window kann nach Einträgen und Sprache gefiltert werden. Deutsch: 1031 Englisch: 1033

				Clas	SS	Filter	Language		
					L				
Logged Events					Т				
🖒 🗼 0 Alarms	02	Messages Verbose	•	🕅 🖬 🕅	×	1033	•		
Severity Level	Even	tClassName 🔻			Y	EventId	Text	SourceName	Time Raised
Error	×	Delete Filter				34576	(0x8710) DC Bias voltage to low (channel 1)	Term 7 (ELM3602-0002)	23.11.2018 12:28:22
Error		Search		۶.	-	34576	(0x8710) DC Bias voltage to low (channel 1)	Term 7 (ELM3602-0002)	23.11.2018 12:27:26
		 ✓ (Select All) ✓ ELM3602-0002 2Ch. IEPE 	Sensor, 24 bit,	high precis	on				
4		(ОК	Cancel					

Abb. 197: Einstellung Filter Sprache

 Ist ein EtherCAT Slave default befähigt, DiagMessages als Event über EtherCAT abzusetzen, kann dies für jeden Slave einzeln im CoE 0x10F3:05 aktiviert/deaktiviert werden. TRUE bedeutet, dass der Slave Events zur Abholung über EtherCAT bereitstellt, FALSE deaktiviert die Funktion.

General	EtherCAT	Settings DC Process Data	Startup CoE	- Online Diag History	Online
	Update Lis	st 📃 Auto Update 🔽	Single Update [Show Offline Data	
	dd to Startu	up Online Data	Module OD ((AoE Port): 0]
Index		Name	Flags	Value	
⊡… 10	F3:0	Diagnosis History	RO	> 21 <	
	10F3:01	Maximum Messages	RO	0x10 (16)	
	10F3:02	Newest Message	RO	0x0B (11)	
	10F3:03	Newest Acknowledged Message	RW	0x0B (11)	
	10F3:04	New Messages Available	RO	FALSE	
	10F3:05	Flags	RW	0x0001 (1)	
	10F3:06	Diagnosis Message 001	RO	00 E0 21 50 02	01 10 87 B2 76 7
	10F3:07	Diagnosis Message 002	RO	00 E0 21 50 02	01 10 87 AF 91 0
	10F3:08	Diagnosis Message 003	RO	00 E0 21 50 02 (01 10 87 E8 55 0

Abb. 198: Aktivierung/Deaktivierung Event-Absetzung

- Im jeweiligen EtherCAT Slave können verschiedene "Ursachen" dazu führen, ob und dass er DiagMessages bzw. Events absetzt. Soll nur eine Teilmenge davon erzeugt werden, ist in der Gerätedokumentation nachzulesen, ob und wie z. B. durch CoE Settings einzelne Ursachen deaktiviert werden können.
- Einstellungen zum TwinCAT EventLogger sind unter Tools/Options zu finden.

Abb. 199: Einstellungen TwinCAT EventLogger

7.3 UL-Hinweise

▲ VORSICHT

Application

The modules are intended for use with Beckhoff's UL Listed EtherCAT System only.

For cULus examination, the Beckhoff I/O System has only been investigated for risk of fire and electrical shock (in accordance with UL508 and CSA C22.2 No. 142).

For devices with Ethernet connectors

Not for connection to telecommunication circuits.

Grundlagen

UL-Zertifikation nach UL508. Solcherart zertifizierte Geräte sind gekennzeichnet durch das Zeichen:

7.4 Weiterführende Dokumentation zu ATEX und IECEx

Weiterführende Dokumentation zum Explosionsschutz gemäß ATEX und IECEx

HINWEIS

Beachten Sie auch die weiterführende Dokumentation

Explosionsschutz für Klemmensysteme Hinweise zum Einsatz der Beckhoff Klemmensysteme in explosionsgefährdeten Bereichen gemäß ATEX und IECEx,

die Ihnen auf der Beckhoff-Homepage www.beckhoff.de im Download-Bereich Ihres Produktes zum <u>Download</u> zur Verfügung steht!

7.5 EtherCAT AL Status Codes

Detaillierte Informationen hierzu entnehmen Sie bitte der vollständigen EtherCAT-Systembeschreibung.

7.6 Firmware Update EL/ES/ELM/EM/EPxxxx

Dieses Kapitel beschreibt das Geräte-Update für Beckhoff EtherCAT Slaves der Serien EL/ES, ELM, EM, EK und EP. Ein FW-Update sollte nur nach Rücksprache mit dem Beckhoff Support durchgeführt werden.

HINWEIS

Nur TwinCAT 3 Software verwenden!

Ein Firmware-Update von Beckhoff IO Geräten ist ausschließlich mit einer TwinCAT3-Installation durchzuführen. Es empfiehlt sich ein möglichst aktuelles Build, kostenlos zum Download verfügbar auf der Beckhoff-Website <u>https://www.beckhoff.com/de-de/</u>.

Zum Firmware-Update kann TwinCAT im sog. FreeRun-Modus betrieben werden, eine kostenpflichtige Lizenz ist dazu nicht nötig.

Das für das Update vorgesehene Gerät kann in der Regel am Einbauort verbleiben; TwinCAT ist jedoch im FreeRun zu betreiben. Zudem ist auf eine störungsfreie EtherCAT Kommunikation zu achten (keine "LostFrames" etc.).

Andere EtherCAT-Master-Software wie z.B. der EtherCAT-Konfigurator sind nicht zu verwenden, da sie unter Umständen nicht die komplexen Zusammenhänge beim Update von Firmware, EEPROM und ggf. weiteren Gerätebestandteilen unterstützen.

Speicherorte

In einem EtherCAT-Slave werden an bis zu drei Orten Daten für den Betrieb vorgehalten:

- Je nach Funktionsumfang und Performance besitzen EtherCAT Slaves einen oder mehrere lokale Controller zur Verarbeitung von IO-Daten. Das darauf laufende Programm ist die sog. **Firmware** im Format *.efw.
- In bestimmten EtherCAT Slaves kann auch die EtherCAT Kommunikation in diesen Controller integriert sein. Dann ist der Controller meist ein so genannter **FPGA**-Chip mit der *.rbf-Firmware.
- Darüber hinaus besitzt jeder EtherCAT Slave einen Speicherchip, um seine eigene Gerätebeschreibung (ESI; EtherCAT Slave Information) zu speichern, in einem sog. ESI-EEPROM. Beim Einschalten wird diese Beschreibung geladen und u. a. die EtherCAT Kommunikation entsprechend eingerichtet. Die Gerätebeschreibung kann von der Beckhoff Website (<u>http:// www.beckhoff.de</u>) im Downloadbereich heruntergeladen werden. Dort sind alle ESI-Dateien als Zip-Datei zugänglich.

Kundenseitig zugänglich sind diese Daten nur über den Feldbus EtherCAT und seine Kommunikationsmechanismen. Beim Update oder Auslesen dieser Daten ist insbesondere die azyklische Mailbox-Kommunikation oder der Registerzugriff auf den ESC in Benutzung. Der TwinCAT Systemmanager bietet Mechanismen, um alle drei Teile mit neuen Daten programmieren zu können, wenn der Slave dafür vorgesehen ist. Es findet üblicherweise keine Kontrolle durch den Slave statt, ob die neuen Daten für ihn geeignet sind, ggf. ist ein Weiterbetrieb nicht mehr möglich.

Vereinfachtes Update per Bundle-Firmware

Bequemer ist der Update per sog. **Bundle-Firmware**: hier sind die Controller-Firmware und die ESI-Beschreibung in einer *.efw-Datei zusammengefasst, beim Update wird in der Klemme sowohl die Firmware, als auch die ESI verändert. Dazu ist erforderlich

- dass die Firmware in dem gepackten Format vorliegt: erkenntlich an dem Dateinamen der auch die Revisionsnummer enthält, z. B. ELxxxx-xxxx_REV0016_SW01.efw
- dass im Download-Dialog das Passwort=1 angegeben wird. Bei Passwort=0 (default Einstellung) wird nur das Firmware-Update durchgeführt, ohne ESI-Update.
- dass das Gerät diese Funktion unterstützt. Die Funktion kann in der Regel nicht nachgerüstet werden, sie wird Bestandteil vieler Neuentwicklungen ab Baujahr 2016.

Nach dem Update sollte eine Erfolgskontrolle durchgeführt werden

- ESI/Revision: z. B. durch einen Online-Scan im TwinCAT ConfigMode/FreeRun dadurch wird die Revision bequem ermittelt
- Firmware: z. B. durch einen Blick ins Online-CoE des Gerätes

HINWEIS

Beschädigung des Gerätes möglich!

- \checkmark Beim Herunterladen von neuen Gerätedateien ist zu beachten
- a) Das Herunterladen der Firmware auf ein EtherCAT-Gerät darf nicht unterbrochen werden.
- b) Eine einwandfreie EtherCAT-Kommunikation muss sichergestellt sein, CRC-Fehler oder LostFrames dürfen nicht auftreten.
- c) Die Spannungsversorgung muss ausreichend dimensioniert, die Pegel entsprechend der Vorgabe sein.
- ⇒ Bei Störungen während des Updatevorgangs kann das EtherCAT-Gerät ggf. nur vom Hersteller wieder in Betrieb genommen werden!

7.6.1 Gerätebeschreibung ESI-File/XML

HINWEIS

ACHTUNG bei Update der ESI-Beschreibung/EEPROM

Manche Slaves haben Abgleich- und Konfigurationsdaten aus der Produktion im EEPROM abgelegt. Diese werden bei einem Update unwiederbringlich überschrieben.

Die Gerätebeschreibung ESI wird auf dem Slave lokal gespeichert und beim Start geladen. Jede Gerätebeschreibung hat eine eindeutige Kennung aus Slave-Name (9-stellig) und Revision-Nummer (4-stellig). Jeder im System Manager konfigurierte Slave zeigt seine Kennung im EtherCAT-Reiter:

SYSTEM - Configuration SYSTEM - Configuration NC - Configuration SYMP PLC - Configuration SYMP - Configuration	General EtherCAT Type:	Process Data Startur EL3204 4Ch. Ana. Inr	o CoE - Online Online	e
I/O Devices	Product/Revision:	EL3204-0000-0016		
Device 2 (EtherCAT)	Auto Inc Addr:	FFFF		
- 🕂 Device 2-Image-Info	EtherCAT Addr:	1002 🔅	Advan	nced Settings
🗊 🌒 Outputs	Previous Port:	Term 1 (EK1101) - B		×
🗄 象 InfoData				
🖻 Term 1 (EK1101)				
i∎… Şî ID				
🕀 😵 WcState				
InfoData Term 2 (EL3204) Term 3 (EL3201)				

Abb. 200: Gerätekennung aus Name EL3204-0000 und Revision -0016

Die konfigurierte Kennung muss kompatibel sein mit der tatsächlich als Hardware eingesetzten Gerätebeschreibung, d. h. der Beschreibung die der Slave (hier: EL3204) beim Start geladen hat. Üblicherweise muss dazu die konfigurierte Revision gleich oder niedriger der tatsächlich im Klemmenverbund befindlichen sein.

Weitere Hinweise hierzu entnehmen Sie bitte der EtherCAT System-Dokumentation.

Update von XML/ESI-Beschreibung

Die Geräterevision steht in engem Zusammenhang mit der verwendeten Firmware bzw. Hardware. Nicht kompatible Kombinationen führen mindestens zu Fehlfunktionen oder sogar zur endgültigen Außerbetriebsetzung des Gerätes. Ein entsprechendes Update sollte nur in Rücksprache mit dem Beckhoff Support ausgeführt werden.

Anzeige der Slave-Kennung ESI

Der einfachste Weg die Übereinstimmung von konfigurierter und tatsächlicher Gerätebeschreibung festzustellen, ist im TwinCAT-Modus Config/FreeRun das Scannen der EtherCAT-Boxen auszuführen:

Abb. 201: Rechtsklick auf das EtherCAT Gerät bewirkt das Scannen des unterlagerten Feldes

Wenn das gefundene Feld mit dem konfigurierten übereinstimmt, erscheint

Abb. 202: Konfiguration identisch

ansonsten erscheint ein Änderungsdialog, um die realen Angaben in die Konfiguration zu übernehmen.

Check Configuration		🖂
Found Items:	Disable > Ignore > Delete > Copy Before > Copy After > OK Cancel	Configured Items:

Abb. 203: Änderungsdialog

In diesem Beispiel in Abb. *Änderungsdialog*. wurde eine EL3201-0000-**0017** vorgefunden, während eine EL3201-0000-**0016** konfiguriert wurde. In diesem Fall bietet es sich an, mit dem *Copy Before*-Button die Konfiguration anzupassen. Die Checkbox *Extended Information* muss gesetzt werden, um die Revision angezeigt zu bekommen.

Änderung der Slave-Kennung ESI

Die ESI/EEPROM-Kennung kann unter TwinCAT wie folgt aktualisiert werden:

- Es muss eine einwandfreie EtherCAT-Kommunikation zum Slave hergestellt werden
- Der State des Slave ist unerheblich
- Rechtsklick auf den Slave in der Online-Anzeige führt zum Dialog *EEPROM Update*, Abb. *EEPROM Update*

Abb. 204: EEPROM Update

Im folgenden Dialog wird die neue ESI-Beschreibung ausgewählt, s. Abb. *Auswahl des neuen ESI*. Die CheckBox *Show Hidden Devices* zeigt auch ältere, normalerweise ausgeblendete Ausgaben eines Slave.

Write EEPROM	
Available EEPROM Descriptions:	ices OK
EL3162 2Ch. Ana. Input 0-10V (EL3162-0000-0000)	
EL3201 1Ch. Ana. Input PT100 (RTD) (EL3201-0000-0016)	
EL3201-0010 1Ch. Ana. Input PT100 (RTD), High Precision (EL3201-0010-00	16)
EL3201-0020 1Ch. Ana. Input PT100 (RTD), High Precision, calibrated (EL320)1-0020-0016)
EL3202 2Ch. Ana. Input PT100 (RTD) (EL3202-0000-0016)	
EL3202-0010 2Ch. Ana. Input PT100 (RTD), High Precision (EL3202-0010-00	16)
EL3204 4Ch. Ana. Input PT100 (RTD) (EL3204-0000-0016)	
EL3311 1Ch. Ana. Input Thermocouple (TC) (EL3311-0000-0017)	
EL3311 1Ch. Ana. Input Thermocouple (TC) (EL3311-0000-0016)	
🗉 📲 EL3312 2Ch. Ana. Input Thermocouple (TC) (EL3312-0000-0017)	

Abb. 205: Auswahl des neuen ESI

Ein Laufbalken im System Manager zeigt den Fortschritt - erst erfolgt das Schreiben, dann das Veryfiing.

Änderung erst nach Neustart wirksam

Die meisten EtherCAT-Geräte lesen eine geänderte ESI-Beschreibung umgehend bzw. nach dem Aufstarten aus dem INIT ein. Einige Kommunikationseinstellungen wie z. B. Distributed Clocks werden jedoch erst bei PowerOn gelesen. Deshalb ist ein kurzes Abschalten des EtherCAT Slave nötig, damit die Änderung wirksam wird.

7.6.2 Erläuterungen zur Firmware

Versionsbestimmung der Firmware

Versionsbestimmung mit dem System-Manager

Der TwinCAT System-Manager zeigt die Version der Controller-Firmware an, wenn der Slave online für den Master zugänglich ist. Klicken Sie hierzu auf die E-Bus-Klemme deren Controller-Firmware Sie überprüfen möchten (im Beispiel Klemme 2 (EL3204) und wählen Sie den Karteireiter *CoE-Online* (CAN over EtherCAT).

CoE-Online und Offline-CoE

Es existieren zwei CoE-Verzeichnisse:

• **online:** es wird im EtherCAT Slave vom Controller angeboten, wenn der EtherCAT Slave dies unterstützt. Dieses CoE-Verzeichnis kann nur bei angeschlossenem und betriebsbereitem Slave angezeigt werden.

• offline: in der EtherCAT Slave Information ESI/XML kann der Default-Inhalt des CoE enthalten sein. Dieses CoE-Verzeichnis kann nur angezeigt werden, wenn es in der ESI (z. B. "Beckhoff EL5xxx.xml") enthalten ist.

Die Umschaltung zwischen beiden Ansichten kann über den Button *Advanced* vorgenommen werden.

In Abb. *Anzeige FW-Stand EL3204* wird der FW-Stand der markierten EL3204 in CoE-Eintrag 0x100A mit 03 angezeigt.

Abb. 206: Anzeige FW-Stand EL3204

TwinCAT 2.11 zeigt in (A) an, dass aktuell das Online-CoE-Verzeichnis angezeigt wird. Ist dies nicht der Fall, kann durch die erweiterten Einstellungen (B) durch *Online* und Doppelklick auf *All Objects* das Online-Verzeichnis geladen werden.

7.6.3 Update Controller-Firmware *.efw

CoE-Verzeichnis

Das Online-CoE-Verzeichnis wird vom Controller verwaltet und in einem eigenen EEPROM gespeichert. Es wird durch ein FW-Update im allgemeinen nicht verändert.

Um die Controller-Firmware eines Slave zu aktualisieren, wechseln Sie zum Karteireiter *Online*, s. Abb. *Firmware Update*.
 - GP SYSTEM - Configuration - GP NC - Configuration - GP PLC - Configuration - GP I/O - Configuration 	General EtherCAT Pro	cess Data Startup	CoE - Online Online	2			
 ■ 1/0 Devices ■ Evice 2 (EtherCAT) ■ Device 2-Image ■ Device 2-Image-Info 	Pre-Op	Safe-Op B	Current State: Requested State:	BOOT			
 	DLL Status Port A: Carrier 7	Open	Open Look in:	NewFW	E ofw	G 👂 🕫 🖽	
⊕-\$f ID ⊕-\$ WcState ⊕-\$ InfcData ⊕-¶ Term 2 (EL3204)	Port B: No Carri Port C: No Carri	er / Closed	My Recent Documents		oler w		
Term 3 (EL3201) Term 4 (EL9011)	File Access over Ether	CAT	Desktop				
	Name	Online	诊 EigD at				
	♦ Linderrange ♦ Overrange ♦ Limit 1 ♦ Limit 2	0 1 0×0 (0) 0×0 (0)	S 1				
	VIError	1 0 0 0x2134 <850.000>	My Computer	File name:	EL3204_06.efw	~	Open
с	♥T WcState ♥T State ♥T AdsAddr	1 0x0003 (3) 00 00 00 00 03 01 E	My Network	Files of type:	EtherCAT Firmware F	ile <mark>: (".efw)</mark> 👻	Cancel

Abb. 207: Firmware Update

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen. Gültig für TwinCAT 2 und 3 als EtherCAT Master.

• TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.

Microsoft Visual Studio	Microsoft Visual Studio
Load I/O Devices	Activate Free Run
Yes No	Yes No

• EtherCAT Master in PreOP schalten

- Slave in INIT schalten (A)
- Slave in BOOTSTRAP schalten

- Kontrolle des aktuellen Status (B, C)
- Download der neuen *efw-Datei, abwarten bis beendet. Ein Passwort wird in der Regel nicht benötigt.

- Nach Beendigung des Download in INIT schalten, dann in PreOP
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!)
- Im CoE 0x100A kontrollieren ob der FW-Stand korrekt übernommen wurde.

7.6.4 FPGA-Firmware *.rbf

Falls ein FPGA-Chip die EtherCAT-Kommunikation übernimmt, kann ggf. mit einer *.rbf-Datei ein Update durchgeführt werden.

- Controller-Firmware für die Aufbereitung der E/A-Signale
- FPGA-Firmware für die EtherCAT-Kommunikation (nur für Klemmen mit FPGA)

Die in der Seriennummer der Klemme enthaltene Firmware-Versionsnummer beinhaltet beide Firmware-Teile. Wenn auch nur eine dieser Firmware-Komponenten verändert wird, dann wird diese Versionsnummer fortgeschrieben.

Versionsbestimmung mit dem System-Manager

Der TwinCAT System-Manager zeigt die Version der FPGA-Firmware an. Klicken Sie hierzu auf die Ethernet-Karte Ihres EtherCAT-Stranges (im Beispiel Gerät 2) und wählen Sie den Karteireiter *Online*.

Die Spalte *Reg:0002* zeigt die Firmware-Version der einzelnen EtherCAT-Geräte in hexadezimaler und dezimaler Darstellung an.

🛃 TwinCAT System Manager		_ 🗆 🗙
Datei Bearbeiten Aktionen Ansicht Opl	tionen <u>?</u>	
] 🗅 🚅 📽 🔚 🍜 🗟 👗 🛍 🖻	l 🗈 🛤 ð 🖳 📾 🗸 💣 👧 👧 🎨 🔨	🖲 🗣 🖹
SYSTEM - Konfiguration	Allgemein Adapter EtherCAT Online	
CNC - Konfiguration	No Addr Name State CRC F	Reg:0002 📐
	1 1001 Klemme 1 (EK1100) OP 0 (0x0002 (11)
E/A - Konfiguration	2 1002 Klemme 2 (EL2004) OP 0 (0x0002(10) 0x0002(11)
Eragerate	4 1004 Klemme 4 (EL5001) OP 0 (0x0002 (11)
🕂 🌩 Gerät 2-Prozeßabbild	5 1005 Klemme 5 (EL5001) OP 0 (0x000B (11)
Gerät 2-Prozeßabbild-Info	6 1006 Klemme 6 (EL5101) OP 0 (0x0002 (11) 0v0000 (12)
Eingänge 	Aktueller Status: OP gesendete Fra Init Pre-Op Safe-Op Op CRC löschen Frames löschen Verlorene Fra	ames: 74237 : 329 mes: 0
	Nummer Boxbezeichnung Adresse Typ Eing	g. Größe 🛛 A 🔺
	1 Klemme 1 (EK1100) 1001 EK1100 0.0	0
	2 Klemme 2 (EL2004) 1002 EL2004 0.0	0
	4 Klemme 4 (EL5001) 1004 EL5001 5.0	o 💌
Bereit	Lokal ()	Free Run //

Abb. 208: Versionsbestimmung FPGA-Firmware

Falls die Spalte *Reg:0002* nicht angezeigt wird, klicken sie mit der rechten Maustaste auf den Tabellenkopf und wählen im erscheinenden Kontextmenü, den Menüpunkt *Properties*.

Abb. 209: Kontextmenu Eigenschaften (Properties)

In dem folgenden Dialog *Advanced Settings* können Sie festlegen, welche Spalten angezeigt werden sollen. Markieren Sie dort unter *Diagnose/***Online Anzeige** das Kontrollkästchen vor '0002 ETxxxx Build' um die Anzeige der FPGA-Firmware-Version zu aktivieren.

P	dvanced Settings		×
	 Diagnose Online Anzeige Emergency Scan 	Online Anzeige	0000 Add
			OK Abbrechen

Abb. 210: Dialog Advanced settings

Update

Für das Update der FPGA-Firmware

- eines EtherCAT-Kopplers, muss auf diesem Koppler mindestens die FPGA-Firmware-Version 11 vorhanden sein.
- einer E-Bus-Klemme, muss auf dieser Klemme mindestens die FPGA-Firmware-Version 10 vorhanden sein.

Ältere Firmware-Stände können nur vom Hersteller aktualisiert werden!

Update eines EtherCAT-Geräts

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen:

• TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1 ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.

• Wählen Sie im TwinCAT System-Manager die Klemme an, deren FPGA-Firmware Sie aktualisieren möchten (im Beispiel: Klemme 5: EL5001) und klicken Sie auf dem Karteireiter *EtherCAT* auf die Schaltfläche *Weitere Einstellungen*:

😎 TwinCAT System Manager	🎅 TwinCAT System Manager 📃 🗵 🗵					
Datei Bearbeiten Aktionen Ansicht Opti	onen <u>?</u>					
] 🗅 🚅 📽 🔚 🎒 🗟 👗 🛍 💼	a 🗛 8	🚇 🙃 🗸 💣 🙆 🧕) 😫 🔨 💽	🗣 🖹		
SYSTEM - Konfiguration GNC - Konfiguration	Allgemein Eth	nerCAT Prozessdaten Sta	artup CoE - Onli	ne Online		
NC - Konfiguration	Тур:	EL5001 1K. SSI E	ncoder			
E W E/A - Konfiguration	Produkt / Revis	sion: EL5001-0000-0000)			
🖻 🎬 E/A Geräte	Auto-Inc-Adres	sse: FFFC				
Gerat 2 (EtherCAT)	EtherCAT-Adre	sse: 🗖 1005 🚊	Weitere Einstellu	ngen 📐 📗		
Gerät 2-Prozeßabbild-Info	Vorgänger-Port	: Klemme 4 (EL5001) - B	<u> </u>		
tingange tim \$ ↓ Ausgänge						
🗄 😫 InfoData						
Erro Klemme 1 (EK1100)						
E Klemme 2 (EL2004)	http://www.be	eckhoff de/german/default htr	n2EtherCAT7EL5	001.htm		
EL2004)		section: der gemänz der dak, nit	In Ethorem Prees			
Kiemme 4 (ELSUUI)						
🗄 😽 Channel 1	Name	Online	Тур	Größe		
🕀 😣 WcState	\$ †Status	0x41 (65)	BYTE	1.0		
🕀 😣 InfoData	\$ †Value	0×00000000 (0)	UDINT	4.0		
🕀 🃲 Klemme 6 (EL5101)	♦ ↑ WcState	0	BOOL	0.1		
庄 📲 Klemme 7 (EL5101)	♀ ∏State	0x0008 (8)	UINT	2.0		
Klemme 8 (EL9010)	soT AdsAddr	AC 10 03 F3 03 01 ED 03	AMSADDRESS	8.0		
2uordnungen	•			Þ		
Bereit			Lokal () Con	fig Mode //		

• Im folgenden Dialog Advanced Settings klicken Sie im Menüpunkt ESC-Zugriff/E²PROM/FPGA auf die Schaltfläche Schreibe FPGA:

• Wählen Sie die Datei (*.rbf) mit der neuen FPGA-Firmware aus und übertragen Sie diese zum EtherCAT-Gerät:

Öffnen ? 🗙
Suchen in: 🗀 FirmWare 💽 🔇 🎓 📂 🖽 🗸
SocCOM_T1_EBUS_BGA_LVTTL_F2_S4_BLD12.rbf
Dateiname: A_LVTL_F2_S4_BLD12.rbf 0ffnen
Dateityp: FPGA File (*.rbf)

- Abwarten bis zum Ende des Downloads
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!). Um die neue FPGA-Firmware zu aktivieren ist ein Neustart (Aus- und Wiedereinschalten der Spannungsversorgung) des EtherCAT-Geräts erforderlich
- Kontrolle des neuen FPGA-Standes

HINWEIS

Beschädigung des Gerätes möglich!

Das Herunterladen der Firmware auf ein EtherCAT-Gerät dürfen Sie auf keinen Fall unterbrechen! Wenn Sie diesen Vorgang abbrechen, dabei die Versorgungsspannung ausschalten oder die Ethernet-Verbindung unterbrechen, kann das EtherCAT-Gerät nur vom Hersteller wieder in Betrieb genommen werden!

7.6.5 Gleichzeitiges Update mehrerer EtherCAT-Geräte

Die Firmware von mehreren Geräten kann gleichzeitig aktualisiert werden, ebenso wie die ESI-Beschreibung. Voraussetzung hierfür ist, dass für diese Geräte die gleiche Firmware-Datei/ESI gilt.

Gene	ral Ad	apter Etł	herCAT	Online	CoE - Online		
N	0	Addr	Name			Stat	e
	1	1001	Term 5	(EK1101))	INIT	
	2	1002	Term 6	(EL3102)		INIT	
	3	1003	Term 7	(EL3102)	Pequest 'I	INIT' state	
	4	1005	Term 8	(EL3102) (EL 2102)	Request '	DDFOD ⁱ chah	
	- <u>-</u>	1000	Term 3	(ELSTUZ)	Dequest '	SAFEOD' eta	to to
					Request '	OP' chate	ice -
					- Kequest (OF SLALE	
					Request 'i	BOOTSTRAF	' state
					Clear 'ERF	ROR' state	
					EEPROMI	Jpdate	
					Firmware	Update	

Abb. 211: Mehrfache Selektion und FW-Update

Wählen Sie dazu die betreffenden Slaves aus und führen Sie das Firmware-Update im BOOTSTRAP Modus wie o. a. aus.

7.7 Firmware Kompatibilität

Beckhoff EtherCAT Geräte werden mit dem aktuell verfügbaren letzten Firmware-Stand ausgeliefert. Dabei bestehen zwingende Abhängigkeiten zwischen Firmware und Hardware; eine Kompatibilität ist nicht in jeder Kombination gegeben. Die unten angegebene Übersicht zeigt auf welchem Hardware-Stand eine Firmware betrieben werden kann.

Anmerkung

- Es wird empfohlen, die für die jeweilige Hardware letztmögliche Firmware einzusetzen.
- Ein Anspruch auf ein kostenfreies Firmware-Udpate bei ausgelieferten Produkten durch Beckhoff gegenüber dem Kunden besteht nicht.

HINWEIS

Beschädigung des Gerätes möglich!

Beachten Sie die Hinweise zum Firmware Update auf der <u>gesonderten Seite</u> [▶ <u>247</u>]. Wird ein Gerät in den BOOTSTRAP-Mode zum Firmware-Update versetzt, prüft es u.U. beim Download nicht, ob die neue Firmware geeignet ist. Dadurch kann es zur Beschädigung des Gerätes kommen! Vergewissern Sie sich daher immer, ob die Firmware für den Hardware-Stand des Gerätes geeignet ist!

EL3751			
Hardware (HW)	Firmware (FW)	Revision-Nr.	Release-Datum
01*	01	0017	2015/06
	02	0017	2015/07
	03	0018	2015/07
	04	0019	2015/08
	05	0019	2015/09
	06	0020	2015/12
	07	0020	2016/03
	08	0021	2016/07
	09	0021	2016/08
	10	0021	2017/04
	11	0022	2018/05
	12	0022	2019/09
	13	0023	2021/03
	14	0023	2021/06

*) Zum Zeitpunkt der Erstellung dieser Dokumentation ist dies der aktuelle kompatible Firmware/Hardware-Stand. Überprüfen Sie auf der Beckhoff Webseite, ob eine aktuellere Dokumentation vorliegt.

7.8 Firmware Kompatibilität - Passive Klemmen

Die Passiven Klemmen [▶ 218] der ELxxxx Serie verfügen über keine Firmware.

7.9 Wiederherstellen des Auslieferungszustandes

Um den Auslieferungszustand (Werkseinstellungen) der Backup-Objekte bei den ELxxxx-Klemmen wiederherzustellen, kann im TwinCAT System Manger (Config-Modus) das CoE-Objekt *Restore default parameters*, Subindex 001 angewählt werden (s. Abb. *Auswahl des PDO, Restore default parameters*)

Allgemein EtherCA	AT DC	Prozessda	aten Star	tup CoE - C)nline On	line			
Update Li Erweitert Add to Start	st	Auto (Jpdate [Single Up	date 🔽 S	how Offline	e Data		
Index	Name			Fla	igs	Wert			
1000	Device typ)e		RC)	0x00001	389 (5001)		
1008	Device na	me		RC)	EL5101			
1009	Hardware	version		RC)	09			
100A	Software v	/ersion		RC)	10			
Ē 10 <u>11:0</u>	Restore de	tore default parameters		RC)	>1<			
1011:01	SubIndex	001		B۱	V	0x00000	000 (0)		
<u>1018:0</u>	Identity	<u>^</u>		RC)	> 4 <			
Name	Тур	I	Größe	>Adre	Ein/Aus	User ID	Verknüpft mit		
\$ †Status	USI	NT	1.0	26.0	Eingang	0			
🗣 Value	UIN	IT	2.0	27.0	Eingang	0			
♦ ↑Latch	UIN	IT	2.0	29.0	Eingang	0			
\$ ↑WcState	BOG	DL	0.1	1522.0	Eingang	0			
♀ ¶ State	UIN	IT	2.0	1550.0	Eingang	0			
&T AdsAddr	AM:	5ADDRESS	8.0	1552.0	Eingang	0			
🔊 netid	ARE	AY [0	6.0	1552.0	Findand	Π			

Abb. 212: Auswahl des PDO Restore default parameters

Durch Doppelklick auf *SubIndex 001* gelangen Sie in den Set Value -Dialog. Tragen Sie im Feld *Dec* den Wert **1684107116** oder alternativ im Feld *Hex* den Wert **0x64616F6C** ein und bestätigen Sie mit OK (Abb. *Eingabe des Restore-Wertes im Set Value Dialog*).

Alle Backup-Objekte werden so in den Auslieferungszustand zurückgesetzt.

Set Value Dia	log	×
Dec:	1684107116	ОК
Hex:	0x64616F6C	Abbruch
Float:	1684107116	
Bool:	0 1	Hex Edit
Binär:	6C 6F 61 64	4
Bitgröße	○1 ○8 ○16 ●32 ○	64 🔿 ?

Abb. 213: Eingabe des Restore-Wertes im Set Value Dialog

Alternativer Restore-Wert

Bei einigen Klemmen älterer Bauart lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen: Dezimalwert: 1819238756, Hexadezimalwert: 0x6C6F6164. Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung!

7.10 Analogtechnische Hinweise zu EL3751/ ELM3xxx

Über die allgemeinen analogtechnischen Hinweise hinaus gelten für die EL3751 bzw. der ELM3xxx (soweit zutreffend) folgende Hinweise:

- Das interne GND der Analogklemme ist mit dem Anschlusspunkt –Uv verbunden. Bei der Beschaltung mehrerer Klemmen ist somit zu bedenken, dass diese die zulässige CommonMode Spannung untereinander nicht überschreiten dürfen.
- Der "–Uv"-Punkt muss nicht untereinander oder mit anderem Potential verbunden werden, es ist aber hilfreich ihn zur Behebung von anlagenspezifischen negativen Einflüssen heranzuziehen.
- Spannungsmessung an HighSide-Shunt
 Ein HighSide-Shunt ist ein Shunt der mit einem Anschluss am positiven/oberen Potential liegt, in der Regel wird dann der negative Anschluss geschaltet, "negativ schaltend".

Grundsätzlich ist die mV-Messung an einem Shunt zur Strombestimmung mit den differentiellen U-Eingängen der Beckhoff Messgeräte möglich. Dabei sind jedoch zwei wesentliche Einschränkungen zu beachten:

 Gleichtaktspannung U_{cm} zwischen den Kanälen (CommonMode): Bei mehrkanaligen Klemmen darf U_{cm, max} (siehe die technischen Daten [▶ 18] in dieser Dokumentation) zwischen den Kanälen nicht überschritten werden. Es ist also nicht möglich, bei einer 24 V Versorgung der Lasten, auf einen Kanal einen HighSide-Shunt auf 24 V-Potential einzusetzen, und auf einen anderen Kanal einen LowSide-Shunt auf 0 V-Potential. Die interne Bezugsmasse –U_v würde sich so mittig einstellen, dass U_{cm} überschritten wird.

 \rightarrow Es sind also nur HighSide- oder nur LowSide-Shunts je Klemme einzusetzen.

 Dynamische Vorgänge durch getakteten Strom: in der Regel wird der Strom durch eine Taktung/ PWM gesteuert. Je nach Induktivität im Lastkreis führt dies zu sprunghaften Strom- und damit Spannungsänderungen über den Shunt. Entsprechend ändert sich die anliegende U_{cm} an den differentiellen Eingängen. Der Kanal (dies gilt somit auch für die einkanalige EL3751) ist LCgekoppelt an die interne Bezugsmasse –U_v – der sprunghafte U_{cm} Anstieg an den Eingängen zieht also –U_v nach, während der Zeit dieser Transiente (einige ms) kann es bei Überschreitung von U_{cm, max} zu Fehlmessung kommen.

 \rightarrow eine PWM-Strommessung mit HighSide-Shunt im 24 V-Netz ist nur im 30 V Messbereich möglich.

7.11 Weiterführende Dokumentation zu I/O-Komponenten mit analogen Ein- und Ausgängen

7.12 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: <u>www.beckhoff.com</u>

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline:	+49 5246 963 157
E-Mail:	support@beckhoff.com
Internet:	www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- Hotline-Service

Hotline:	+49 5246 963 460
E-Mail:	service@beckhoff.com
Internet:	www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon:	+49 5246 963 0
E-Mail:	info@beckhoff.com
Internet:	www.beckhoff.com

7.13 Rücksendung und Retoure

Dieses Produkt ist einzeln verpackt und versiegelt. Wenn nicht anders vereinbart, ist eine Rücknahme durch Beckhoff nur in ungeöffneter Originalverpackung mit intaktem Siegel möglich.

Abbildungsverzeichnis

Abb. 1	EL2872 mit Revision 0022 und Seriennummer 01200815 12	2
Abb. 2	BIC als Data Matrix Code (DMC, Code-Schema ECC200) 12	2
Abb. 3	Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294 13	3
Abb. 4	EL3751, EL3751-0004, EL3751-0024; LEDs, Anschlüsse und Belegung 11	7
Abb. 5	Basis Bereich eines Prozessdatenwertes	0
Abb. 6	Darstellung ±30 V Messbereich	8
Abb. 7	Frequenzgang ±30 V Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert	8
Abb. 8	Darstellung ±10 V Messbereich	0
Abb. 9	Frequenzgang ±10 V Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert	0
Abb. 10	Darstellung ±5 V Messbereich	2
Abb. 11	Frequenzgang ±5 V Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert	2
Abb. 12	Darstellung ±2,5 V Messbereich	4
Abb. 13	Frequenzgang ±2,5 V Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 34	4
Abb. 14	Darstellung ±1,25 V Messbereich	6
Abb. 15	Frequenzgang ±1,25 V Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 36	6
Abb. 16	Darstellung ±640 mV Messbereich	8
Abb. 17	Frequenzgang ±640 mV Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 38	8
Abb. 18	Darstellung ±320 mV Messbereich 40	0
Abb. 19	Frequenzgang ±320 mV Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 40	0
Abb. 20	Darstellung ±160 mV Messbereich	2
Abb. 21	Frequenzgang ±160 mV Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 42	2
Abb. 22	Darstellung ±80 mV Messbereich	4
Abb. 23	Frequenzgang ±80 mV Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 44	4
Abb. 24	Darstellung ±40 mV Messbereich	6
Abb. 25	Frequenzgang ±40 mV Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 46	6
Abb. 26	Darstellung ±20 mV Messbereich 48	8
Abb. 27	Darstellung ±10 mV Messbereich	0
Abb. 28	Darstellung ±5 mV Messbereich	2
Abb. 29	Darstellung 05 V Messbereich 54	4
Abb. 30	Frequenzgang 05 V Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 54	4
Abb. 31	Darstellung 010 V Messbereich 56	6
Abb. 32	Frequenzgang 010 V Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 56	6
Abb. 33	Darstellung Strommessbereich ±20 mA	8
Abb. 34	Frequenzgang ±20 mA Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 58	8
Abb. 35	Darstellung Strommessbereich 020 mA	0
Abb. 36	Frequenzgang 020 mA Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 60	0
Abb. 37	Darstellung Strommessbereich 420 mA	2
Abb. 38	Frequenzgang 420 mA Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert 63	3
Abb. 39	Darstellung Strommessbereich 3,621 mA (NAMUR)	5
Abb. 40	Frequenzgang 20 mA Messbereich, fsampling = 10 kHz, integrierte Filter 1/2 deaktiviert	5
Abb. 41	Darstellung Widerstandsmessbereich 5 kΩ	9
Abb. 42	Darstellung RTD-Messbereich	0
Abb. 43	Darstellung Potentiometer-Messbereich	3
Abb. 44	Darstellung Messbereich SG 1/1-Bridge	8

Abb. 45	Darstellung Messbereich SG 1/2-Bridge	84
Abb. 46	Darstellung Messbereich SG 1/4-Bridge 120 Ω	88
Abb. 47	Darstellung Messbereich SG 1/4-Bridge 350 Ω	91
Abb. 48	Öffnen des *. tnzip-Archives	104
Abb. 49	Suche der bestehenden HW-Konfiguration zur bestehenden EtherCAT-Konfiguration	105
Abb. 50	Vorgang der Verschränkung der Eingangsdaten	118
Abb. 51	Konfiguration und Aufbau zum Beispielprogramm 6: Verdopplung der Samplingrate mit 2 x EL3751	119
Abb. 52	Einstellung der DC-Verschiebungszeit für Klemme 2	119
Abb. 53	Oversampling 20 KSps mit 2 x EL3751 mit Eingangssignalen (unten) und Ergebnissignal (oben)	121
Abb. 54	Oversampling 20 KSps mit 2 x EL3751 zeigt abwechselnd den Eingangswert 1 und Eingangs- wert 2 für je einen Ergebniswert	121
Abb. 55	Dezimierung von 20 µs (links) auf 22,675 µs (rechts) mit ELM3602	125
Abb. 56	Funktionsblock als Beispiel zur Auswertung von Diagnoseinformationen der Klemme	128
Abb. 57	Erstellung der PDO Variablen (TwinCAT-Version >= V3.1.4024.0)	129
Abb. 58	Erstellung der SmPdoVariables (TwinCAT-Version >= V3.1.4022.30)	130
Abb. 59	Ermitteln des generierten Datentyps von SmPdoVariables	130
Abb. 60	Visu zur Beispiel-Implementierung: Kalibrierungs-Signatur	131
Abb. 61	Auswahl an Diagnoseinformationen eines EtherCAT Slave	134
Abb. 62	Grundlegende EtherCAT Slave Diagnose in der PLC	135
Abb. 63	EL3102, CoE-Verzeichnis	137
Abb. 64	Beispiel Inbetriebnahmehilfe für eine EL3204	138
Abb. 65	Default Verhalten System Manager	139
Abb. 66	Default Zielzustand im Slave	139
Abb. 67	PLC-Bausteine	140
Abb. 68	Unzulässige Überschreitung E-Bus Strom	141
Abb. 69	Warnmeldung E-Bus-Überschreitung	141
Abb. 70	Bezug von der Anwender Seite (Inbetriebnahme) zur Installation	142
Abb. 71	Aufbau der Steuerung mit Embedded-PC, Eingabe (EL1004) und Ausgabe (EL2008)	143
Abb. 72	Initiale Benutzeroberfläche TwinCAT 2	144
Abb. 73	Wähle Zielsystem	145
Abb. 74	PLC für den Zugriff des TwinCAT System Managers festlegen: Auswahl des Zielsystems	145
Abb. 75	Auswahl "Gerät Suchen"	146
Abb. 76	Automatische Erkennung von E/A-Geräten: Auswahl der einzubindenden Geräte	146
Abb. 77	Abbildung der Konfiguration im TwinCAT 2 System Manager	147
Abb. 78	Einlesen von einzelnen an einem Gerät befindlichen Klemmen	147
Abb. 79	TwinCAT PLC Control nach dem Start	148
Abb. 80	Beispielprogramm mit Variablen nach einem Kompiliervorgang (ohne Variablenanbindung)	149
Abb. 81	Hinzufügen des Projektes des TwinCAT PLC Control	149
Abb. 82	Eingebundenes PLC-Projekt in der SPS-Konfiguration des System Managers	150
Abb. 83	Erstellen der Verknüpfungen PLC-Variablen zu Prozessobjekten	150
Abb. 84	Auswahl des PDO vom Typ BOOL	151
Abb. 85	Auswahl von mehreren PDO gleichzeitig: Aktivierung von "Kontinuierlich" und "Alle Tvoen"	151
Abb. 86	Anwendung von "Goto Link Variable" am Beispiel von "MAIN.bEL1004 Ch4"	152
Abb. 87	Auswahl des Zielsystems (remote)	153
Abb. 88	PLC Control Logged-in, bereit zum Programmstart	153

Abb. 89	Initale Benutzeroberfläche TwinCAT 3	154
Abb. 90	Neues TwinCAT 3 Projekt erstellen	155
Abb. 91	Neues TwinCAT 3 Projekt im Projektmappen-Explorer	155
Abb. 92	Auswahldialog: Wähle Zielsystem	156
Abb. 93	PLC für den Zugriff des TwinCAT System Managers festlegen: Auswahl des Zielsystems	156
Abb. 94	Auswahl "Scan"	157
Abb. 95	Automatische Erkennung von E/A-Geräten: Auswahl der einzubindenden Geräte	157
Abb. 96	Abbildung der Konfiguration in VS Shell der TwinCAT 3 Umgebung	158
Abb. 97	Einlesen von einzelnen an einem Gerät befindlichen Klemmen	158
Abb. 98	Einfügen der Programmierumgebung in "SPS"	159
Abb. 99	Festlegen des Namens bzw. Verzeichnisses für die PLC Programmierumgebung	160
Abb. 100	Initiales Programm "Main" des Standard PLC Projektes	160
Abb. 101	Beispielprogramm mit Variablen nach einem Kompiliervorgang (ohne Variablenanbindung)	161
Abb. 102	Kompilierung des Programms starten	161
Abb. 103	Erstellen der Verknüpfungen PLC-Variablen zu Prozessobjekten	162
Abb. 104	Auswahl des PDO vom Typ BOOL	162
Abb. 105	Auswahl von mehreren PDO gleichzeitig: Aktivierung von "Kontinuierlich" und "Alle Typen"	163
Abb. 106	Anwendung von "Goto Link Variable" am Beispiel von "MAIN.bEL1004_Ch4"	164
Abb. 107	Erzeugen eines SPS Datentyps	164
Abb. 108	Instance_of_struct	165
Abb. 109	Verknüpfung der Struktur	165
Abb. 110	Lesen einer Variable aus der Struktur der Prozessdaten	165
Abb. 111	TwinCAT 3 Entwicklungsumgebung (VS Shell): Logged-in, nach erfolgten Programmstart	166
Abb. 112	Aufruf im System Manager (TwinCAT 2)	168
Abb. 113	Aufruf in VS Shell (TwinCAT 3)	168
Abb. 114	TcRteInstall.exe im TwinCAT-Verzeichnis	168
Abb. 115	Übersicht Netzwerkschnittstellen	169
Abb. 116	Eigenschaft von EtherCAT-Gerät (TwinCAT 2): Klick auf "Kompatible Geräte…" von "Adapter"	169
Abb. 117	Windows-Eigenschaften der Netzwerkschnittstelle	170
Abb. 118	Beispielhafte korrekte Treiber-Einstellung des Ethernet Ports	170
Abb. 119	Fehlerhafte Treiber-Einstellungen des Ethernet Ports	171
Abb. 120	TCP/IP-Einstellung des Ethernet Ports	172
Abb. 121	Gerätebezeichnung: Struktur	173
Abb. 122	Hinweisfenster OnlineDescription (TwinCAT 2)	174
Abb. 123	Hinweisfenster OnlineDescription (TwinCAT 3)	174
Abb. 124	Vom System Manager angelegt OnlineDescription xml	175
Abb. 125	Kennzeichnung einer online erfassten ESI am Beispiel EL2521	175
Abb. 126	Hinweisfenster fehlerhafte ESI-Datei (links: TwinCAT 2: rechts: TwinCAT 3)	176
Abb 127	Anwendung des FSI Updater (>=TwinCAT 2 11)	177
Abb 128	Anwendung des ESI Updater (TwinCAT 3)	177
Abh 129	Anfügen eines EtherCAT Device: links TwinCAT 2 ⁻ rechts TwinCAT 3	178
Abb 130	Auswahl EtherCAT Anschluss (TwinCAT 2 11 TwinCAT 3)	178
Abh 131	Auswahl Ethernet Port	170
Abh 132	Figenschaften EtherCAT-Gerät (TwinCAT 2)	170
Abh 133	Anfügen von EtherCAT-Geräten (links: TwinCAT 2: rechts: TwinCAT 3)	180
Abb 124	Auswahldialog neues EtherCAT-Gerät	180
ADD. 134	Auswannulaiby neues Lineroan-Odial	100

Abb. 135 Anzeige Geräte-Revision	181
Abb. 136 Anzeige vorhergehender Revisionen	181
Abb. 137 Name/Revision Klemme	182
Abb. 138 EtherCAT Klemme im TwinCAT-Baum (links: TwinCAT 2; rechts: TwinCAT 3)	182
Abb. 139 Unterscheidung Lokalsystem/ Zielsystem (links: TwinCAT 2; rechts: TwinCAT 3)	183
Abb. 140 Scan Devices (links: TwinCAT 2; rechts: TwinCAT 3)	183
Abb. 141 Hinweis automatischer GeräteScan (links: TwinCAT 2; rechts: TwinCAT 3)	183
Abb. 142 Erkannte Ethernet-Geräte	184
Abb. 143 Beispiel Default-Zustand	184
Abb. 144 Einbau EtherCAT-Klemme mit Revision -1018	185
Abb. 145 Erkennen EtherCAT-Klemme mit Revision -1019	185
Abb. 146 Scan-Abfrage nach dem automatischen Anlegen eines EtherCAT-Gerätes (links: TwinCAT 2; rechts TwinCAT 3)	185
Abb. 147 Manuelles Auslösen des Teilnehmer-Scans auf festegelegtem EtherCAT Device (links: TwinCAT 2; rechts TwinCAT 3)	186
Abb. 148 Scanfortschritt am Beispiel von TwinCAT 2	186
Abb. 149 Abfrage Config/FreeRun (links: TwinCAT 2; rechts TwinCAT 3)	186
Abb. 150 Anzeige des Wechsels zwischen "Free Run" und "Config Mode" unten rechts in der Status- leiste	186
Abb. 151 TwinCAT kann auch durch einen Button in diesen Zustand versetzt werden (links: TwinCAT 2; rechts TwinCAT 3)	186
Abb. 152 Beispielhafte Online-Anzeige	187
Abb. 153 Fehlerhafte Erkennung	187
Abb. 154 Identische Konfiguration (links: TwinCAT 2; rechts TwinCAT 3)	188
Abb. 155 Korrekturdialog	188
Abb. 156 Name/Revision Klemme	189
Abb. 157 Korrekturdialog mit Änderungen	190
Abb. 158 Dialog "Change to Compatible Type" (links: TwinCAT 2; rechts TwinCAT 3)	190
Abb. 159 TwinCAT 2 Dialog Change to Alternative Type	191
Abb. 160 "Baumzweig" Element als Klemme EL3751	191
Abb. 161 Karteireiter "Allgemein"	191
Abb. 162 Karteireiter "EtherCAT"	192
Abb. 163 Karteireiter "Prozessdaten"	193
Abb. 164 Konfigurieren der Prozessdaten	194
Abb. 165 Karteireiter "Startup"	195
Abb. 166 Karteireiter "CoE - Online"	196
Abb. 167 Dialog "Advanced settings"	197
Abb. 168 Karteireiter "Online"	197
Abb. 169 Karteireiter "DC" (Distributed Clocks)	198
Abb. 170 System Manager Stromberechnung	207
Abb. 171 Karteireiter EtherCAT -> Erweiterte Einstellungen -> Verhalten> Watchdog	208
Abb. 172 Zustände der EtherCAT State Machine	210
Abb. 173 Karteireiter "CoE-Online"	212
Abb. 174 StartUp-Liste im TwinCAT System Manager	213
Abb. 175 Offline-Verzeichnis	214
Abb. 176 Online-Verzeichnis	215
Abb. 177 Empfohlene Abstände bei Standard-Einbaulage	217

Abb. 178 Weitere Einbaulagen	218
Abb. 179 Korrekte Positionierung	219
Abb. 180 Inkorrekte Positionierung	219
Abb. 181 Schirmschiene	223
Abb. 182 Schirmschienen-Bügel	223
Abb. 183 Schirmanbindung	224
Abb. 184 Montage auf Tragschiene	225
Abb. 185 Demontage von Tragschiene	226
Abb. 186 Linksseitiger Powerkontakt	227
Abb. 187 Standardverdrahtung	228
Abb. 188 Steckbare Verdrahtung	228
Abb. 189 High-Density-Klemmen	228
Abb. 190 Anschluss einer Leitung an eine Klemmstelle	230
Abb. 191 DiagMessages im CoE	234
Abb. 192 Implementierung DiagMessage-System im TwinCAT System Manager	235
Abb. 193 StartUp-Liste	235
Abb. 194 Schematische Darstellung TCEventLogger	242
Abb. 195 Anzeige EventLogger Window	243
Abb. 196 Anzeige DiagMessages und Logged Events	244
Abb. 197 Einstellung Filter Sprache	244
Abb. 198 Aktivierung/Deaktivierung Event-Absetzung	245
Abb. 199 Einstellungen TwinCAT EventLogger	245
Abb. 200 Gerätekennung aus Name EL3204-0000 und Revision -0016	249
Abb. 201 Rechtsklick auf das EtherCAT Gerät bewirkt das Scannen des unterlagerten Feldes	249
Abb. 202 Konfiguration identisch	250
Abb. 203 Änderungsdialog	250
Abb. 204 EEPROM Update	251
Abb. 205 Auswahl des neuen ESI	251
Abb. 206 Anzeige FW-Stand EL3204	252
Abb. 207 Firmware Update	253
Abb. 208 Versionsbestimmung FPGA-Firmware	255
Abb. 209 Kontextmenu Eigenschaften (Properties)	255
Abb. 210 Dialog Advanced settings	256
Abb. 211 Mehrfache Selektion und FW-Update	258
Abb. 212 Auswahl des PDO Restore default parameters	260
Abb. 213 Eingabe des Restore-Wertes im Set Value Dialog	260

Mehr Informationen: www.beckhoff.de/EL3751

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

