M1200 Interface Modul

Technische Beschreibung

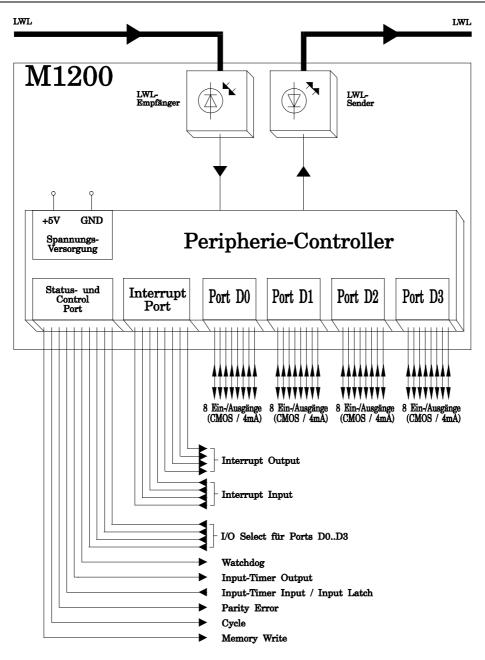

Eiserstraße 5 Telefon 05246/709-0 D-33415 Verl Telefax 05246/70980

Datum : **16.2.94** Version : **2.0** Seite **1** von 15

Inhaltsverzeichnis

1. Funktionsbeschreibung Hardware	3
2. Funktionsbeschreibung Software	5
3. Technische Daten	6
4. Installationshinweise	7
5. Anschlußplan	9

1. Funktionsbeschreibung Hardware



M1200

Allgemeines

Das Interface Modul M1200 ermöglicht den Anschluß kunden-spezifischer Peripherie-Elektronik an das Lichtleiter II/O-System. 32 parallele Daten Ein-/Ausgänge, 4 "schnelle" Interrupts, sowie Interface Control Signale ermöglichen eine einfache Anpassung an verschiedenste Anwendungen. Über den Lichtleiteranschluß des II/O-Systems erfolgt eine schnelle störsichere Datenübertragung zu einem Zentralgerät wie PC, SPS oder CNC.

Datum: **16.2.94** Version: **2.0** Seite **3** von 15

Blockschaltbild

Seite 4 von 15 Version : 2.0 Datum : 16.2.94

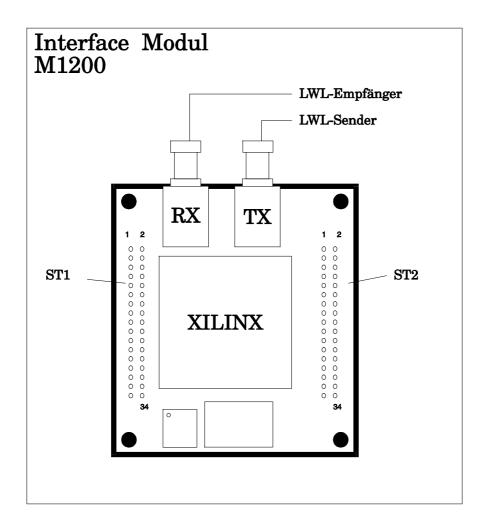
2. Funktionsbeschreibung Software

Die Ports D0 .. D3 entsprechen den Datenbytes im LWL-Übertragungsprotokoll, und sind je nach Anwendung als Ein- oder Ausgänge konfigurierbar.

Datum : **16.2.94** Version : **2.0** Seite **5** von 15

3. Technische Daten

Ein-/Ausgänge	4 Parallel-Ports (8Bit) 4 Interrupts (25µs Auflösung)
Steuersignale	Data Read, Data Write, I/O Select, Cycle, Error, Watchdog
Eingangsspezifikation	CMOS
Ausgangsspezifikation	CMOS, $I_{out} = 4 \text{ mA}$
Ausgangsüberwachung	Watchdog-Schaltung (100ms)
Datenanschluß	Lichtleiter II/O-System
Übertragungsrate	2,5 MBaud, 25µs für 32 Bit
Versorgungsspannung	5 VDC (±5%)
Stromaufnahme	0,15 A (ohne Last- und Eingangsströme)
Anschlüsse	steckbar (2 * 34 polige Steckerleiste)
Gehäuseform	Print-Karte für Steck- oder Schraubmontage
Abmessungen (B*H*T)	63 * 72 * 20 mm
Gewicht	ca. 100 g
Betriebstemperatur	±0+55 °C
Lagertemperatur	-20+70 °C


Seite 6 von 15 Version : 2.0 Datum : 16.2.94

4. Installationshinweise

Das M1200 wird mit LWL Steckverbindern (Toshiba) an den II/O Lichtleiterring angeschlossen. Die maximale LWL-Kabellänge bis zu den Nachbarboxen sollte 45m bei Kunststofflichtleitern und 600m bei Glasfaser nicht übersteigen. Diese Werte gelten nur, wenn beim Verlegen der LWL-Kabel Biegeradien von min. 30 mm eingehalten werden. Bei Verwendung von Kunststofflichtleitern ist zur Montage der Stecker kein Spezialwerkzeug erforderlich.

Die 5V Versorgungsspannung muß über den 34 poligen Stecker angeschlossen werden.

Datum: **16.2.94** Version: **2.0** Seite **7** von 15

Technische Modulskizze

Seite 8 von 15 Version : 2.0 Datum : 16.2.94

5. Anschlußplan

Steckeranschlußbelegung mit Signalbeschreibung

STECKER ST1

Stecker	Pin	Signal	Beschreibung
ST1	1	+5V	+5VDC Hilfsspannung, Imax = 0,3 A
ST1	2	GND	GND Spannungsversorgung
ST1	3	D0.7	Bit 7 des Datenbyte 0
			D0.7 ist Output, wenn I/O-Select $S0 = 0$
			D0.7 ist Input, wenn I/O-Select S0 = 1
ST1	4	D0.6	Bit 6 des Datenbyte 0
			D0.6 ist Output, wenn I/O-Select $S0 = 0$
			D0.6 ist Input, wenn I/O-Select S0 = 1
ST1	5	D0.5	Bit 5 des Datenbyte 0
			D0.5 ist Output, wenn I/O-Select $S0 = 0$
			D0.5 ist Input, wenn I/O-Select S0 = 1
ST1	6	D0.4	Bit 4 des Datenbyte 0
			D0.4 ist Output, wenn I/O-Select $S0 = 0$
			D0.4 ist Input, wenn I/O-Select S0 = 1
ST1	7	D0.3	Bit 3 des Datenbyte 0
			D0.3 ist Output, wenn I/O-Select S0 = 0
			D0.3 ist Input, wenn I/O-Select S0 = 1
ST1	8	D0.2	Bit 2 des Datenbyte 0
			D0.2 ist Output, wenn I/O-Select $S0 = 0$
	_		D0.2 ist Input, wenn I/O-Select S0 = 1
ST1	9	D0.1	Bit 1 des Datenbyte 0
			D0.1 ist Output, wenn I/O-Select $S0 = 0$
~=1	1.0	700	D0.1 ist Input, wenn I/O-Select S0 = 1
ST1	10	D0.0	Bit 0 des Datenbyte 0
			D0.0 ist Output, wenn I/O-Select S0 = 0
C/D1	1.1	D1.7	D0.0 ist Input, wenn I/O-Select S0 = 1
ST1	11	D1.7	Bit 7 des Datenbyte 1
			D1.7 ist Output, wenn I/O-Select S1 = 0 D1.7 ist Input, wenn I/O-Select S1 = 1
C/T/1	10	D1.6	Bit 6 des Datenbyte 1
ST1	12	D1.6	D1.6 ist Output, wenn I/O-Select S1 = 0
			D1.6 ist Input, wenn I/O-Select S1 = 0
ST1	13	D1.5	Bit 5 des Datenbyte 1
511	13	ו.ט	D1.5 ist Output, wenn I/O-Select $S1 = 0$
			D1.5 ist Output, wenn I/O-Select S1 = 0 D1.5 ist Input, wenn I/O-Select S1 = 1
ST1	14	D1.4	Bit 4 des Datenbyte 1
311	14	D1.4	D1.4 ist Output, wenn I/O-Select S1 = 0
			D1.4 ist Input, wenn I/O-Select S1 = 0
L	I	<u>i </u>	21. 1 lot input, well 1/0 beloet b1 - 1

Datum : **16.2.94** Version : **2.0** Seite **9** von 15

Fortsetzung Stecker ST1:

	T	1	
ST1	15	D1.3	Bit 3 des Datenbyte 1
			D1.3 ist Output, wenn I/O-Select $S1 = 0$
			D1.3 ist Input, wenn I/O-Select $S1 = 1$
ST1	16	D1.2	Bit 2 des Datenbyte 1
	10	21.2	D1.2 ist Output, wenn I/O-Select S1 = 0
			D1.2 ist Input, wenn I/O-Select S1 = 1
ST1	17	D1.1	Bit 1 des Datenbyte 1
311	1 /	D1.1	D1.1 ist Output, wenn I/O-Select $S1 = 0$
			=
GTI1	10	D1.0	D1.1 ist Input, wenn I/O-Select S1 = 1
ST1	18	D1.0	Bit 0 des Datenbyte 1
			D1.0 ist Output, wenn I/O-Select $S1 = 0$
			D1.0 ist Input, wenn I/O-Select S1 = 1
ST1	19	IIO	Interrupt-Input 0
			Das Interrupt-Bit I0 eines durchlaufenden
			Telegrammes wird mit dem logischen Wert des
			Interrupt-Inputs II0 verodert. ("Wired-Or" der
			II0-Eingänge über alle Module, pos. Logik)
ST1	20	II1	Interrupt-Input 1
511	20	111	Das Interrupt-Bit I1 eines durchlaufenden
			Telegrammes wird mit dem logischen Wert des
			Interrupt-Inputs II1 verodert. ("Wired-Or" der
C/D1	21	TTO	III-Eingänge über alle Module, pos. Logik)
ST1	21	II2	Interrupt-Input 2
			Das Interrupt-Bit I2 eines durchlaufenden
			Telegrammes wird mit dem logischen Wert des
			Interrupt-Inputs II2 verodert. ("Wired-Or" der
			II2-Eingänge über alle Module, pos. Logik)
ST1	22	II3	Interrupt-Input 3
			Das Interrupt-Bit I3 eines durchlaufenden
			Telegrammes wird mit dem logischen Wert des
			Interrupt-Inputs II3 verodert. ("Wired-Or" der
			II3-Eingänge über alle Module, pos. Logik)
ST1	23	IO0	Interrupt-Output 0
	23	100	Der logische Wert des Interrupt Bit I0 eines
			durchlaufenden Telegrammes wird auf dem
			Output IO0 ausgegeben (pos. Logik)
CT1	24	IO1	Interrupt-Output 1
ST1	∠ 4	101	Der logische Wert des Interrupt Bit I1 eines
			durchlaufenden Telegrammes wird auf dem
GE 4	2.7	102	Output IO1 ausgegeben (pos. Logik)
ST1	25	IO2	Interrupt-Output 2
			Der logische Wert des Interrupt Bit I2 eines
			durchlaufenden Telegrammes wird auf dem
			Output IO2 ausgegeben pos. Logik
ST1	26	IO3	Interrupt-Output 3
			Der logische Wert des Interrupt Bit I3.eines
			durchlaufenden Telegrammes wird auf dem
			Output IO3 ausgegeben (pos. Logik)
ST1	27		n.c.
ST1	28		n.c.

Fortsetzung Stecker ST1:

Fortsetzung Stecker ST1:

Seite 10 von 15 Version : 2.0 Datum : 16.2.94

ST1	29	p38	Pin 38 des XILINX LCA:
			reserviert
ST1	30	p41	Pin 41 des XILINX LCA:
		_	reserviert
ST1	31	p45	Pin 45 des XILINX LCA:
		_	reserviert
ST1	32		n.c.
ST1	33		n.c.
ST1	34		n.c.

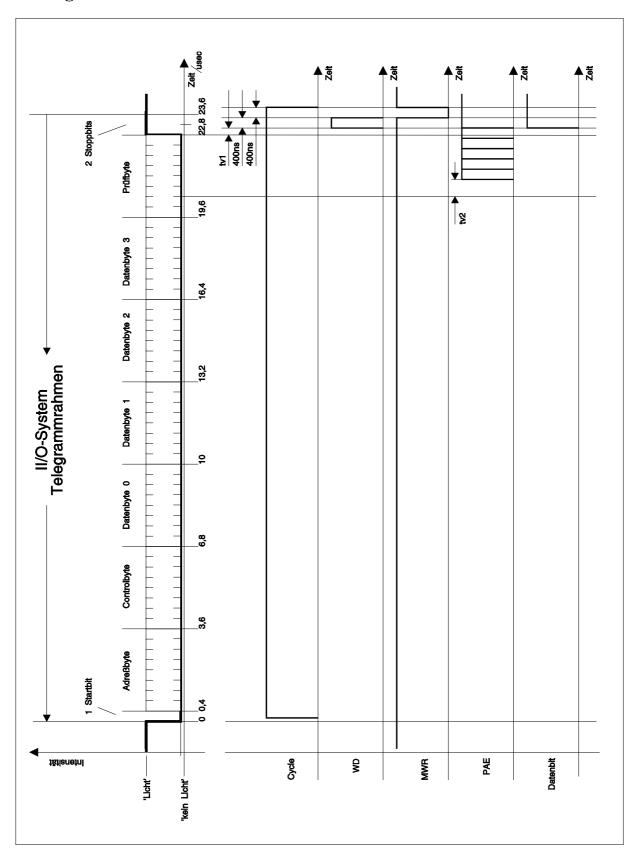
STECKER ST2

Stecker	Pin	Signal	Beschreibung
ST2	1	+5V	+5VDC Hilfsspannung, Imax = 0,3 A
ST2	2	GND	GND Spannungsversorgung
ST2	3	D3.7	Bit 7 des Datenbyte 3 D3.7 ist Output, wenn I/O-Select S3 = 0 D3.7 ist Input, wenn I/O-Select S3 = 1
ST2	4	D3.6	Bit 6 des Datenbyte 3 D3.6 ist Output, wenn I/O-Select S3 = 0 D3.6 ist Input, wenn I/O-Select S3 = 1 **Anmerkung** D3.6 wird auch als Dateneingang für die XILINX-Konfiguration verwendet. D3.6 darf daher nur über einen Serien-Widerstand von 10kOhm mit einer externen Schaltung verbunden werden, sonst 1 x TTL-Last
ST2	5	D3.5	Bit 5 des Datenbyte 3 D3.5 ist Output, wenn I/O-Select S3 = 0 D3.5 ist Input, wenn I/O-Select S3 = 1
ST2	6	D3.4	Bit 4 des Datenbyte 3 D3.4 ist Output, wenn I/O-Select S3 = 0 D3.4 ist Input, wenn I/O-Select S3 = 1
ST2	7	D3.3	Bit 3 des Datenbyte 3 D3.3 ist Output, wenn I/O-Select S3 = 0 D3.3 ist Input, wenn I/O-Select S3 = 1
ST2	8	D3.2	Bit 2 des Datenbyte 3 D3.2 ist Output, wenn I/O-Select S3 = 0 D3.2 ist Input, wenn I/O-Select S3 = 1
ST2	9	D3.1	Bit 1 des Datenbyte 3 D3.1 ist Output, wenn I/O-Select S3 = 0 D3.1 ist Input, wenn I/O-Select S3 = 1
ST2	10	D3.0	Bit 0 des Datenbyte 3 D3.1 ist Output, wenn I/O-Select S3 = 0 D3.1 ist Input, wenn I/O-Select S3 = 1
ST2	11	D2.7	Bit 7 des Datenbyte 2 D2.7 ist Output, wenn I/O-Select S2 = 0 D2.7 ist Input, wenn I/O-Select S2 = 1
ST2	12	D2.6	Bit 6 des Datenbyte 2 D2.6 ist Output, wenn I/O-Select S2 = 0 D2.6 ist Input, wenn I/O-Select S2 = 1

Fortsetzung Stecker ST2:

Datum : **16.2.94** Version : **2.0** Seite **11** von 15

ST2	13	D2.5	Bit 5 des Datenbyte 2
			D2.5 ist Output, wenn I/O-Select $S2 = 0$
			D2.5 ist Input, wenn I/O-Select S2 = 1
ST2	14	D2.4	Bit 4 des Datenbyte 2
212		22	D2.4 ist Output, wenn I/O-Select $S2 = 0$
			D2.4 ist Input, wenn I/O-Select S2 = 1
ST2	15	D2.3	Bit 3 des Datenbyte 2
512	13	D2.3	D2.3 ist Output, wenn I/O-Select S2 = 0
			D2.3 ist Gutput, wenn I/O-Select $S2 = 0$ D2.3 ist Input, wenn I/O-Select $S2 = 1$
CTO	1.6	D2 2	Bit 2 des Datenbyte 2
ST2	16	D2.2	
			D2.2 ist Output, wenn I/O-Select S2 = 0
GERA.	4.5	D0.1	D2.2 ist Input, wenn I/O-Select S2 = 1
ST2	17	D2.1	Bit 1 des Datenbyte 2
			D2.1 ist Output, wenn I/O-Select $S2 = 0$
			D2.1 ist Input, wenn I/O-Select S2 = 1
ST2	18	D2.0	Bit 0 des Datenbyte 2
			D2.0 ist Output, wenn I/O-Select $S2 = 0$
			D2.0 ist Input, wenn I/O-Select S2 = 1
ST2	19	S3	I/O Select für Datenbyte 3 (D3.0-D3.7)
			Wenn S3=0, dann sind D3.0-D3.7 als Output
			geschaltet.
			Wenn S3=1, dann sind D3.0-D3.7 als Input
			geschaltet.
ST2	20	S2	I/O Select für Datenbyte 2 (D2.0-D2.7)
512	20	52	Wenn S2=0, dann sind D2.0-D2.7 als Output
			geschaltet.
			Wenn S2=1, dann sind D2.0-D2.7 als Input
			geschaltet.
ST2	21	S1	I/O Select für Datenbyte 1 (D1.0-D1.7)
312	21	51	· · · · · · · · · · · · · · · · · · ·
			Wenn S1=0, dann sind D1.0-D1.7 als Output
			geschaltet.
			Wenn S1=1, dann sind D1.0-D1.7 als Input
			geschaltet.
ST2	22	S0	I/O Select für Datenbyte 0 (D0.0-D0.7)
			Wenn S0=0, dann sind D0.0-D0.7 als Output
			geschaltet.
			Wenn S0=1, dann sind D0.0-D0.7 als Input
			geschaltet.
ST2	23	WDT	Trigger-Impuls für externe Watchdog-
			Schaltung:
			Unmittelbar nachdem
			a) ein Telegramm vollständig empfangen
			wurde,
			b) das Modul adressiert worden ist,
			c) kein Übertragungsfehler vorliegt
			und ein Schreibzugriff auf das Modul erfolgt
			ist, wird ein Impuls logisch "1" ausgegeben.
ST2	24	ITO	Input-Timer-Output
312	∠ '1	110	Spezielles Trigger-Signal für Input_Timer; wird
			im Modul M1000 benutzt.
OTTO	25	ITH	
ST2	25	ITI	Input-Timer-Input/Input Latch
			Bei ITI=1 werden die Eingangsdaten D00-D37
			in das Modul eingelesen.
			Bei ITI=0 werden die Eingangsdaten D00-D37
			<u>nicht</u> eingelesen.


Seite 12 von 15 Version : 2.0 Datum : 16.2.94

Fortsetzung Stecker ST2:

1		I	T
ST2	26	PAE	Parity Error
			Das PAE-Signal wird unmittelbar nach dem
			vollständigen Empfang eines Telegrammes
			erzeugt.
			Es gilt:
			PAE = 0, dann CRC o.k.
			PAE = 1, dann CRC fehlerhaft
			Das Signal wird nach erkennen eines
			fehlerhaftenTelegrammes (Checksum, Frame)
			eingeschaltet und nach dem Durchlaufen drei
			aufeinanderfolgender richtiger Telegramme
			wieder ausgeschaltet.
ST2	27	CYC	CYCLE
			CYCLE wird mit dem Startbit eines jeden
			Telegrammeseingeschaltet (auf "1" gesetzt) und
			mit dem Stopbit wieder ausgeschaltet.
ST2	28	MWR	Memory Write
	_		Das Memory Write Signal (Active Low) wird
			eine definierte Zeit nach dem vollständigen
			Empfang eines Telegrammes erzeugt, wenn
			a) das Write-Control-Bit im Telegramm
			gesetzt ist.
			b) die CRC-Prüfung fehlerfrei war
			c) die Ausgaben-Daten stahl anstehen.
ST2	29		n.c.
ST2	30	P50	Pin 50 des XILINX LCA:
			reserviert
ST2	31	P51	Pin 51 des XILINX LCA:
			reserviert
ST2	32		n.c.
ST2	33		n.c.
ST2	34		n.c.

Datum : **16.2.94** Version : **2.0** Seite **13** von 15

Timing

Timingdiagramm Peripheriecontroller

Seite **14** von 15 Version : **2.0** Datum : **16.2.94**

Im Timing-Diagramm ist die Abhängigkeit zwischen Zeitverlauf des II/O-Telegramm-Rahmens und einigen Peripherie-Controller Signalen dargestellt.

Der II/O-System Telegrammrahmen ist hier als Lichtsignal dargestellt, die weiteren Signale mit ihrem elektrischen Pegel. Die opto-elektronische Wandlung und eine Verzögerung durch logische Gatter im Peripheriecontroller verursachen die Verzögerungszeit $\mathbf{t_{v1}}$ (ca. 300 ns). Wird ein Fehler beim CRC-Check festgestellt, erfolgt die Ausgabe des PAE-Signals. Die Verzögerungszeit $\mathbf{t_{v2}}$ setzt sich aus $\mathbf{t_{v1}}$ (ca. 300 ns) und einer Zeitdauer ($\mathbf{n+1}$)*400ns zusammen. \mathbf{n} entspricht hier dem CRC-Bit, welches den Fehler signalisiert (z.B.: CRC-Bit 0 => $\mathbf{t_{v2}}$ = 300 ns + (0+1)*400 ns = 700ns).

Der Bitstrom wird in jedem Peripherie-Modul digital-elektrisch aufbereitet und mit einer Verzögerung von ~2 Bit (800 ns) weitergesendet. Die opto-elektrische Wandlung von Sender und Empfänger über LWL ergibt eine weitere Verzögerung von ~1 Bit (400 ns) pro Peripherie-Modul. Die Summe aller Bitstromverzögerungen ergibt sich etwa aus :

Anzahl der Peripherie-Module * 1200 ns

Datum: **16.2.94** Version: **2.0** Seite **15** von 15