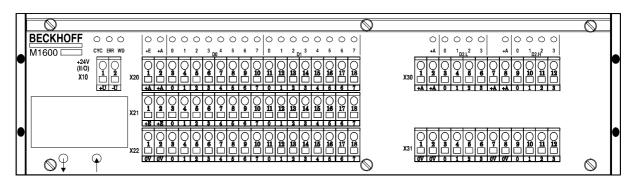
# M1600 Parallel Input / Output

# **Technical Documentation**




Eiserstraße 5 33415 Verl phone 05246/709-0 fax 05246/70980

### **Table of Contents**

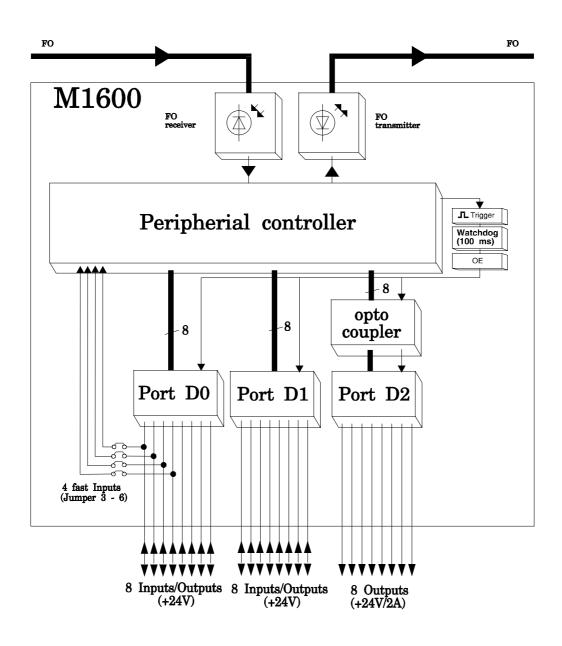
| 1. Function Description Hardware |    |
|----------------------------------|----|
| 2. Function Description Software | 5  |
| 3. Technical Data                | 6  |
| 4. Installation                  | 7  |
| 5. Table of Connections          | 11 |

## **1. Function Description Hardware**



#### M1600

#### About the Hardware


The parallel module M1600 is an input / output module used in the II/O system. There are 16 Standard 24 V inputs / outputs and 8 high current outputs, which achieve 3 ports of 8 bit each.

These 3 ports ( D0..D2 ) correspond to the data bytes in the FO transmissions protocol and according to the way they are to be used, the ports D0 and D1 can be configured as input or output.

Each input / output has an LED, that indicates the current state. Furthermore there are three LED's installed used for diagnosis of the II/O fibre optical ring:

- *LD1* The green 'CYCLE' LED is switched on by each start bit of a telegram and is switched off again by the stop bit.
- *LD2* The red 'ERROR' LED is switched on after the recognition of a bad telegram (checksum, frame). After a sequence of three correct telegrams (checksum, frame) were processed it is switched off again.
- **LD3** The green LED 'WATCHDOG' is switched on by a valid writing telegram with matching address. If no telegram with the properties defined above is recognised for the next 100 ms a special unit of the module switches off all outputs.

In case an error is detected, all outputs are reset.



Basic Circuit Diagram

# **2. Function Description Software**

# 3. Technical Data

| Inputs / Outputs         | <ul><li>16, can be configured for each port;</li><li>8 high current outputs</li><li>LED shows state of all inputs / outputs</li></ul> |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| input specifications     | 24 VDC, 10 mA, digital filter                                                                                                         |
| input switching voltages | $\begin{array}{l} 0 - 8V = LOW \\ 15 - 24V = HIGH \end{array}$                                                                        |
| input delay              | 0,7 ms RC network<br>6,8 ms input latch                                                                                               |
| Output specifications    | normal i/o :<br>24 VDC, max. 500 mA, short circuit proof<br>High current :<br>24 VDC, max. 2 A, short circuit proof                   |
| Output check             | watchdog system 100ms                                                                                                                 |
| Connections              | can be connected for 16 I/O; +,-,signal and 8 high current outputs, +,-                                                               |
| Data connection          | fibre optic II/O system                                                                                                               |
| transmission rate        | 2,5 MBaud, 25 µs for 32 Bit                                                                                                           |
| Supply Voltage           | 24 VDC (± 10%)                                                                                                                        |
| Input Current            | 0,1 A (without load and input currents)                                                                                               |
| Cartridge                | closed, can be installed to cartridge carrier according to DIN EN 50022, 50035                                                        |
| Size (B * W * D)         | 270 * 76 * 68 mm                                                                                                                      |
| Weight                   | about 1100 g                                                                                                                          |
| Working Temperature      | ±0+55 ØC                                                                                                                              |
| Storage Temperature      | -20+70 <sup>Ø</sup> C                                                                                                                 |

### 4. Installation

The M1600 is connected to the fibre optic ring using fibre optic connections (Toshiba). The maximum length of the FO cable, leading to the neighbouring boxes, should not be more then 600m for glass fibre or 45 meters for other fibres. These values are only valid if for bending the cable a radius of at least 30 mm is used. If there are no glass fibres used, no special tools are needed for installation of the plugs.

Common actors and sensor are connected directly to the inputs / outputs (using "+,-,signal" ).

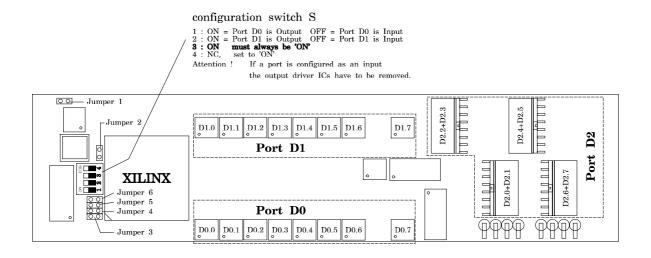
The M1600 is installed at the machine or simply by installing it to a cartridge carrier according to DIN EN 50022 or DIN EN 50035.

#### Configuration

Each I/O port of the M1600 can be configured as input or as output. This does not dependent on the configuration of the other ports. There are DIP switches under the XILINX board of the M1600. In order to change the state of the switches the module's cartridge has to be opened..

The DIP switches are assigned as follows:

| switch 1 | =>  | port D0                     |
|----------|-----|-----------------------------|
| switch 2 | =>  | port D1                     |
| switch 3 | =>  | port D2 must always be 'ON' |
| switch 4 | NC, | set to 'ON'                 |


It depends on the state of the switch whether a port is an output or an input :

| 'ON' =>  | port is output |
|----------|----------------|
| 'OFF' => | port is input  |

#### **ATTENTION:**

Configuring a port as input ( switch "OFF") all of the eight output controller ICs of the port concerned have to be removed.

If the ICs are not removed the port is not functional as input, but the module remains undamaged.

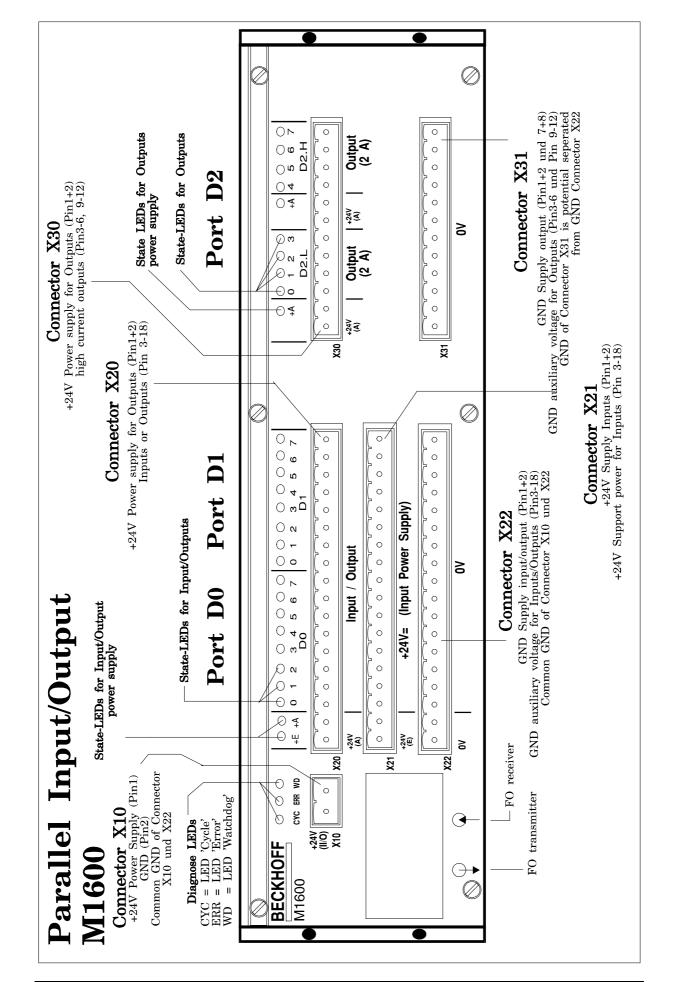


View under the M1600 XILINX board

The following module configuration is possible by setting jumpers 1 to 2 :

| Jumper 1 | Watchdog on / off<br>for Port D0 and D1                                                                                                                                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | If this jumper is set the 'Watchdog' function is switched off.<br>This means if an error is detected the outputs of Port D0 and<br>D1 are not switched off.<br>The security function for the high current outputs can not be<br>disabled |
| Jumper 2 | Latch on / off                                                                                                                                                                                                                           |
|          | standard configuration is jumper 'set'<br>inputs are latched in intervals of 6,8 ms<br>otherwise inputs are latched permanently                                                                                                          |

|          | Fast Inputs M1600 (Interrupt Inputs)                                                                    |
|----------|---------------------------------------------------------------------------------------------------------|
| Jumper 3 | FastinputII3:IfjumperconnectionbetwennportD0.3andXILINX II3 is establishedFast input is activated       |
| Jumper 4 | FastinputII2:Ifjumper connection betwenn portD0.2 andXILINX II3 is established Fast input is activated  |
| Jumper 5 | FastinputII1:Ifjumper connection betwenn port D0.1 andXILINX II3 is established Fast input is activated |
| Jumper 6 | FastinputII0:IfjumperconnectionbetwennportD0.0andXILINX II3 is establishedFast input is activated       |


The following modul configuration is possible by setting jumpers 3 to 6 :

### **Power Supply**

There are the following connections for power supply :

- (1) two pole plug connection for the controller (X10 Pin1+2)
- (2) two pole plug connection for outputs (X20 Pin1+2)(16 outputs)
- (3) two pole plug connection for inputs (X21 Pin1+2) (16 inputs)
- (4) two pole plug connection for ground (X22 Pin1+2)
- (5) 2x two pole plug connection for 4 high current outputs (X30 Pin1+2 and Pin 7+8)
- (6) 2x two pole plug connection for 4 high current outputs (X31 Pin1+2 and Pin 7+8)

The power supply of the 8 high current channels is potential seperated from the control locic unit. Thus the +24VDC lines and the 0V lines are are connected seperately. The +24 VDC supply is established by two two-pin connections.



# **5.** Table of Connections

### Connector pin assignment with Signal Description

#### **CONNECTOR X10**

| Connector | Pin | Signal | Description               |
|-----------|-----|--------|---------------------------|
| X10       | 1   | +U     | +24V control power supply |
| X10       | 2   | -U     | GND ground                |

#### CONNECTOR X20

| Connector | Pin | Signal | Description             |
|-----------|-----|--------|-------------------------|
| X20       | 1   | +A     | +24V supply for output  |
| X20       | 2   | +A     | +24V supply for output  |
| X20       | 3   | D0.0   | Bit 0 of Data byte 0    |
|           |     |        | D0.0 is output,         |
|           |     |        | if DIL switch $S1 = ON$ |
|           |     |        | D0.0 is input,          |
|           |     |        | if DIL switch S1 = OFF  |
| X20       | 4   | D0.1   | Bit 1 of Data byte 0    |
|           |     |        | D0.1 is output,         |
|           |     |        | if DIL switch $S1 = ON$ |
|           |     |        | D0.1 is input,          |
|           |     |        | if DIL-switch S1 = OFF  |
| X20       | 5   | D0.2   | Bit 2 of Data byte 0    |
|           |     |        | D0.2 is output,         |
|           |     |        | if DIL switch $S1 = ON$ |
|           |     |        | D0.2 is input,          |
|           |     |        | if DIL switch S1 = OFF  |
| X20       | 6   | D0.3   | Bit 3 of Data byte 0    |
|           |     |        | D0.3 is output,         |
|           |     |        | if DIL-switch $S1 = ON$ |
|           |     |        | D0.3 is input,          |
|           |     |        | if DIL switch S1 = OFF  |
| X20       | 7   | D0.4   | Bit 4 of Data byte 0    |
|           |     |        | D0.4 is output,         |
|           |     |        | if DIL switch $S1 = ON$ |
|           |     |        | D0.4 is input,          |
|           |     |        | of DIL switch S1 = OFF  |
| X20       | 8   | D0.5   | Bit 5 of Data byte 0    |
|           |     |        | D0.5 is output,         |
|           |     |        | if DIL switch $S1 = ON$ |
|           |     |        | D0.5 is input,          |
|           |     |        | if DIL switch S1 = OFF  |

continuation connector X20:

| Connector | Pin | Signal | Description                                                                                                                  |
|-----------|-----|--------|------------------------------------------------------------------------------------------------------------------------------|
| X20       | 9   | D0.6   | Bit 6 of Data byte 0                                                                                                         |
| 1120      | ,   | 20.0   | D0.6 is output,                                                                                                              |
|           |     |        | if DIL switch $S1 = ON$                                                                                                      |
|           |     |        | D0.6 is input,                                                                                                               |
|           |     |        | if DIL switch $S1 = OFF$                                                                                                     |
| X20       | 10  | D0.7   | Bit 7 of Data byte 0                                                                                                         |
| 1120      | 10  | 2011   | D0.7 is output,                                                                                                              |
|           |     |        | if DIL switch $S1 = ON$                                                                                                      |
|           |     |        | D0.7 is input,                                                                                                               |
|           |     |        | if DIL switch $S1 = OFF$                                                                                                     |
| X20       | 11  | D1.0   | Bit 0 of Data byte 1                                                                                                         |
| _         |     |        | D1.0 is output,                                                                                                              |
|           |     |        | if DIL switch $S1 = ON$                                                                                                      |
|           |     |        | D1.0 is input,                                                                                                               |
|           |     |        | if DIL switch $S1 = OFF$                                                                                                     |
| X20       | 12  | D1.1   | Bit 1 of Data byte 1                                                                                                         |
|           |     |        | D1.1 is output,                                                                                                              |
|           |     |        | if DIL switch $S1 = ON$                                                                                                      |
|           |     |        | D1.1 is input,                                                                                                               |
|           |     |        | if DIL switch S1 = OFF                                                                                                       |
| X20       | 13  | D1.2   | Bit 2 of Data byte 1                                                                                                         |
|           |     |        | D1.2 is output,                                                                                                              |
|           |     |        | if DIL switch $S1 = ON$                                                                                                      |
|           |     |        | D1.2 is input,                                                                                                               |
|           |     |        | if DIL switch S1 = OFF                                                                                                       |
| X20       | 14  | D1.3   | Bit 3 of Data byte 1                                                                                                         |
|           |     |        | D1.3 is output,                                                                                                              |
|           |     |        | if DIL switch $S1 = ON$                                                                                                      |
|           |     |        | D1.3 is input,                                                                                                               |
|           |     |        | if DIL switch $S1 = OFF$                                                                                                     |
| X20       | 15  | D1.4   | Bit 4 of Data byte 1                                                                                                         |
|           |     |        | D1.4 is output,<br>if DIL switch $S1 = ON$                                                                                   |
|           |     |        |                                                                                                                              |
|           |     |        | D1.4 is input,<br>if D1 arritab S1 = OFF                                                                                     |
| V20       | 17  | D1 5   | if DIL switch S1 = OFF<br>Pit 5 of Data bute 1                                                                               |
| X20       | 16  | D1.5   | Bit 5 of Data byte 1<br>D1.5 is output,                                                                                      |
|           |     |        | if DIL switch $S1 = ON$                                                                                                      |
|           |     |        | D1.5 is input, $D1.5$                                                                                                        |
|           |     |        | if DIL switch $S1 = OFF$                                                                                                     |
| X20       | 17  | D1.6   | Bit 6 of Data byte 1                                                                                                         |
| A20       | 1/  | D1.0   | D1.6 is output,                                                                                                              |
|           |     |        | if DIL switch $S1 = ON$                                                                                                      |
|           |     |        | D1.6 is input,                                                                                                               |
|           |     |        | if DIL switch $S1 = OFF$                                                                                                     |
| X20       | 18  | D1.7   | Bit 7 of Data byte 1                                                                                                         |
| 120       | 10  | D1./   | D1.7 is output,                                                                                                              |
|           |     |        | if DIL switch $S1 = ON$                                                                                                      |
|           |     |        | D1.7 is input,                                                                                                               |
|           |     |        | if DIL switch $S1 = OFF$                                                                                                     |
| I I       |     |        | $\mathbf{H} \mathbf{D} \mathbf{I} \mathbf{D} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$ |

| CONNECTOR X21 |     |        |                                 |
|---------------|-----|--------|---------------------------------|
| Connector     | Pin | Signal | Description                     |
| X21           | 1   | +E     | +24V supply inputs              |
| X21           | 2   | +E     | +24V supply inputs              |
| X21           | 3   | +24V   | +24V power supply for input 0.0 |
| X21           | 4   | +24V   | +24V power supply for input 0.1 |
| X21           | 5   | +24V   | +24V power supply for input 0.2 |
| X21           | 6   | +24V   | +24V power supply for input 0.3 |
| X21           | 7   | +24V   | +24V power supply for input 0.4 |
| X21           | 8   | +24V   | +24V power supply for input 0.5 |
| X21           | 9   | +24V   | +24V power supply for input 0.6 |
| X21           | 10  | +24V   | +24V power supply for input 0.7 |
| X21           | 11  | +24V   | +24V power supply for input 1.0 |
| X21           | 12  | +24V   | +24V power supply for input 1.1 |
| X21           | 13  | +24V   | +24V power supply for input 1.2 |
| X21           | 14  | +24V   | +24V power supply for input 1.3 |
| X21           | 15  | +24V   | +24V power supply for input 1.4 |
| X21           | 16  | +24V   | +24V power supply for input 1.5 |
| X21           | 17  | +24V   | +24V power supply for input 1.6 |
| X21           | 18  | +24V   | +24V power supply for input 1.7 |

### CONNECTOR V1

### CONNECTOR X22

| Connector | Pin | Signal | Description             |
|-----------|-----|--------|-------------------------|
| X22       | 1   | 0V     | GND Supply input/output |
| X22       | 2   | 0V     | GND Supply input/output |
| X22       | 3   | 0V     | GND Input/output D0.0   |
| X22       | 4   | 0V     | GND Input/output D0.1   |
| X22       | 5   | 0V     | GND Input/output D0.2   |
| X22       | 6   | 0V     | GND Input/output D0.3   |
| X22       | 7   | 0V     | GND Input/output D0.4   |
| X22       | 8   | 0V     | GND Input/output D0.5   |
| X22       | 9   | 0V     | GND Input/output D0.6   |
| X22       | 10  | 0V     | GND Input/output D0.7   |
| X22       | 11  | 0V     | GND Input/output D1.0   |
| X22       | 12  | 0V     | GND Input/output D1.1   |
| X22       | 13  | 0V     | GND Input/output D1.2   |
| X22       | 14  | 0V     | GND Input/output D1.3   |
| X22       | 15  | 0V     | GND Input/output D1.4   |
| X22       | 16  | 0V     | GND Input/output D1.5   |
| X22       | 17  | 0V     | GND Input/output D1.6   |
| X22       | 18  | 0V     | GND Input/output D1.7   |

| Connector | Pin | Signal | Description                              |
|-----------|-----|--------|------------------------------------------|
| X30       | 1   | +A     | +24V supply for output                   |
| X30       | 2   | +A     | +24V supply for output                   |
| X30       | 3   | D2.0   | high current output Bit 0 of Data byte 2 |
| X30       | 4   | D2.1   | high current output Bit 1 of Data byte 2 |
| X30       | 5   | D2.2   | high current output Bit 2 of Data byte 2 |
| X30       | 6   | D2.3   | high current output Bit 3 of Data byte 2 |
| X30       | 7   | +A     | +24V supply for output                   |
| X30       | 8   | +A     | +24V supply for output                   |
| X30       | 9   | D2.4   | high current output Bit 4 of Data byte 2 |
| X30       | 10  | D2.5   | high current output Bit 5 of Data byte 2 |
| X30       | 11  | D2.6   | high current output Bit 6 of Data byte 2 |
| X30       | 12  | D2.7   | high current output Bit 7 of Data byte 2 |

**CONNECTOR X30** 

#### **CONNECTOR X31**

| Connector | Pin | Signal | Description                     |
|-----------|-----|--------|---------------------------------|
| X31       | 1   | 0V     | GND Supply high current outputs |
| X31       | 2   | 0V     | GND Supply high current outputs |
| X31       | 3   | 0V     | GND high current output D2.0    |
| X31       | 4   | 0V     | GND high current output D2.1    |
| X31       | 5   | 0V     | GND high current output D2.2    |
| X31       | 6   | 0V     | GND high current output D2.3    |
| X31       | 7   | 0V     | GND Supply high current outputs |
| X31       | 8   | 0V     | GND Supply high current outputs |
| X31       | 9   | 0V     | GND high current output D2.4    |
| X31       | 10  | 0V     | GND high current output D2.5    |
| X31       | 11  | 0V     | GND high current output D2.6    |
| X31       | 12  | 0V     | GND high current output D2.7    |

Common GND of Connector X10 Pin 2 and Connector X22 Pin 1 to 18.

GND (Connector X31 Pin 1 to 12) is potential seperated from GND (Connector X22 Pin 1 to 18).